RforProteomics 1.22.0
This vignette illustrates existing and Bioconductor infrastructure for the visualisation of mass spectrometry and proteomics data. The code details the visualisations presented in
Gatto L, Breckels LM, Naake T, Gibb S. Visualisation of proteomics data using R and Bioconductor. Proteomics. 2015 Feb 18. doi: 10.1002/pmic.201400392. PubMed PMID: 25690415.
There are currently 128
Proteomics and
85
MassSpectrometry packages
in Bioconductor version 3.9. Other
non-Bioconductor packages are described in the r Biocexptpkg("RforProteomics")
vignette (open it in R with
RforProteomics()
or read
it
online.)
x1 | x2 | x3 | x4 | y1 | y2 | y3 | y4 |
---|---|---|---|---|---|---|---|
10 | 10 | 10 | 8 | 8.04 | 9.14 | 7.46 | 6.58 |
8 | 8 | 8 | 8 | 6.95 | 8.14 | 6.77 | 5.76 |
13 | 13 | 13 | 8 | 7.58 | 8.74 | 12.74 | 7.71 |
9 | 9 | 9 | 8 | 8.81 | 8.77 | 7.11 | 8.84 |
11 | 11 | 11 | 8 | 8.33 | 9.26 | 7.81 | 8.47 |
14 | 14 | 14 | 8 | 9.96 | 8.10 | 8.84 | 7.04 |
6 | 6 | 6 | 8 | 7.24 | 6.13 | 6.08 | 5.25 |
4 | 4 | 4 | 19 | 4.26 | 3.10 | 5.39 | 12.50 |
12 | 12 | 12 | 8 | 10.84 | 9.13 | 8.15 | 5.56 |
7 | 7 | 7 | 8 | 4.82 | 7.26 | 6.42 | 7.91 |
5 | 5 | 5 | 8 | 5.68 | 4.74 | 5.73 | 6.89 |
tab <- matrix(NA, 5, 4)
colnames(tab) <- 1:4
rownames(tab) <- c("var(x)", "mean(x)",
"var(y)", "mean(y)",
"cor(x,y)")
for (i in 1:4)
tab[, i] <- c(var(anscombe[, i]),
mean(anscombe[, i]),
var(anscombe[, i+4]),
mean(anscombe[, i+4]),
cor(anscombe[, i], anscombe[, i+4]))
1 | 2 | 3 | 4 | |
---|---|---|---|---|
var(x) | 11.0000000 | 11.0000000 | 11.0000000 | 11.0000000 |
mean(x) | 9.0000000 | 9.0000000 | 9.0000000 | 9.0000000 |
var(y) | 4.1272691 | 4.1276291 | 4.1226200 | 4.1232491 |
mean(y) | 7.5009091 | 7.5009091 | 7.5000000 | 7.5009091 |
cor(x,y) | 0.8164205 | 0.8162365 | 0.8162867 | 0.8165214 |
While the residuals of the linear regression clearly indicate fundamental differences in these data, the most simple and straightforward approach is visualisation to highlight the fundamental differences in the datasets.
ff <- y ~ x
mods <- setNames(as.list(1:4), paste0("lm", 1:4))
par(mfrow = c(2, 2), mar = c(4, 4, 1, 1))
for (i in 1:4) {
ff[2:3] <- lapply(paste0(c("y","x"), i), as.name)
plot(ff, data = anscombe, pch = 19, xlim = c(3, 19), ylim = c(3, 13))
mods[[i]] <- lm(ff, data = anscombe)
abline(mods[[i]])
}
lm1 | lm2 | lm3 | lm4 |
---|---|---|---|
0.0390000 | 1.1390909 | -0.5397273 | -0.421 |
-0.0508182 | 1.1390909 | -0.2302727 | -1.241 |
-1.9212727 | -0.7609091 | 3.2410909 | 0.709 |
1.3090909 | 1.2690909 | -0.3900000 | 1.839 |
-0.1710909 | 0.7590909 | -0.6894545 | 1.469 |
-0.0413636 | -1.9009091 | -1.1586364 | 0.039 |
1.2393636 | 0.1290909 | 0.0791818 | -1.751 |
-0.7404545 | -1.9009091 | 0.3886364 | 0.000 |
1.8388182 | 0.1290909 | -0.8491818 | -1.441 |
-1.6807273 | 0.7590909 | -0.0805455 | 0.909 |
0.1794545 | -0.7609091 | 0.2289091 | -0.111 |
The following code chunk connects to the PXD000001
data set on the
ProteomeXchange repository and fetches the mzTab
file. After missing
values filtering, we extract relevant data (log2 fold-changes and
log10 mean expression intensities) into data.frames
.
