Abstract
CRISPR (clustered regularly interspaced short palindrome repeats) coupled with nuclease Cas9 (CRISPR/Cas9) screens represent a promising technology to systematically evaluate gene functions. Data analysis for CRISPR/Cas9 screens is a critical process that includes identifying screen hits and exploring biological functions for these hits in downstream analysis. We have previously developed two algorithms, MAGeCK and MAGeCK-VISPR, to analyze CRISPR/Cas9 screen data in various scenarios. These two algorithms allow users to perform quality control, read count generation and normalization, and calculate beta score to evaluate gene selection performance. In downstream analysis, the biological functional analysis is required for understanding biological functions of these identified genes with different screening purposes. Here, We developed MAGeCKFlute for supporting downstream analysis. MAGeCKFlute provides several strategies to remove potential biases within sgRNA-level read counts and gene-level beta scores. The downstream analysis with the package includes identifying essential, non-essential, and target-associated genes, and performing biological functional category analysis, pathway enrichment analysis and protein complex enrichment analysis of these genes. The package also visualizes genes in multiple ways to benefit users exploring screening data. Collectively, MAGeCKFlute enables accurate identification of essential, non-essential, and targeted genes, as well as their related biological functions. This vignette explains the use of the package and demonstrates typical workflows. MAGeCKFlute package version: 1.4.3Note: if you use MAGeCKFlute in published research, please cite: Binbin Wang, Mei Wang, Wubing Zhang. “Integrative analysis of pooled CRISPR genetic screens using MAGeCKFlute.” Nature Protocols (2019), doi: 10.1038/s41596-018-0113-7.
Any and all MAGeCKFlute questions should be posted to the Bioconductor support site, which serves as a searchable knowledge base of questions and answers:
https://support.bioconductor.org
Posting a question and tagging with “MAGeCKFlute” will automatically send an alert to the package authors to respond on the support site. See the first question in the list of Frequently Asked Questions (FAQ) for information about how to construct an informative post.
You can also email your question to the package authors.
MAGeCK (Wei Li and Liu. 2014) and MAGeCK-VISPR (Wei Li and Liu. 2015) are developed by our lab previously, to analyze CRISPR/Cas9 screen data in different scenarios(Tim Wang 2014, Hiroko Koike-Yusa (2014), Ophir Shalem1 (2014), Luke A.Gilbert (2014), Silvana Konermann (2015)). Both algorithms use negative binomial models to model the variances of sgRNAs, and use Robust Rank Aggregation (for MAGeCK) or maximum likelihood framework (for MAGeCK-VISPR) for a robust identification of selected genes.
The command mageck mle
computes beta scores and the associated statistics for all genes in multiple conditions. The beta score describes how the gene is selected: a positive beta score indicates a positive selection, and a negative beta score indicates a negative selection.
The command mageck test
uses Robust Rank Aggregation (RRA) for robust identification of CRISPR-screen hits, and outputs the summary results at both sgRNA and gene level.
FluteMLE: A matrix contains columns of ‘Gene’, .beta and .beta which corresponding to the parameter and . FluteRRA: A matrix contains columns of “id”, “neg.goodsgrna”, “neg.lfc”, “neg.fdr”, “pos.goodsgrna”, and “pos.fdr”.
Here we show the most basic steps for integrative analysis pipeline. MAGeCKFlute package provides several example data, including countsummary
, rra.gene_summary
, rra.sgrna_summary
, and mle.gene_summary
, which are generated by running MAGeCK. We will work with them in this document.
Downstream analysis pipeline for MAGeCK RRA
##Load gene summary data in MAGeCK RRA results
data("rra.gene_summary")
data("rra.sgrna_summary")
##Run the downstream analysis pipeline for MAGeCK RRA
FluteRRA(rra.gene_summary, rra.sgrna_summary, prefix="RRA", organism="hsa")
All pipeline results are written into local directory “./RRA_Flute_Results/”, and all figures are integrated into file “RRA_Flute.rra_summary.pdf”.
