The main function to calculate the quality metrics is sesameQC_calcStats
. This function takes a SigDF, calculates the QC statistics, and returns a single S4 sesameQC
object, which can be printed directly to the console. To calculate QC metrics on a given list of samples or all IDATs in a folder, one can use sesameQC_calcStats
within the standard openSesame
pipeline. When used with openSesame
, a list of sesameQC
s will be returned. Note that one should turn off preprocessing using prep=""
:
## calculate metrics on all IDATs in a specific folder
qcs = openSesame(idat_dir, prep="", func=sesameQC_calcStats)
SeSAMe divides sample quality metrics into multiple groups. These groups are listed below and can be referred to by short keys. For example, “intensity” generates signal intensity-related quality metrics.
Short.Key | Description |
---|---|
detection | Signal Detection |
numProbes | Number of Probes |
intensity | Signal Intensity |
channel | Color Channel |
dyeBias | Dye Bias |
betas | Beta Value |
By default, sesameQC_calcStats
calculates all QC groups. To save time, one can compute a specific QC group by specifying one or multiple short keys in the funs=
argument:
sdfs <- sesameDataGet("EPIC.5.SigDF.normal")[1:2] # get two examples
## only compute signal detection stats
qcs = openSesame(sdfs, prep="", func=sesameQC_calcStats, funs="detection")
qcs[[1]]
##
## =====================
## | Detection
## =====================
## N. Probes w/ Missing Raw Intensity : 0 (num_dtna)
## % Probes w/ Missing Raw Intensity : 0.0 % (frac_dtna)
## N. Probes w/ Detection Success : 838020 (num_dt)
## % Detection Success : 96.7 % (frac_dt)
## N. Detection Succ. (after masking) : 838020 (num_dt_mk)
## % Detection Succ. (after masking) : 96.7 % (frac_dt_mk)
## N. Probes w/ Detection Success (cg) : 835491 (num_dt_cg)
## % Detection Success (cg) : 96.7 % (frac_dt_cg)
## N. Probes w/ Detection Success (ch) : 2471 (num_dt_ch)
## % Detection Success (ch) : 84.3 % (frac_dt_ch)
## N. Probes w/ Detection Success (rs) : 58 (num_dt_rs)
## % Detection Success (rs) : 98.3 % (frac_dt_rs)
We consider signal detection the most important QC metric.
One can retrieve the actual stat numbers from sesameQC
using the sesameQC_getStats (the following generates the fraction of probes with detection success):
## [1] 0.9666915
After computing the QCs, one can optionally combine the sesameQC
objects into a data frame for easy comparison.
Note that when the input is an SigDF
object, calling sesameQC_calcStats
within openSesame
and as a standalone function are equivalent.
sdf <- sesameDataGet('EPIC.1.SigDF')
qc = openSesame(sdf, prep="", func=sesameQC_calcStats, funs=c("detection"))
## equivalent direct call
qc = sesameQC_calcStats(sdf, c("detection"))
qc
##
## =====================
## | Detection
## =====================
## N. Probes w/ Missing Raw Intensity : 0 (num_dtna)
## % Probes w/ Missing Raw Intensity : 0.0 % (frac_dtna)
## N. Probes w/ Detection Success : 834922 (num_dt)
## % Detection Success : 96.3 % (frac_dt)
## N. Detection Succ. (after masking) : 834922 (num_dt_mk)
## % Detection Succ. (after masking) : 96.3 % (frac_dt_mk)
## N. Probes w/ Detection Success (cg) : 832046 (num_dt_cg)
## % Detection Success (cg) : 96.4 % (frac_dt_cg)
## N. Probes w/ Detection Success (ch) : 2616 (num_dt_ch)
## % Detection Success (ch) : 89.2 % (frac_dt_ch)
## N. Probes w/ Detection Success (rs) : 58 (num_dt_rs)
## % Detection Success (rs) : 98.3 % (frac_dt_rs)
SeSAMe features comparison of your sample with public data sets. The sesameQC_rankStats()
function ranks the input sesameQC
object with sesameQC
calculated from public datasets. It shows the rank percentage of the input sample as well as the number of datasets compared.