library("rpx")
px1 <- PXDataset("PXD000001")
mztab <- pxget(px1, "PXD000001_mztab.txt")
## Downloading 1 file
library("MSnbase")
## here, we need to specify the (old) mzTab version 0.9
qnt <- readMzTabData(mztab, what = "PEP", version = "0.9")
sampleNames(qnt) <- reporterNames(TMT6)
qnt <- filterNA(qnt)
## may be combineFeatuers
spikes <- c("P02769", "P00924", "P62894", "P00489")
protclasses <- as.character(fData(qnt)$accession)
protclasses[!protclasses %in% spikes] <- "Background"
madata42 <- data.frame(A = rowMeans(log(exprs(qnt[, c(4, 2)]), 10)),
M = log(exprs(qnt)[, 4], 2) - log(exprs(qnt)[, 2], 2),
data = rep("4vs2", nrow(qnt)),
protein = fData(qnt)$accession,
class = protclasses)
madata62 <- data.frame(A = rowMeans(log(exprs(qnt[, c(6, 2)]), 10)),
M = log(exprs(qnt)[, 6], 2) - log(exprs(qnt)[, 2], 2),
data = rep("6vs2", nrow(qnt)),
protein = fData(qnt)$accession,
class = protclasses)
madata <- rbind(madata42, madata62)
par(mfrow = c(1, 2))
plot(M ~ A, data = madata42, main = "4vs2",
xlab = "A", ylab = "M", col = madata62$class)
plot(M ~ A, data = madata62, main = "6vs2",
xlab = "A", ylab = "M", col = madata62$class)
library("lattice")
latma <- xyplot(M ~ A | data, data = madata,
groups = madata$class,
auto.key = TRUE)
print(latma)
library("ggplot2")
ggma <- ggplot(aes(x = A, y = M, colour = class), data = madata,
colour = class) +
geom_point() +
facet_grid(. ~ data)
print(ggma)
library("RColorBrewer")
bcols <- brewer.pal(4, "Set1")
cls <- c("Background" = "#12121230",
"P02769" = bcols[1],
"P00924" = bcols[2],
"P62894" = bcols[3],
"P00489" = bcols[4])
ggma2 <- ggplot(aes(x = A, y = M, colour = class),
data = madata) + geom_point(shape = 19) +
facet_grid(. ~ data) + scale_colour_manual(values = cls) +
guides(colour = guide_legend(override.aes = list(alpha = 1)))
print(ggma2)
MAplot
method for MSnSet
instancesMAplot(qnt, cex = .8)
This app is based on Mike Love’s shinyMA application, adapted for a proteomics data. A screen shot is displayed below. To start the application:
shinyMA()
The application is also available online at https://lgatto.shinyapps.io/shinyMA/.
Below, using the msmsTest package, we load a example
MSnSet
data with spectral couting data (from the r Biocpkg("msmsEDA")
package) and run a statistical test to obtain
(adjusted) p-values and fold-changes.
library("msmsEDA")
library("msmsTests")
data(msms.dataset)
## Pre-process expression matrix
e <- pp.msms.data(msms.dataset)
## Models and normalizing condition
null.f <- "y~batch"
alt.f <- "y~treat+batch"
div <- apply(exprs(e), 2, sum)
## Test
res <- msms.glm.qlll(e, alt.f, null.f, div = div)
lst <- test.results(res, e, pData(e)$treat, "U600", "U200 ", div,
alpha = 0.05, minSpC = 2, minLFC = log2(1.8),
method = "BH")
Here, we produce the volcano plot by hand, with the plot
function. In the second plot, we limit the x axis limits and add grid
lines.
plot(lst$tres$LogFC, -log10(lst$tres$p.value))
plot(lst$tres$LogFC, -log10(lst$tres$p.value),
xlim = c(-3, 3))
grid()
Below, we use the res.volcanoplot
function from the r Biocpkg("msmsTests")
package. This functions uses the sample
annotation stored with the quantitative data in the MSnSet
object to
colour the samples according to their phenotypes.