Downstream analysis pipeline for MAGeCK MLE
## Load gene summary data in MAGeCK MLE results
data("mle.gene_summary")
## Run the downstream analysis pipeline for MAGeCK MLE
FluteMLE(mle.gene_summary, ctrlname="dmso", treatname="plx", prefix="MLE", organism="hsa")
All pipeline results are written into local directory “./MLE_Flute_Results/”, and all figures are integrated into file “MLE_Flute.mle_summary.pdf”.
** Count summary ** MAGeCK Count
in MAGeCK/MAGeCK-VISPR generates a count summary file, which summarizes some basic QC scores at raw count level, including map ratio, Gini index, and NegSelQC. Use function ‘data’ to load the dataset, and have a look at the file with a text editor to see how it is formatted.
## File Label Reads Mapped
## 1 ../data/GSC_0131_Day23_Rep1.fastq.gz day23_r1 62818064 39992777
## 2 ../data/GSC_0131_Day0_Rep2.fastq.gz day0_r2 47289074 31709075
## 3 ../data/GSC_0131_Day0_Rep1.fastq.gz day0_r1 51190401 34729858
## 4 ../data/GSC_0131_Day23_Rep2.fastq.gz day23_r2 58686580 37836392
## Percentage TotalsgRNAs Zerocounts GiniIndex NegSelQC NegSelQCPval
## 1 0.6366 64076 57 0.08510 0 1
## 2 0.6705 64076 17 0.07496 0 1
## 3 0.6784 64076 14 0.07335 0 1
## 4 0.6447 64076 51 0.08587 0 1
## NegSelQCPvalPermutation NegSelQCPvalPermutationFDR NegSelQCGene
## 1 1 1 0
## 2 1 1 0
## 3 1 1 0
## 4 1 1 0
For experiments with two experimental conditions, we recommend using MAGeCK-RRA to identify essential genes from CRISPR/Cas9 knockout screens and tests the statistical significance of each observed change between two states. Gene summary file in MAGeCK-RRA results summarizes the statistical significance of positive selection and negative selection. Use function ‘data’ to load the dataset, and have a look at the file with a text editor to see how it is formatted.
## id num neg.score neg.p.value neg.fdr neg.rank neg.goodsgrna
## 1 NF2 4 4.1770e-12 2.9738e-07 0.000275 1 4
## 2 SRSF10 4 4.4530e-11 2.9738e-07 0.000275 2 4
## 3 EIF2B4 8 2.8994e-10 2.9738e-07 0.000275 3 8
## 4 LAS1L 6 1.4561e-09 2.9738e-07 0.000275 4 6
## 5 RPL3 15 2.3072e-09 2.9738e-07 0.000275 5 12
## 6 ATP6V0 7 3.8195e-09 2.9738e-07 0.000275 6 7
## neg.lfc pos.score pos.p.value pos.fdr pos.rank pos.goodsgrna pos.lfc
## 1 -1.3580 1.00000 1.00000 1 16645 0 -1.3580
## 2 -1.8544 1.00000 1.00000 1 16647 0 -1.8544
## 3 -1.5325 1.00000 1.00000 1 16646 0 -1.5325
## 4 -2.2402 0.99999 0.99999 1 16570 0 -2.2402
## 5 -1.0663 0.95519 0.99205 1 15359 2 -1.0663
## 6 -1.6380 1.00000 1.00000 1 16644 0 -1.6380
## sgrna Gene control_count treatment_count control_mean treat_mean
## 1 s_10963 CDKN2 1175.4/1156.7 4110.7/4046 1166.00 4078.30
## 2 s_10959 CDKN2 651.49/647.25 2188.3/3020.6 649.37 2604.40
## 3 s_36798 NF2 8917/21204 5020.7/5127.9 15061.00 5074.30
## 4 s_45763 RAB6A 3375.8/3667.7 372.88/357.79 3521.80 365.33
## 5 s_23611 GPN1 4043.8/4064.2 767.53/853.7 4054.00 810.61
## 6 s_50164 SF1 3657.8/3352.6 453.62/628.28 3505.20 540.95
## LFC control_var adj_var score p.low p.high p.twosided
## 1 1.8055 1.7417e+02 4531.0 43.266 1.0000e+00 0 0.0000e+00
## 2 2.0022 8.9814e+00 2365.7 40.195 1.0000e+00 0 0.0000e+00
## 3 -1.5693 7.5491e+07 78871.0 35.559 2.9804e-277 1 5.9609e-277
## 4 -3.2655 4.2617e+04 15519.0 25.338 6.1638e-142 1 1.2328e-141
## 5 -2.3208 2.0966e+02 18159.0 24.069 2.6711e-128 1 5.3423e-128
## 6 -2.6937 4.6575e+04 15438.0 23.857 4.2365e-126 1 8.4731e-126
## FDR high_in_treatment
## 1 0.0000e+00 True
## 2 0.0000e+00 True
## 3 1.2732e-272 False
## 4 1.9748e-137 False
## 5 6.8462e-124 False
## 6 9.0487e-122 False
Then, extract “neg.fdr” and “pos.fdr” from the gene summary table.
