This document provides an introduction of the R/Biocondcutor ELMER package, which is designed to combine DNA methylation and gene expression data from human tissues to infer multi-level cis-regulatory networks. ELMER uses DNA methylation to identify enhancers, and correlates enhancer state with expression of nearby genes to identify one or more transcriptional targets. Transcription factor (TF) binding site analysis of enhancers is coupled with expression analysis of all TFs to infer upstream regulators. This package can be easily applied to TCGA public available cancer data sets and custom DNA methylation and gene expression data sets.
ELMER analyses have 5 main steps:
The package workflow is showed in the figure below:
ELMER workflow: ELMER receives as input a DNA methylation object, a gene expression object (both can be either a matrix or a SummarizedExperiment object) and a Genomic Ranges (GRanges) object with distal probes to be used as filter which can be retrieved using the get.feature.probe
function. The function createMAE will create a Multi Assay Experiment object keeping only samples that have both DNA methylation and gene expression data. Genes will be mapped to genomic position and annotated using ENSEMBL database, while for probes it will add annotation from (http://zwdzwd.github.io/InfiniumAnnotation). This MAE object will be used as input to the next analysis functions. First, it identifies differentially methylated probes followed by the identification of their nearest genes (10 upstream and 10 downstream) through the get.diff.meth
and GetNearGenes
functions respectively. For each probe it will verify if any of the nearby genes were affected by its change in the DNA methylation level and a list of gene and probes pairs will be outputted from get.pair
function. For the probes in those pairs, it will search for enriched regulatory Transcription Factors motifs with the get.enriched.motif
function. Finally, the enriched motifs will be correlate with the level of the transcription factor through the get.TFs
function. In the figure green Boxes represents user input data, blue boxes represents output object, orange boxes represents auxiliary pre-computed data and gray boxes are functions.
To install this package from github (development version), start R and enter:
devtools::install_github(repo = "tiagochst/ELMER.data")
devtools::install_github(repo = "tiagochst/ELMER")
To install this package from Bioconductor start R and enter:
source("https://bioconductor.org/biocLite.R")
biocLite("ELMER")
Then, to load ELMER enter:
If you used ELMER package or its results, please cite:
If you get TCGA data using getTCGA
function, please cite TCGAbiolinks package:
Silva, TC, A Colaprico, C Olsen, F D’Angelo, G Bontempi, M Ceccarelli, and H Noushmehr. 2016. “TCGA Workflow: Analyze Cancer Genomics and Epigenomics Data Using Bioconductor Packages [Version 2; Referees: 1 Approved, 1 Approved with Reservations].” F1000Research 5 (1542). doi:10.12688/f1000research.8923.2.
Grossman, Robert L., et al. “Toward a shared vision for cancer genomic data.” New England Journal of Medicine 375.12 (2016): 1109-1112.
If you get use the Graphical user interface, please cite TCGAbiolinksGUI
package:
sessionInfo()