## Plot
res.volcanoplot(lst$tres,
max.pval = 0.05,
min.LFC = 1,
maxx = 3,
maxy = NULL,
ylbls = 4)
Using the counts.pca
function from the msmsEDA
package:
library("msmsEDA")
data(msms.dataset)
msnset <- pp.msms.data(msms.dataset)
lst <- counts.pca(msnset, wait = FALSE)
It is also possible to generate the PCA data using the
prcomp
. Below, we extract the coordinates of PC1 and PC2 from the
counts.pca
result and plot them using the plot
function.
pcadata <- lst$pca$x[, 1:2]
head(pcadata)
## PC1 PC2
## U2.2502.1 -120.26080 -53.55270
## U2.2502.2 -99.90618 -53.89979
## U2.2502.3 -127.35928 -49.29906
## U2.2502.4 -166.04611 -39.27557
## U6.2502.1 -127.18423 37.11614
## U6.2502.2 -117.97016 47.03702
plot(pcadata[, 1], pcadata[, 2],
xlab = "PCA1", ylab = "PCA2")
grid()
kable(plotfuns)
plot type | traditional | lattice | ggplot2 |
---|---|---|---|
scatterplots | plot | xyplot | geom_point |
histograms | hist | histgram | geom_histogram |
density plots | plot(density()) | densityplot | geom_density |
boxplots | boxplot | bwplot | geom_boxplot |
violin plots | vioplot::vioplot | bwplot(…, panel = panel.violin) | geom_violin |
line plots | plot, matplot | xyploy, parallelplot | geom_line |
bar plots | barplot | barchart | geom_bar |
pie charts | pie | geom_bar with polar coordinates | |
dot plots | dotchart | dotplot | geom_point |
stip plots | stripchart | stripplot | goem_point |
dendrogramms | plot(hclust()) | latticeExtra package | ggdendro package |
heatmaps | image, heatmap | levelplot | geom_tile |
Below, we are going to use a data from the pRolocdata to illustrate the plotting functions.
library("pRolocdata")
data(tan2009r1)
See the MA and volcano plot examples.
The default plot type
is p
, for points. Other important types are
l
for lines and h
for histogram (see below).
We extract the (normalised) intensities of the first sample
x <- exprs(tan2009r1)[, 1]
and plot the distribution with a histogram and a density plot next to
each other on the same figure (using the mfrow
par
plotting
paramter)
par(mfrow = c(1, 2))
hist(x)
plot(density(x))
we first extract the 888 proteins by r ncol(tan2009r1)
samples data matrix and plot the sample distributions
next to each other using boxplot
and beanplot
(from the
beanplot package).
library("beanplot")
x <- exprs(tan2009r1)
par(mfrow = c(2, 1))
boxplot(x)
beanplot(x[, 1], x[, 2], x[, 3], x[, 4], log = "")
below, we produce line plots that describe the protein quantitative
profiles for two sets of proteins, namely er and mitochondrial
proteins using matplot
.
we need to transpose the matrix (with t
) and set the type to both
(b
), to display points and lines, the colours to red and steel blue,
the point characters to 1 (an empty point) and the line type to 1 (a
solid line).
er <- fData(tan2009r1)$markers == "ER"
mt <- fData(tan2009r1)$markers == "mitochondrion"
par(mfrow = c(2, 1))
matplot(t(x[er, ]), type = "b", col = "red", pch = 1, lty = 1)
matplot(t(x[mt, ]), type = "b", col = "steelblue", pch = 1, lty = 1)
In the last section, about spatial proteomics, we use the specialised
plotDist
function from the pRoloc package to generate
such figures.