## Official LFC FDR
## 1 NF2 -1.3580 0.000275
## 2 SRSF10 -1.8544 0.000275
## 3 EIF2B4 -1.5325 0.000275
## 4 LAS1L -2.2402 0.000275
## 5 RPL3 -1.0663 0.000275
## 6 ATP6V0 -1.6380 0.000275
We provide a function VolcanoView
to visualize top negative and positive selected genes.
We provide a function RankView
to visualize top negative and positive selected genes.
geneList= dd.rra$LFC
names(geneList) = dd.rra$Official
p2 = RankView(geneList, top = 10, bottom = 10)
print(p2)
We also provide a function sgRankView
to visualize the rank of sgRNA targeting top negative and positive selected genes.
Select negative selection and positive selection genes and perform enrichment analysis.
universe = dd.rra$Official
geneList= dd.rra$LFC
names(geneList) = universe
enrich = EnrichAnalyzer(geneList = geneList, keytype = "Symbol",
method = "GSEA", type = "GOMF+GOCC+GOBP",
limit = c(1, 80))
## Warning in fgsea(pathways = geneSets, stats = geneList, nperm = nPerm, minSize = minGSSize, : There are ties in the preranked stats (4.49% of the list).
## The order of those tied genes will be arbitrary, which may produce unexpected results.
Visualize the top enriched genes and pathways/GO terms using EnrichedGeneView
and EnrichedView
.
Simplify the enrichment results using EnrichedFilter
.
enrich = EnrichAnalyzer(geneList = geneList, keytype = "Symbol",
method = "GSEA", type = "GOMF+GOCC+GOBP",
limit = c(2, 80), filter = FALSE)
## Warning in fgsea(pathways = geneSets, stats = geneList, nperm = nPerm, minSize = minGSSize, : There are ties in the preranked stats (4.49% of the list).
## The order of those tied genes will be arbitrary, which may produce unexpected results.
** Gene summary ** The gene summary file in MAGeCK-MLE results includes beta scores of all genes in multiple condition samples.
## Gene sgRNA dmso.beta dmso.z dmso.p.value dmso.fdr dmso.wald.p.value
## 1 FEZ1 6 -0.045088 -0.66798 0.79649 0.97939 5.0415e-01
## 2 TNN 6 0.094325 1.36120 0.34176 0.89452 1.7344e-01
## 3 NAT8L 3 0.026362 0.24661 0.54185 0.94568 8.0521e-01
## 4 OAS2 8 -0.271210 -4.76860 0.46995 0.93572 1.8555e-06
## 5 OR10H3 2 -0.098324 -0.86408 0.99473 0.99872 3.8754e-01
## 6 CCL16 3 -0.309750 -3.43910 0.38495 0.90896 5.8372e-04
## dmso.wald.fdr plx.beta plx.z plx.p.value plx.fdr plx.wald.p.value
## 1 6.3060e-01 -0.036721 -0.54346 0.81604 0.98345 5.8681e-01
## 2 2.8578e-01 0.065533 0.94344 0.47309 0.93207 3.4546e-01
## 3 8.7248e-01 0.044979 0.42072 0.53600 0.94583 6.7396e-01
## 4 1.4126e-05 -0.289010 -5.07170 0.40411 0.90933 3.9431e-07
## 5 5.2094e-01 -0.365730 -3.16890 0.26493 0.85892 1.5300e-03
## 6 2.4781e-03 -0.148830 -1.66090 0.78757 0.98229 9.6739e-02
## plx.wald.fdr
## 1 6.9940e-01
## 2 4.7400e-01
## 3 7.7008e-01
## 4 3.5296e-06
## 5 5.4996e-03
## 6 1.7459e-01
Then, extract beta scores of control and treatment samples from the gene summary table(can be a file path of ‘gene_summary’ or data frame).