##
## =====================
## | Signal Intensity
## =====================
## Mean sig. intensity : 3171.21 (mean_intensity)
## Mean sig. intensity (M+U) : 6342.41 (mean_intensity_MU)
## Mean sig. intensity (Inf.II) : 2991.85 (mean_ii)
## Mean sig. intens.(I.Grn IB) : 3004.33 (mean_inb_grn)
## Mean sig. intens.(I.Red IB) : 4670.97 (mean_inb_red)
## Mean sig. intens.(I.Grn OOB) : 318.55 (mean_oob_grn)
## Mean sig. intens.(I.Red OOB) : 606.99 (mean_oob_red)
## N. NA in M (all probes) : 0 (na_intensity_M)
## N. NA in U (all probes) : 0 (na_intensity_U)
## N. NA in raw intensity (IG) : 0 (na_intensity_ig)
## N. NA in raw intensity (IR) : 0 (na_intensity_ir)
## N. NA in raw intensity (II) : 0 (na_intensity_ii)
##
## =====================
## | Signal Intensity
## =====================
## Mean sig. intensity : 3171.21 (mean_intensity) - Rank 15.7% (N=636)
## Mean sig. intensity (M+U) : 6342.41 (mean_intensity_MU)
## Mean sig. intensity (Inf.II) : 2991.85 (mean_ii) - Rank 15.6% (N=636)
## Mean sig. intens.(I.Grn IB) : 3004.33 (mean_inb_grn) - Rank 7.5% (N=636)
## Mean sig. intens.(I.Red IB) : 4670.97 (mean_inb_red) - Rank 21.2% (N=636)
## Mean sig. intens.(I.Grn OOB) : 318.55 (mean_oob_grn) - Rank 4.2% (N=636)
## Mean sig. intens.(I.Red OOB) : 606.99 (mean_oob_red) - Rank 3.6% (N=636)
## N. NA in M (all probes) : 0 (na_intensity_M)
## N. NA in U (all probes) : 0 (na_intensity_U)
## N. NA in raw intensity (IG) : 0 (na_intensity_ig)
## N. NA in raw intensity (IR) : 0 (na_intensity_ir)
## N. NA in raw intensity (II) : 0 (na_intensity_ii)
SeSAMe provides functions to create QC plots. Some functions takes sesameQC as input while others directly plot the SigDF objects. Here are some examples:
sesameQC_plotBar()
takes a list of sesameQC objects and creates bar plot for each metric calculated.
sesameQC_plotRedGrnQQ()
graphs the dye bias between the two color channels.
sesameQC_plotIntensVsBetas()
plots the relationship between β values and signal intensity and can be used to diagnose artificial readout and influence of signal background.
sesameQC_plotHeatSNPs()
plots SNP probes and can be used to detect sample swaps.
More about quality control plots can be found in Supplemental Vignette.
## R version 4.2.2 (2022-10-31)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 20.04.5 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.16-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.16-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats4 stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] ggplot2_3.4.0 tibble_3.1.8
## [3] SummarizedExperiment_1.28.0 Biobase_2.58.0
## [5] GenomicRanges_1.50.1 GenomeInfoDb_1.34.3
## [7] IRanges_2.32.0 S4Vectors_0.36.0
## [9] MatrixGenerics_1.10.0 matrixStats_0.62.0
## [11] knitr_1.40 sesame_1.16.1
## [13] sesameData_1.16.0 ExperimentHub_2.6.0
## [15] AnnotationHub_3.6.0 BiocFileCache_2.6.0
## [17] dbplyr_2.2.1 BiocGenerics_0.44.0
##
## loaded via a namespace (and not attached):
## [1] bitops_1.0-7 bit64_4.0.5
## [3] filelock_1.0.2 RColorBrewer_1.1-3
## [5] httr_1.4.4 tools_4.2.2
## [7] bslib_0.4.1 utf8_1.2.2
## [9] R6_2.5.1 DBI_1.1.3
## [11] colorspace_2.0-3 withr_2.5.0
## [13] tidyselect_1.2.0 preprocessCore_1.60.0
## [15] bit_4.0.4 curl_4.3.3
## [17] compiler_4.2.2 cli_3.4.1
## [19] DelayedArray_0.24.0 labeling_0.4.2
## [21] sass_0.4.2 scales_1.2.1
## [23] readr_2.1.3 rappdirs_0.3.3
## [25] stringr_1.4.1 digest_0.6.30
## [27] rmarkdown_2.18 XVector_0.38.0
## [29] pkgconfig_2.0.3 htmltools_0.5.3
## [31] highr_0.9 fastmap_1.1.0
## [33] rlang_1.0.6 RSQLite_2.2.18
## [35] shiny_1.7.3 farver_2.1.1
## [37] jquerylib_0.1.4 generics_0.1.3
## [39] jsonlite_1.8.3 wheatmap_0.2.0
## [41] BiocParallel_1.32.1 dplyr_1.0.10
## [43] RCurl_1.98-1.9 magrittr_2.0.3
## [45] GenomeInfoDbData_1.2.9 Matrix_1.5-3
## [47] Rcpp_1.0.9 munsell_0.5.0
## [49] fansi_1.0.3 lifecycle_1.0.3
## [51] stringi_1.7.8 yaml_2.3.6
## [53] zlibbioc_1.44.0 plyr_1.8.8
## [55] grid_4.2.2 blob_1.2.3
## [57] ggrepel_0.9.2 parallel_4.2.2
## [59] promises_1.2.0.1 crayon_1.5.2
## [61] lattice_0.20-45 Biostrings_2.66.0
## [63] hms_1.1.2 KEGGREST_1.38.0
## [65] pillar_1.8.1 reshape2_1.4.4
## [67] codetools_0.2-18 glue_1.6.2
## [69] BiocVersion_3.16.0 evaluate_0.18
## [71] BiocManager_1.30.19 png_0.1-7
## [73] vctrs_0.5.0 tzdb_0.3.0
## [75] httpuv_1.6.6 purrr_0.3.5
## [77] gtable_0.3.1 assertthat_0.2.1
## [79] cachem_1.0.6 xfun_0.34
## [81] mime_0.12 xtable_1.8-4
## [83] later_1.3.0 AnnotationDbi_1.60.0
## [85] memoise_2.0.1 ellipsis_0.3.2
## [87] interactiveDisplayBase_1.36.0 BiocStyle_2.26.0