To illustrate bar and dot charts, we cound the number of proteins in the respective class using table.
x <- table(fData(tan2009r1)$markers)
x
##
## Cytoskeleton ER Golgi Lysosome Nucleus
## 7 28 13 8 21
## PM Peroxisome Proteasome Ribosome 40S Ribosome 60S
## 34 4 15 20 32
## mitochondrion unknown
## 29 677
par(mfrow = c(1, 2))
barplot(x)
dotchart(as.numeric(x))
The easiest to produce a complete heatmap is with the heatmap
function:
heatmap(exprs(tan2009r1))
To produce the a heatmap without the dendrograms, one can use the
image function on a matrix or the specialised version for MSnSet
objects from the MSnbase package.
par(mfrow = c(1, 2))
x <- matrix(1:9, ncol = 3)
image(x)
image(tan2009r1)
See also gplots’s heatmap.2
function and the
Heatplus Bioconductor package for more advanced heatmaps
and the corrplot package for correlation matrices.
The easiest way to produce and plot a dendrogram is:
d <- dist(t(exprs(tan2009r1))) ## distance between samples
hc <- hclust(d) ## hierarchical clustering
plot(hc) ## visualisation
See also dendextend and this post to illustrate latticeExtra and ggdendro.
library("mzR")
mzf <- pxget(px1,
"TMT_Erwinia_1uLSike_Top10HCD_isol2_45stepped_60min_01-20141210.mzML")
## Downloading 1 file
ms <- openMSfile(mzf)
hd <- header(ms)
ms1 <- which(hd$msLevel == 1)
rtsel <- hd$retentionTime[ms1] / 60 > 30 & hd$retentionTime[ms1] / 60 < 35
library("MSnbase")
(M <- MSmap(ms, ms1[rtsel], 521, 523, .005, hd))
## Object of class "MSmap"
## Map [75, 401]
## [1] Retention time: 30:1 - 34:58
## [2] M/Z: 521 - 523 (res 0.005)
library("lattice")
ff <- colorRampPalette(c("yellow", "steelblue"))
trellis.par.set(regions=list(col=ff(100)))
plot(M, aspect = 1, allTicks = FALSE)
M@map[msMap(M) == 0] <- NA
plot3D(M, rgl = FALSE)
To produce a version that can be reoriented interactively on the screen discplay, use the rgl
library("rgl")
plot3D(M, rgl = TRUE)
lout <- matrix(NA, ncol = 10, nrow = 8)
lout[1:2, ] <- 1
for (ii in 3:4)
lout[ii, ] <- c(2, 2, 2, 2, 2, 2, 3, 3, 3, 3)
lout[5, ] <- rep(4:8, each = 2)
lout[6, ] <- rep(4:8, each = 2)
lout[7, ] <- rep(9:13, each = 2)
lout[8, ] <- rep(9:13, each = 2)
i <- ms1[which(rtsel)][1]
j <- ms1[which(rtsel)][2]
ms2 <- (i+1):(j-1)
layout(lout)
par(mar=c(4,2,1,1))
plot(chromatogram(ms)[[1]], type = "l")
abline(v = hd[i, "retentionTime"], col = "red")
par(mar = c(3, 2, 1, 0))
plot(peaks(ms, i), type = "l", xlim = c(400, 1000))
legend("topright", bty = "n",
legend = paste0(
"Acquisition ", hd[i, "acquisitionNum"], "\n",
"Retention time ", formatRt(hd[i, "retentionTime"])))
abline(h = 0)
abline(v = hd[ms2, "precursorMZ"],
col = c("#FF000080",
rep("#12121280", 9)))
par(mar = c(3, 0.5, 1, 1))
plot(peaks(ms, i), type = "l", xlim = c(521, 522.5), yaxt = "n")
abline(h = 0)
abline(v = hd[ms2, "precursorMZ"], col = "#FF000080")
par(mar = c(2, 2, 0, 1))
for (ii in ms2) {
p <- peaks(ms, ii)
plot(p, xlab = "", ylab = "", type = "h", cex.axis = .6)
legend("topright",
legend = paste0("Prec M/Z\n", round(hd[ii, "precursorMZ"], 2)),
bty = "n", cex = .8)
}
M2 <- MSmap(ms, i:j, 100, 1000, 1, hd)
plot3D(M2)
par(mar=c(4,1,1,1))
image(t(matrix(hd$msLevel, 1, nrow(hd))),
xlab="Retention time",
xaxt="n", yaxt="n", col=c("black","steelblue"))
k <- round(range(hd$retentionTime) / 60)
nk <- 5
axis(side=1, at=seq(0,1,1/nk), labels=seq(k[1],k[2],k[2]/nk))
The following animation scrolls over 5 minutes of retention time for a MZ range between 521 and 523.