data("mle.gene_summary")
ctrlname = c("dmso")
treatname = c("plx")
#Read beta scores from gene summary table in MAGeCK MLE results
dd=ReadBeta(mle.gene_summary)
head(dd)
## Gene dmso plx
## 1 FEZ1 -0.045088 -0.036721
## 2 TNN 0.094325 0.065533
## 3 NAT8L 0.026362 0.044979
## 4 OAS2 -0.271210 -0.289010
## 5 OR10H3 -0.098324 -0.365730
## 6 CCL16 -0.309750 -0.148830
Is there batch effects? This is a commonly asked question before perform later analysis. In our package, we provide HeatmapView
to ensure whether the batch effect exists in data and use BatchRemove
to remove easily if same batch samples cluster together.
##Before batch removal
edata = matrix(c(rnorm(2000, 5), rnorm(2000, 8)), 1000)
colnames(edata) = paste0("s", 1:4)
HeatmapView(cor(edata))
## After batch removal
batchMat = data.frame(sample = colnames(edata), batch = rep(1:2, each = 2))
edata1 = BatchRemove(edata, batchMat)
## Standardizing Data across genes
## s1 s2 s3 s4
## [1,] 5.854060 6.769012 5.925806 6.589120
## [2,] 7.277372 6.868129 7.062022 7.042697
## [3,] 5.318384 6.742260 5.891656 6.043085
## [4,] 6.524467 6.374718 7.194817 5.527673
## [5,] 6.939979 4.890106 6.354025 5.046379
## [6,] 4.969315 5.588880 5.317415 5.367657
It is difficult to control all samples with a consistent cell cycle in a CRISPR screen experiment with multi conditions. Besides, beta score among different states with an inconsistent cell cycle is incomparable. So it is necessary to do the normalization when comparing the beta scores in different conditions. Essential genes are those genes that are indispensable for its survival. The effect generated by knocking out these genes in different cell types is consistent. Based on this, we developed the cell cycle normalization method to shorten the gap of the cell cycle in different conditions. Besides, a previous normalization method called loess normalization is available in this package.(Laurent Gautier 2004)
dd_essential = NormalizeBeta(dd, samples=c(ctrlname, treatname), method="cell_cycle")
head(dd_essential)
## Gene dmso plx
## 1 FEZ1 -0.05193303 -0.04904667
## 2 TNN 0.10864495 0.08752963
## 3 NAT8L 0.03036415 0.06007653
## 4 OAS2 -0.31238374 -0.38601834
## 5 OR10H3 -0.11325106 -0.48848997
## 6 CCL16 -0.35677469 -0.19878589
## Gene dmso plx
## 1 FEZ1 -0.04220307 -0.03960593
## 2 TNN 0.10163542 0.05822258
## 3 NAT8L 0.03185059 0.03949041
## 4 OAS2 -0.27123354 -0.28898646
## 5 OR10H3 -0.09834083 -0.36571317
## 6 CCL16 -0.30977008 -0.14880992
After normalization, the distribution of beta scores in different conditions should be similar. We can evaluate the distribution of beta scores using the function ‘ViolinView’, ‘DensityView’, and ‘DensityDiffView’.
After normalization, the cell cycle time in different condition should be almost consistent. Here we use a linear fitting to estimate the cell cycle time, and use function CellCycleView
to view the cell cycle time of all samples.