## R version 3.4.3 (2017-11-30)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 16.04.3 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.6-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.6-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] bindrcpp_0.2 ELMER_2.2.7
## [3] MultiAssayExperiment_1.4.4 BiocStyle_2.6.1
## [5] dplyr_0.7.4 DT_0.2
## [7] ELMER.data_2.2.2
##
## loaded via a namespace (and not attached):
## [1] shinydashboard_0.6.1 R.utils_2.6.0
## [3] RSQLite_2.0 AnnotationDbi_1.40.0
## [5] htmlwidgets_0.9 grid_3.4.3
## [7] BiocParallel_1.12.0 devtools_1.13.4
## [9] DESeq_1.30.0 munsell_0.4.3
## [11] codetools_0.2-15 withr_2.1.1
## [13] colorspace_1.3-2 BiocInstaller_1.28.0
## [15] Biobase_2.38.0 knitr_1.17
## [17] rstudioapi_0.7 stats4_3.4.3
## [19] labeling_0.3 GenomeInfoDbData_1.0.0
## [21] mnormt_1.5-5 hwriter_1.3.2
## [23] KMsurv_0.1-5 bit64_0.9-7
## [25] rprojroot_1.3-1 downloader_0.4
## [27] biovizBase_1.26.0 ggthemes_3.4.0
## [29] EDASeq_2.12.0 R6_2.2.2
## [31] doParallel_1.0.11 GenomeInfoDb_1.14.0
## [33] locfit_1.5-9.1 AnnotationFilter_1.2.0
## [35] bitops_1.0-6 reshape_0.8.7
## [37] DelayedArray_0.4.1 assertthat_0.2.0
## [39] scales_0.5.0 nnet_7.3-12
## [41] gtable_0.2.0 sva_3.26.0
## [43] ensembldb_2.2.0 rlang_0.1.6
## [45] genefilter_1.60.0 cmprsk_2.2-7
## [47] GlobalOptions_0.0.12 splines_3.4.3
## [49] rtracklayer_1.38.2 lazyeval_0.2.1
## [51] acepack_1.4.1 dichromat_2.0-0
## [53] selectr_0.3-1 broom_0.4.3
## [55] checkmate_1.8.5 yaml_2.1.16
## [57] reshape2_1.4.3 GenomicFeatures_1.30.0
## [59] backports_1.1.2 httpuv_1.3.5
## [61] Hmisc_4.1-0 RMySQL_0.10.13
## [63] tools_3.4.3 psych_1.7.8
## [65] ggplot2_2.2.1 RColorBrewer_1.1-2
## [67] BiocGenerics_0.24.0 Rcpp_0.12.14
## [69] plyr_1.8.4 base64enc_0.1-3
## [71] progress_1.1.2 zlibbioc_1.24.0
## [73] purrr_0.2.4 RCurl_1.95-4.8
## [75] prettyunits_1.0.2 ggpubr_0.1.6
## [77] rpart_4.1-11 GetoptLong_0.1.6
## [79] S4Vectors_0.16.0 zoo_1.8-0
## [81] SummarizedExperiment_1.8.1 ggrepel_0.7.0
## [83] cluster_2.0.6 magrittr_1.5
## [85] data.table_1.10.4-3 circlize_0.4.3
## [87] survminer_0.4.1 ProtGenerics_1.10.0
## [89] matrixStats_0.52.2 aroma.light_3.8.0
## [91] hms_0.4.0 mime_0.5
## [93] evaluate_0.10.1 xtable_1.8-2
## [95] XML_3.98-1.9 IRanges_2.12.0
## [97] gridExtra_2.3 shape_1.4.3
## [99] testthat_2.0.0 compiler_3.4.3
## [101] biomaRt_2.34.1 tibble_1.4.1
## [103] R.oo_1.21.0 htmltools_0.3.6
## [105] mgcv_1.8-22 Formula_1.2-2
## [107] tidyr_0.7.2 geneplotter_1.56.0
## [109] DBI_0.7 matlab_1.0.2
## [111] ComplexHeatmap_1.17.1 ShortRead_1.36.0
## [113] Matrix_1.2-12 readr_1.1.1
## [115] R.methodsS3_1.7.1 parallel_3.4.3
## [117] Gviz_1.22.2 bindr_0.1
## [119] GenomicRanges_1.30.1 pkgconfig_2.0.1
## [121] km.ci_0.5-2 GenomicAlignments_1.14.1
## [123] foreign_0.8-69 plotly_4.7.1
## [125] xml2_1.1.1 roxygen2_6.0.1
## [127] foreach_1.4.4 annotate_1.56.1
## [129] XVector_0.18.0 rvest_0.3.2
## [131] stringr_1.2.0 VariantAnnotation_1.24.4
## [133] digest_0.6.13 ConsensusClusterPlus_1.42.0
## [135] Biostrings_2.46.0 rmarkdown_1.8
## [137] TCGAbiolinks_2.6.7 survMisc_0.5.4
## [139] htmlTable_1.11.0 edgeR_3.20.3
## [141] curl_3.1 shiny_1.0.5
## [143] Rsamtools_1.30.0 commonmark_1.4
## [145] rjson_0.2.15 nlme_3.1-131
## [147] jsonlite_1.5 viridisLite_0.2.0
## [149] limma_3.34.5 BSgenome_1.46.0
## [151] pillar_1.0.1 lattice_0.20-35
## [153] httr_1.3.1 survival_2.41-3
## [155] interactiveDisplayBase_1.16.0 glue_1.2.0
## [157] iterators_1.0.9 bit_1.1-12
## [159] stringi_1.1.6 blob_1.1.0
## [161] AnnotationHub_2.10.1 latticeExtra_0.6-28
## [163] memoise_1.1.0