library("animation")
an1 <- function() {
for (i in seq(0, 5, 0.2)) {
rtsel <- hd$retentionTime[ms1] / 60 > (30 + i) &
hd$retentionTime[ms1] / 60 < (35 + i)
M <- MSmap(ms, ms1[rtsel], 521, 523, .005, hd)
M@map[msMap(M) == 0] <- NA
print(plot3D(M, rgl = FALSE))
}
}
saveGIF(an1(), movie.name = "msanim1.gif")
The code chunk below scrolls of a slice of retention times while keeping the retention time constant between 30 and 35 minutes.
an2 <- function() {
for (i in seq(0, 2.5, 0.1)) {
rtsel <- hd$retentionTime[ms1] / 60 > 30 & hd$retentionTime[ms1] / 60 < 35
mz1 <- 520 + i
mz2 <- 522 + i
M <- MSmap(ms, ms1[rtsel], mz1, mz2, .005, hd)
M@map[msMap(M) == 0] <- NA
print(plot3D(M, rgl = FALSE))
}
}
saveGIF(an2(), movie.name = "msanim2.gif")
library("MSnbase")
data(itraqdata)
itraqdata2 <- pickPeaks(itraqdata, verbose = FALSE)
plot(itraqdata[[25]], full = TRUE, reporters = iTRAQ4)
par(oma = c(0, 0, 0, 0))
par(mar = c(4, 4, 1, 1))
plot(itraqdata2[[25]], itraqdata2[[28]], sequences = rep("IMIDLDGTENK", 2))
library("protViz")
data(msms)
fi <- fragmentIon("TAFDEAIAELDTLNEESYK")
fi.cyz <- as.data.frame(cbind(c=fi[[1]]$c, y=fi[[1]]$y, z=fi[[1]]$z))
p <- peakplot("TAFDEAIAELDTLNEESYK",
spec = msms[[1]],
fi = fi.cyz,
itol = 0.6,
ion.axes = FALSE)
The peakplot
function return the annotation of the MSMS spectrum
that is plotted:
str(p)
## List of 7
## $ mZ.Da.error : num [1:57] 215.3 144.27 -2.8 -17.06 2.03 ...
## $ mZ.ppm.error: num [1:57] 1808046 758830 -8306 -37724 3501 ...
## $ idx : int [1:57] 1 1 1 3 16 24 41 52 67 88 ...
## $ label : chr [1:57] "c1" "c2" "c3" "c4" ...
## $ score : num -1
## $ sequence : chr "TAFDEAIAELDTLNEESYK"
## $ fragmentIon :'data.frame': 19 obs. of 3 variables:
## ..$ c: num [1:19] 119 190 337 452 581 ...
## ..$ y: num [1:19] 147 310 397 526 655 ...
## ..$ z: num [1:19] 130 293 380 509 638 ...
The following code chunks demonstrate the usage of the mass
spectrometry preprocessing and plotting routines in the r CRANpkg("MALDIquant")
package. MALDIquant uses the
traditional graphics system. Therefore MALDIquant
overloads the traditional functions plot
, lines
and points
for
its own data types. These data types represents spectrum and peak
lists as S4 classes. Please see the MALDIquant
vignette
and the corresponding
website for more
details.
After loading some example data a simple plot
draws the raw spectrum.
library("MALDIquant")
data("fiedler2009subset", package="MALDIquant")
plot(fiedler2009subset[[14]])
After some preprocessing, namely variance stabilization and smoothing, we use
lines
to draw our baseline estimate in our processed spectrum.
transformedSpectra <- transformIntensity(fiedler2009subset, method = "sqrt")
smoothedSpectra <- smoothIntensity(transformedSpectra, method = "SavitzkyGolay")
plot(smoothedSpectra[[14]])
lines(estimateBaseline(smoothedSpectra[[14]]), lwd = 2, col = "red")
After removing the background removal we could use plot
again to draw our
baseline corrected spectrum.
rbSpectra <- removeBaseline(smoothedSpectra)
plot(rbSpectra[[14]])
detectPeaks
returns a MassPeaks
object that offers the same traditional
graphics functions. The next code chunk demonstrates how to mark the detected
peaks in a spectrum.