The function ScatterView
can group all genes into three groups, positive selection genes (GroupA), negative selection genes (GroupB), and others, and visualize these three grouped genes in scatter plot. We can also use function RankView
to rank the beta score deviation between control and treatment and mark top selected genes in the figure.
For gene set enrichment analysis, we provide three methods in this package, including “ORT”(Over-Representing Test (Guangchuang Yu and He. 2012)), “GSEA”(Gene Set Enrichment Analysis (Aravind Subramanian and Mesirov. 2005)), and “HGT”(hypergeometric test), which can be performed on annotations of Gene ontology(GO) terms (Consortium. 2014), Kyoto encyclopedia of genes and genomes (KEGG) pathways (Minoru Kanehisa 2014), MsigDB gene sets, or custom gene sets. The enrichment analysis can be done easily using function EnrichAnalyzer
, which returns an enrichResult instance. Alternatively, you can do enrichment analysis using the function enrich.ORT
for “ORT”, enrich.GSE
for GSEA, and enrich.HGT
for “HGT”. Function EnrichedView
can be used to generate gridPlot
from enrichRes
easily, as shown below.
## Get information of positive and negative selection genes
groupAB = p1$data
geneList = groupAB$diff; names(geneList) = groupAB$Gene
## Do enrichment analysis for positive selection genes.
idx1 = groupAB$group=="up"
hgtA = EnrichAnalyzer(geneList[idx1], keytype = "Symbol", method = "HGT",
universe = groupAB$Gene)
hgtA_grid = EnrichedView(slot(hgtA, "result"))
## look at the results
head(slot(hgtA, "result"))
## ID
## CORUM_320 CORUM_320
## CORUM_6664 CORUM_6664
## CORUM_230 CORUM_230
## CORUM_3061 CORUM_3061
## CORUM_6888 CORUM_6888
## CORUM_207 CORUM_207
## Description
## CORUM_320 55s ribosome, mitochondrial
## CORUM_6664 Staga complex, spt3-linked
## CORUM_230 Mediator complex
## CORUM_3061 Rna polymerase ii complex (cbp, pcaf, rpb1, baf47, cycc, cdk8), chromatin structure modifying
## CORUM_6888 V-atpase-ragulator-axin/lkb1-ampk complex
## CORUM_207 Ubiquitin e3 ligase (asb2, tceb1, tceb2, cul5, rnf7)
## NES pvalue p.adjust GeneRatio BgRatio
## CORUM_320 2.4051518 1.233943e-10 8.020626e-09 18/74 74/78
## CORUM_6664 3.5427573 2.347482e-08 7.629315e-07 8/19 19/19
## CORUM_230 2.4745618 4.273903e-07 9.260124e-06 9/32 32/32
## CORUM_3061 1.3128903 7.289144e-07 1.184486e-05 4/6 6/6
## CORUM_6888 0.8300731 1.175458e-05 1.528096e-04 5/14 14/14
## CORUM_207 1.2275716 1.463146e-05 1.585075e-04 3/5 5/5
## geneID
## CORUM_320 63931/54148/6182/63875/29093/65080/116541/6183/28957/51021/51073/51650/28998/51116/54948/28973/64979/116540
## CORUM_6664 6314/10629/10474/117143/27097/6883/112869/93624
## CORUM_230 9969/219541/10025/51586/892/9862/9439/1024/9968
## CORUM_3061 6598/892/1024/1387
## CORUM_6888 389541/10542/9114/55004/8649
## CORUM_207 9616/6923/8065
## geneName
## CORUM_320 MRPS14/MRPL39/MRPL12/MRPL17/MRPL22/MRPL44/MRPL54/MRPS12/MRPS28/MRPS16/MRPL4/MRPS33/MRPL13/MRPS2/MRPL16/MRPS18B/MRPL36/MRPL53
## CORUM_6664 ATXN7/TAF6L/TADA3/TADA1/TAF5L/TAF12/CCDC101/TADA2B
## CORUM_230 MED13/MED19/MED16/MED15/CCNC/MED24/MED23/CDK8/MED12
## CORUM_3061 SMARCB1/CCNC/CDK8/CREBBP
## CORUM_6888 C7orf59/HBXIP/ATP6V0D1/LAMTOR1/LAMTOR3
## CORUM_207 RNF7/TCEB2/CUL5
## Count
## CORUM_320 18
## CORUM_6664 8
## CORUM_230 9
## CORUM_3061 4
## CORUM_6888 5
## CORUM_207 3
## Do enrichment analysis using GSEA method
gseA = EnrichAnalyzer(geneList, keytype = "Symbol", method = "GSEA", type = "KEGG",
limit = c(2, 100), pvalueCutoff = 1)
gseA_grid = EnrichedView(gseA)
print(gseA_grid)
For enriched KEGG pathways, we can use function KeggPathwayView
to visualize the beta score level in control and treatment on pathway map.(Weijun Luo 2013)
We developed a 9-square model, which group all genes into several subgroups by considering the selection status of genes in control and treatment. Each subgroup genes correspond to specific functions.
