TCGAbiolinks has provided a few functions to download mutation data from GDC. There are two options to download the data:
GDCquery_Maf
which will download MAF aligned against hg38GDCquery
, GDCdownload
and GDCpreprare
to downoad MAF aligned against hg19This exmaple will download MAF (mutation annotation files) for variant calling pipeline muse. Pipelines options are: muse, varscan2, somaticsniper, mutect. For more information please access GDC docs.
acc.maf <- GDCquery_Maf("ACC", pipelines = "muse")
# Only first 50 to make render faster
datatable(acc.maf[1:50,],
filter = 'top',
options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),
rownames = FALSE)
This exmaple will download MAF (mutation annotation files) aligned against hg19 (Old TCGA maf files)
query.maf.hg19 <- GDCquery(project = "TCGA-CHOL",
data.category = "Simple nucleotide variation",
data.type = "Simple somatic mutation",
access = "open",
legacy = TRUE)
# Check maf availables
datatable(select(getResults(query.maf.hg19),-contains("cases")),
filter = 'top',
options = list(scrollX = TRUE, keys = TRUE, pageLength = 10),
rownames = FALSE)
query.maf.hg19 <- GDCquery(project = "TCGA-CHOL",
data.category = "Simple nucleotide variation",
data.type = "Simple somatic mutation",
access = "open",
file.type = "bcgsc.ca_CHOL.IlluminaHiSeq_DNASeq.1.somatic.maf",
legacy = TRUE)
GDCdownload(query.maf.hg19)
maf <- GDCprepare(query.maf.hg19)
# Only first 50 to make render faster
datatable(maf[1:50,],
filter = 'top',
options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),
rownames = FALSE)