cbSpectra <- calibrateIntensity(rbSpectra, method = "TIC")
peaks <- detectPeaks(cbSpectra, SNR = 5)
plot(cbSpectra[[14]])
points(peaks[[14]], col = "red", pch = 4, lwd = 2)
Additional there is a special function labelPeaks
that allows to draw the M/Z
values above the corresponding peaks. Next we mark the 5 top peaks in the
spectrum.
top5 <- intensity(peaks[[14]]) %in% sort(intensity(peaks[[14]]),
decreasing = TRUE)[1:5]
labelPeaks(peaks[[14]], index = top5, avoidOverlap = TRUE)
Often multiple spectra have to be recalibrated to be
comparable. Therefore MALDIquant warps the spectra
according to so called reference or landmark peaks. For debugging the
determineWarpingFunctions
function offers some warping plots. Here
we show only the last 4 plots:
par(mfrow = c(2, 2))
warpingFunctions <-
determineWarpingFunctions(peaks,
tolerance = 0.001,
plot = TRUE,
plotInteractive = TRUE)
par(mfrow = c(1, 1))
warpedSpectra <- warpMassSpectra(cbSpectra, warpingFunctions)
warpedPeaks <- warpMassPeaks(peaks, warpingFunctions)
In the next code chunk we visualise the need and the effect of the recalibration.
sel <- c(2, 10, 14, 16)
xlim <- c(4180, 4240)
ylim <- c(0, 1.9e-3)
lty <- c(1, 4, 2, 6)
par(mfrow = c(1, 2))
plot(cbSpectra[[1]], xlim = xlim, ylim = ylim, type = "n")
for (i in seq(along = sel)) {
lines(peaks[[sel[i]]], lty = lty[i], col = i)
lines(cbSpectra[[sel[i]]], lty = lty[i], col = i)
}
plot(cbSpectra[[1]], xlim = xlim, ylim = ylim, type = "n")
for (i in seq(along = sel)) {
lines(warpedPeaks[[sel[i]]], lty = lty[i], col = i)
lines(warpedSpectra[[sel[i]]], lty = lty[i], col = i)
}
par(mfrow = c(1, 1))
The code chunks above generate plots that are very similar to the figure 7 in the corresponding paper “Visualisation of proteomics data using R”. Please find the code to exactly reproduce the figure at: https://github.com/sgibb/MALDIquantExamples/blob/master/R/createFigure1_color.R
These visualisations originate from the Pbase
Pbase-data
and
mapping
vignettes.
The following code chunk downloads a MALDI imaging dataset from a mouse kidney shared by Adrien Nyakas and Stefan Schurch and generates a plot with the mean spectrum and three slices of interesting M/Z regions.
library("MALDIquant")
library("MALDIquantForeign")
spectra <- importBrukerFlex("http://files.figshare.com/1106682/MouseKidney_IMS_testdata.zip", verbose = FALSE)
spectra <- smoothIntensity(spectra, "SavitzkyGolay", halfWindowSize = 8)
spectra <- removeBaseline(spectra, method = "TopHat", halfWindowSize = 16)
spectra <- calibrateIntensity(spectra, method = "TIC")
avgSpectrum <- averageMassSpectra(spectra)
avgPeaks <- detectPeaks(avgSpectrum, SNR = 5)
avgPeaks <- avgPeaks[intensity(avgPeaks) > 0.0015]
oldPar <- par(no.readonly = TRUE)
layout(matrix(c(1,1,1,2,3,4), nrow = 2, byrow = TRUE))
plot(avgSpectrum, main = "mean spectrum",
xlim = c(3000, 6000), ylim = c(0, 0.007))
lines(avgPeaks, col = "red")
labelPeaks(avgPeaks, cex = 1)
par(mar = c(0.5, 0.5, 1.5, 0.5))