Same as the section above. We can do enrichment analysis for treatment-associated genes.
#Get 9-square groups
Square9 = p3$data
idx=Square9$group=="topcenter"
geneList = (Square9$y - Square9$x)[idx]
names(geneList) = Square9$Gene[idx]
universe = Square9$Gene
# Enrichment analysis
kegg1 = EnrichAnalyzer(geneList = geneList, keytype = "Symbol", universe = universe)
EnrichedView(kegg1, top = 10, bottom = 0)
Also, pathway visualization can be done using function KeggPathwayView
, the same as the section above.
## R version 3.6.1 (2019-07-05)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 18.04.3 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.9-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.9-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] MAGeCKFlute_1.4.3 gridExtra_2.3 ggplot2_3.2.0
##
## loaded via a namespace (and not attached):
## [1] fgsea_1.10.0 colorspace_1.4-1 ggridges_0.5.1
## [4] qvalue_2.16.0 XVector_0.24.0 farver_1.1.0
## [7] urltools_1.7.3 ggrepel_0.8.1 bit64_0.9-7
## [10] AnnotationDbi_1.46.0 xml2_1.2.1 codetools_0.2-16
## [13] splines_3.6.1 GOSemSim_2.10.0 knitr_1.24
## [16] pathview_1.24.0 polyclip_1.10-0 zeallot_0.1.0
## [19] jsonlite_1.6 annotate_1.62.0 GO.db_3.8.2
## [22] png_0.1-7 pheatmap_1.0.12 graph_1.62.0
## [25] ggforce_0.2.2 shiny_1.3.2 compiler_3.6.1
## [28] httr_1.4.1 rvcheck_0.1.3 backports_1.1.4
## [31] assertthat_0.2.1 Matrix_1.2-17 lazyeval_0.2.2
## [34] limma_3.40.6 later_0.8.0 tweenr_1.0.1
## [37] htmltools_0.3.6 prettyunits_1.0.2 tools_3.6.1
## [40] igraph_1.2.4.1 gtable_0.3.0 glue_1.3.1
## [43] reshape2_1.4.3 DO.db_2.9 dplyr_0.8.3
## [46] fastmatch_1.1-0 Rcpp_1.0.2 enrichplot_1.4.0
## [49] Biobase_2.44.0 vctrs_0.2.0 Biostrings_2.52.0
## [52] nlme_3.1-141 ggraph_1.0.2 xfun_0.8
## [55] stringr_1.4.0 mime_0.7 miniUI_0.1.1.1
## [58] clusterProfiler_3.12.0 XML_3.98-1.20 DOSE_3.10.2
## [61] europepmc_0.3 MASS_7.3-51.4 zlibbioc_1.30.0
## [64] scales_1.0.0 hms_0.5.0 promises_1.0.1
## [67] parallel_3.6.1 KEGGgraph_1.44.0 RColorBrewer_1.1-2
## [70] yaml_2.2.0 memoise_1.1.0 UpSetR_1.4.0
## [73] biomaRt_2.40.3 triebeard_0.3.0 ggExtra_0.8
## [76] stringi_1.4.3 RSQLite_2.1.2 genefilter_1.66.0
## [79] S4Vectors_0.22.0 BiocGenerics_0.30.0 BiocParallel_1.18.1
## [82] matrixStats_0.54.0 rlang_0.4.0 pkgconfig_2.0.2
## [85] bitops_1.0-6 evaluate_0.14 lattice_0.20-38
## [88] purrr_0.3.2 labeling_0.3 cowplot_1.0.0
## [91] bit_1.1-14 tidyselect_0.2.5 ggsci_2.9
## [94] plyr_1.8.4 magrittr_1.5 R6_2.4.0
## [97] IRanges_2.18.1 DBI_1.0.0 mgcv_1.8-28
## [100] pillar_1.4.2 withr_2.1.2 survival_2.44-1.1
## [103] KEGGREST_1.24.0 RCurl_1.95-4.12 tibble_2.1.3
## [106] crayon_1.3.4 rmarkdown_1.14 viridis_0.5.1
## [109] progress_1.2.2 grid_3.6.1 sva_3.32.1
## [112] data.table_1.12.2 blob_1.2.0 Rgraphviz_2.28.0
## [115] digest_0.6.20 xtable_1.8-4 tidyr_0.8.3
## [118] httpuv_1.5.1 gridGraphics_0.4-1 stats4_3.6.1
## [121] munsell_0.5.0 viridisLite_0.3.0 ggplotify_0.0.4
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).
