This document provides an introduction of the R/Biocondcutor ELMER package, which is designed to combine DNA methylation and gene expression data from human tissues to infer multi-level cis-regulatory networks. ELMER uses DNA methylation to identify enhancers, and correlates enhancer state with expression of nearby genes to identify one or more transcriptional targets. Transcription factor (TF) binding site analysis of enhancers is coupled with expression analysis of all TFs to infer upstream regulators. This package can be easily applied to TCGA public available cancer data sets and custom DNA methylation and gene expression data sets.
ELMER analyses have 5 main steps:
The package workflow is showed in the figure below:
To install this package from github (development version), start R and enter:
devtools::install_github(repo = "tiagochst/ELMER.data")
devtools::install_github(repo = "tiagochst/ELMER")
To install this package from Bioconductor start R and enter:
source("https://bioconductor.org/biocLite.R")
biocLite("ELMER")
Then, to load ELMER enter:
If you used ELMER package or its results, please cite:
If you get TCGA data using getTCGA
function, please cite TCGAbiolinks package:
Silva, TC, A Colaprico, C Olsen, F D’Angelo, G Bontempi, M Ceccarelli, and H Noushmehr. 2016. “TCGA Workflow: Analyze Cancer Genomics and Epigenomics Data Using Bioconductor Packages [Version 2; Referees: 1 Approved, 1 Approved with Reservations].” F1000Research 5 (1542). doi:10.12688/f1000research.8923.2.
Grossman, Robert L., et al. “Toward a shared vision for cancer genomic data.” New England Journal of Medicine 375.12 (2016): 1109-1112.
If you get use the Graphical user interface, please cite TCGAbiolinksGUI
package:
sessionInfo()
## R version 3.4.3 (2017-11-30)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 16.04.3 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.6-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.6-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] bindrcpp_0.2 ELMER_2.2.7
## [3] MultiAssayExperiment_1.4.4 BiocStyle_2.6.1
## [5] dplyr_0.7.4 DT_0.2
## [7] ELMER.data_2.2.2
##
## loaded via a namespace (and not attached):
## [1] shinydashboard_0.6.1 R.utils_2.6.0
## [3] RSQLite_2.0 AnnotationDbi_1.40.0
## [5] htmlwidgets_0.9 grid_3.4.3
## [7] BiocParallel_1.12.0 devtools_1.13.4
## [9] DESeq_1.30.0 munsell_0.4.3
## [11] codetools_0.2-15 withr_2.1.1
## [13] colorspace_1.3-2 BiocInstaller_1.28.0
## [15] Biobase_2.38.0 knitr_1.17
## [17] rstudioapi_0.7 stats4_3.4.3
## [19] labeling_0.3 GenomeInfoDbData_1.0.0
## [21] mnormt_1.5-5 hwriter_1.3.2
## [23] KMsurv_0.1-5 bit64_0.9-7
## [25] rprojroot_1.3-1 downloader_0.4
## [27] biovizBase_1.26.0 ggthemes_3.4.0
## [29] EDASeq_2.12.0 R6_2.2.2
## [31] doParallel_1.0.11 GenomeInfoDb_1.14.0
## [33] locfit_1.5-9.1 AnnotationFilter_1.2.0
## [35] bitops_1.0-6 reshape_0.8.7
## [37] DelayedArray_0.4.1 assertthat_0.2.0
## [39] scales_0.5.0 nnet_7.3-12
## [41] gtable_0.2.0 sva_3.26.0
## [43] ensembldb_2.2.0 rlang_0.1.6
## [45] genefilter_1.60.0 cmprsk_2.2-7
## [47] GlobalOptions_0.0.12 splines_3.4.3
## [49] rtracklayer_1.38.2 lazyeval_0.2.1
## [51] acepack_1.4.1 dichromat_2.0-0
## [53] selectr_0.3-1 broom_0.4.3
## [55] checkmate_1.8.5 yaml_2.1.16
## [57] reshape2_1.4.3 GenomicFeatures_1.30.0
## [59] backports_1.1.2 httpuv_1.3.5
## [61] Hmisc_4.1-0 RMySQL_0.10.13
## [63] tools_3.4.3 psych_1.7.8
## [65] ggplot2_2.2.1 RColorBrewer_1.1-2
## [67] BiocGenerics_0.24.0 Rcpp_0.12.14
## [69] plyr_1.8.4 base64enc_0.1-3
## [71] progress_1.1.2 zlibbioc_1.24.0
## [73] purrr_0.2.4 RCurl_1.95-4.8
## [75] prettyunits_1.0.2 ggpubr_0.1.6
## [77] rpart_4.1-11 GetoptLong_0.1.6
## [79] S4Vectors_0.16.0 zoo_1.8-0
## [81] SummarizedExperiment_1.8.1 ggrepel_0.7.0
## [83] cluster_2.0.6 magrittr_1.5
## [85] data.table_1.10.4-3 circlize_0.4.3
## [87] survminer_0.4.1 ProtGenerics_1.10.0
## [89] matrixStats_0.52.2 aroma.light_3.8.0
## [91] hms_0.4.0 mime_0.5
## [93] evaluate_0.10.1 xtable_1.8-2
## [95] XML_3.98-1.9 IRanges_2.12.0
## [97] gridExtra_2.3 shape_1.4.3
## [99] testthat_2.0.0 compiler_3.4.3
## [101] biomaRt_2.34.1 tibble_1.4.1
## [103] R.oo_1.21.0 htmltools_0.3.6
## [105] mgcv_1.8-22 Formula_1.2-2
## [107] tidyr_0.7.2 geneplotter_1.56.0
## [109] DBI_0.7 matlab_1.0.2
## [111] ComplexHeatmap_1.17.1 ShortRead_1.36.0
## [113] Matrix_1.2-12 readr_1.1.1
## [115] R.methodsS3_1.7.1 parallel_3.4.3
## [117] Gviz_1.22.2 bindr_0.1
## [119] GenomicRanges_1.30.1 pkgconfig_2.0.1
## [121] km.ci_0.5-2 GenomicAlignments_1.14.1
## [123] foreign_0.8-69 plotly_4.7.1
## [125] xml2_1.1.1 roxygen2_6.0.1
## [127] foreach_1.4.4 annotate_1.56.1
## [129] XVector_0.18.0 rvest_0.3.2
## [131] stringr_1.2.0 VariantAnnotation_1.24.4
## [133] digest_0.6.13 ConsensusClusterPlus_1.42.0
## [135] Biostrings_2.46.0 rmarkdown_1.8
## [137] TCGAbiolinks_2.6.7 survMisc_0.5.4
## [139] htmlTable_1.11.0 edgeR_3.20.3
## [141] curl_3.1 shiny_1.0.5
## [143] Rsamtools_1.30.0 commonmark_1.4
## [145] rjson_0.2.15 nlme_3.1-131
## [147] jsonlite_1.5 viridisLite_0.2.0
## [149] limma_3.34.5 BSgenome_1.46.0
## [151] pillar_1.0.1 lattice_0.20-35
## [153] httr_1.3.1 survival_2.41-3
## [155] interactiveDisplayBase_1.16.0 glue_1.2.0
## [157] iterators_1.0.9 bit_1.1-12
## [159] stringi_1.1.6 blob_1.1.0
## [161] AnnotationHub_2.10.1 latticeExtra_0.6-28
## [163] memoise_1.1.0