plotMsiSlice(spectra,
center = mass(avgPeaks),
tolerance = 1,
plotInteractive = TRUE)
par(oldPar)
)]
There is also an interactive MALDIquant IMS shiny app for demonstration purposes. A screen shot is displayed below. To start the application:
library("shiny")
runGitHub("sgibb/ims-shiny")
library("pRoloc")
library("pRolocdata")
data(tan2009r1)
## these params use class weights
fn <- dir(system.file("extdata", package = "pRoloc"),
full.names = TRUE, pattern = "params2.rda")
load(fn)
setStockcol(NULL)
setStockcol(paste0(getStockcol(), 90))
w <- table(fData(tan2009r1)[, "pd.markers"])
(w <- 1/w[names(w) != "unknown"])
##
## Cytoskeleton ER Golgi Lysosome Nucleus
## 0.14285714 0.05000000 0.16666667 0.12500000 0.05000000
## PM Peroxisome Proteasome Ribosome 40S Ribosome 60S
## 0.06666667 0.25000000 0.09090909 0.07142857 0.04000000
## mitochondrion
## 0.07142857
tan2009r1 <- svmClassification(tan2009r1, params2,
class.weights = w,
fcol = "pd.markers")
ptsze <- exp(fData(tan2009r1)$svm.scores) - 1
lout <- matrix(c(1:4, rep(5, 4)), ncol = 4, nrow = 2)
layout(lout)
cls <- getStockcol()
par(mar = c(4, 4, 1, 1))
plotDist(tan2009r1[which(fData(tan2009r1)$PLSDA == "mitochondrion"), ],
markers = featureNames(tan2009r1)[which(fData(tan2009r1)$markers.orig == "mitochondrion")],
mcol = cls[5])
legend("topright", legend = "mitochondrion", bty = "n")
plotDist(tan2009r1[which(fData(tan2009r1)$PLSDA == "ER/Golgi"), ],
markers = featureNames(tan2009r1)[which(fData(tan2009r1)$markers.orig == "ER")],
mcol = cls[2])
legend("topright", legend = "ER", bty = "n")
plotDist(tan2009r1[which(fData(tan2009r1)$PLSDA == "ER/Golgi"), ],
markers = featureNames(tan2009r1)[which(fData(tan2009r1)$markers.orig == "Golgi")],
mcol = cls[3])
legend("topright", legend = "Golgi", bty = "n")
plotDist(tan2009r1[which(fData(tan2009r1)$PLSDA == "PM"), ],
markers = featureNames(tan2009r1)[which(fData(tan2009r1)$markers.orig == "PM")],
mcol = cls[8])
legend("topright", legend = "PM", bty = "n")
plot2D(tan2009r1, fcol = "svm", cex = ptsze, method = "kpca")
addLegend(tan2009r1, where = "bottomleft", fcol = "svm", bty = "n")
See the
pRoloc-tutorial
vignette (pdf) from the pRoloc package for details
about spatial proteomics data analysis and visualisation.
print(sessionInfo(), locale = FALSE)
## R version 3.6.0 (2019-04-26)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 18.04.2 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.9-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.9-bioc/R/lib/libRlapack.so
##
## attached base packages:
## [1] stats4 parallel stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] beanplot_1.2 ggplot2_3.1.1 lattice_0.20-38
## [4] e1071_1.7-1 msmsTests_1.22.0 msmsEDA_1.22.0
## [7] pRolocdata_1.22.0 pRoloc_1.24.0 BiocParallel_1.18.0
## [10] MLInterfaces_1.64.0 cluster_2.0.9 annotate_1.62.0
## [13] XML_3.98-1.19 AnnotationDbi_1.46.0 IRanges_2.18.0
## [16] MALDIquantForeign_0.12 MALDIquant_1.19.2 RColorBrewer_1.1-2