Yu, G., Lg, W., H., Y. & Qy., H. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).
Luo, W. & Brouwer, C. Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics 29, 1830–1831 (2013).
Aravind Subramanian, Vamsi K. Moothaa, Pablo Tamayo, and Jill P. Mesirov. 2005. “Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles.” http://www.pnas.org/content/102/43/15545.full.
Consortium., The Gene Ontology. 2014. “Gene Ontology Consortium: going forward.” https://academic.oup.com/nar/article/43/D1/D1049/2439067.
Guangchuang Yu, Yanyan Han, Li-Gen Wang, and Qing-Yu He. 2012. “clusterProfiler: an R Package for Comparing Biological Themes Among Gene Clusters.” http://online.liebertpub.com/doi/abs/10.1089/omi.2011.0118.
Hiroko Koike-Yusa, E-Pien Tan, Yilong Li. 2014. “Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library.” http://science.sciencemag.org/content/343/6166/80.long.
Laurent Gautier, Benjamin M. Bolstad, Leslie Cope. 2004. “affy—analysis of Affymetrix GeneChip data at the probe level.” https://academic.oup.com/bioinformatics/article/20/3/307/185980.
Luke A.Gilbert, BrittAdamson, Max A.Horlbeck. 2014. “Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation.” https://linkinghub.elsevier.com/retrieve/pii/S0092-8674(14)01178-7.
Minoru Kanehisa, Yoko Sato, Susumu Goto. 2014. “Data, information, knowledge and principle: back to metabolism in KEGG.” https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkt1076.
Ophir Shalem1, *, 2. 2014. “Genome-scale CRISPR-Cas9 knockout screening in human cells.” http://science.sciencemag.org/content/343/6166/84.long.
Silvana Konermann, Alexandro E. Trevino, Mark D. Brigham. 2015. “Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex.” https://www.nature.com/nature/journal/vnfv/ncurrent/full/nature14136.html.
Tim Wang, David M. Sabatini, Jenny J. Wei1. 2014. “Genetic Screens in Human Cells Using the CRISPR-Cas9 System.” http://science.sciencemag.org/content/343/6166/80.long.
Wei Li, Han Xu, Johannes Köster, and X. Shirley Liu. 2015. “Quality control, modeling, and visualization of CRISPR screens with MAGeCK-VISPR.” https://genomebiology.biomedcentral.com/articles/10.1186/s13059-015-0843-6.
Wei Li, Tengfei Xiao, Han Xu, and X Shirley Liu. 2014. “MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens.” https://genomebiology.biomedcentral.com/articles/10.1186/s13059-014-0554-4.
Weijun Luo, Cory Brouwer. 2013. “Pathview: an R/Bioconductor package for pathway-based data integration and visualization.” https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btt285.