## [19] xtable_1.8-4 rpx_1.20.0 knitr_1.22
## [22] DT_0.5 protViz_0.4.0 BiocManager_1.30.4
## [25] RforProteomics_1.22.0 MSnbase_2.10.0 ProtGenerics_1.16.0
## [28] S4Vectors_0.22.0 mzR_2.18.0 Rcpp_1.0.1
## [31] Biobase_2.44.0 BiocGenerics_0.30.0 BiocStyle_2.12.0
##
## loaded via a namespace (and not attached):
## [1] R.utils_2.8.0 RUnit_0.4.32
## [3] tidyselect_0.2.5 RSQLite_2.1.1
## [5] htmlwidgets_1.3 grid_3.6.0
## [7] trimcluster_0.1-2.1 lpSolve_5.6.13
## [9] rda_1.0.2-2.1 munsell_0.5.0
## [11] codetools_0.2-16 preprocessCore_1.46.0
## [13] withr_2.1.2 colorspace_1.4-1
## [15] highr_0.8 robustbase_0.93-4
## [17] mzID_1.22.0 labeling_0.3
## [19] hwriter_1.3.2 bit64_0.9-7
## [21] ggvis_0.4.4 coda_0.19-2
## [23] generics_0.0.2 ipred_0.9-9
## [25] xfun_0.6 randomForest_4.6-14
## [27] diptest_0.75-7 R6_2.4.0
## [29] doParallel_1.0.14 locfit_1.5-9.1
## [31] flexmix_2.3-15 bitops_1.0-6
## [33] assertthat_0.2.1 promises_1.0.1
## [35] scales_1.0.0 nnet_7.3-12
## [37] gtable_0.3.0 affy_1.62.0
## [39] biocViews_1.52.0 timeDate_3043.102
## [41] rlang_0.3.4 genefilter_1.66.0
## [43] splines_3.6.0 lazyeval_0.2.2
## [45] ModelMetrics_1.2.2 impute_1.58.0
## [47] hexbin_1.27.2 yaml_2.2.0
## [49] reshape2_1.4.3 threejs_0.3.1
## [51] crosstalk_1.0.0 httpuv_1.5.1
## [53] qvalue_2.16.0 RBGL_1.60.0
## [55] caret_6.0-84 tools_3.6.0
## [57] lava_1.6.5 bookdown_0.9
## [59] affyio_1.54.0 gplots_3.0.1.1
## [61] readBrukerFlexData_1.8.5 proxy_0.4-23
## [63] plyr_1.8.4 base64enc_0.1-3
## [65] progress_1.2.0 zlibbioc_1.30.0
## [67] purrr_0.3.2 RCurl_1.95-4.12
## [69] prettyunits_1.0.2 rpart_4.1-15
## [71] viridis_0.5.1 sampling_2.8
## [73] sfsmisc_1.1-3 LaplacesDemon_16.1.1
## [75] magrittr_1.5 data.table_1.12.2
## [77] pcaMethods_1.76.0 mvtnorm_1.0-10
## [79] whisker_0.3-2 hms_0.4.2
## [81] mime_0.6 evaluate_0.13
## [83] mclust_5.4.3 gridExtra_2.3
## [85] compiler_3.6.0 biomaRt_2.40.0
## [87] tibble_2.1.1 KernSmooth_2.23-15
## [89] ncdf4_1.16.1 crayon_1.3.4
## [91] R.oo_1.22.0 htmltools_0.3.6
## [93] segmented_0.5-3.0 later_0.8.0
## [95] lubridate_1.7.4 DBI_1.0.0
## [97] MASS_7.3-51.4 fpc_2.1-11.2
## [99] Matrix_1.2-17 vsn_3.52.0
## [101] R.methodsS3_1.7.1 gdata_2.18.0
## [103] mlbench_2.1-1 gower_0.2.0
## [105] igraph_1.2.4.1 pkgconfig_2.0.2
## [107] readMzXmlData_2.8.1 recipes_0.1.5
## [109] xml2_1.2.0 foreach_1.4.4
## [111] prodlim_2018.04.18 stringr_1.4.0
## [113] digest_0.6.18 pls_2.7-1
## [115] graph_1.62.0 rmarkdown_1.12
## [117] dendextend_1.10.0 edgeR_3.26.0
## [119] curl_3.3 kernlab_0.9-27
## [121] shiny_1.3.2 gtools_3.8.1
## [123] modeltools_0.2-22 jsonlite_1.6
## [125] nlme_3.1-139 viridisLite_0.3.0
## [127] limma_3.40.0 pillar_1.3.1
## [129] httr_1.4.0 DEoptimR_1.0-8
## [131] survival_2.44-1.1 glue_1.3.1
## [133] FNN_1.1.3 gbm_2.1.5
## [135] prabclus_2.2-7 iterators_1.0.10
## [137] bit_1.1-14 class_7.3-15
## [139] stringi_1.4.3 mixtools_1.1.0
## [141] blob_1.1.1 caTools_1.17.1.2
## [143] memoise_1.1.0 dplyr_0.8.0.1