DelayedArray 0.10.0
The DelayedArray framework currently supports the HDF5 on-disk backend (via the HDF5Array package) but can be extended to support other on-disk backends, that is, to support other file formats. In theory, it should be possible to implement a DelayedArray backend for any file format that has the capability to store array data with fast random access. Let’s assume that the ADS format (Array Data Store) is such format (this is a made-up format for the purpose of this vignette only). Implementing a DelayedArray backend for ADS files should typically be done in a dedicated package (say ADSArray) that will depend on the DelayedArray package.
The ADSArray package will need to implement:
A low-level class for representing a reference to an array located in an ADS file. We’ll refer to this class as “the seed class” and will name it ADSArraySeed.
Two high-level classes that derive from DelayedArray: ADSArray and ADSMatrix. Only the latter is needed if the ADS format supports only 2-dimensional arrays.
A “realization sink” class if you also want to support realization of DelayedArray objects as ADSArray objects. This is not documented yet.
The rest of this document covers the above topics in greater details. Some familiarity with writing R packages is assumed. Don’t hesitate to look at the source of the HDF5Array package for a real example of DelayedArray on-disk backend implementation.
A “seed object” should store at least the path or URL to the file. If the file format allows storing more than one array per file, then the seed object should also store any additional information needed to locate a particular array in the file.
The definition of the seed class will look something like this:
setClass("ADSArraySeed",
contains="Array",
slots=c(
filepath="character",
...
... additional slots needed
... to locate the array in the file
...
)
)
The filepath
slot should be a single string that contains the absolute
path to the ADS file so the object doesn’t break when the user changes
the working directory (e.g. with setwd()
).
Note that storing an open connection to the file should be avoided because connections don’t work properly in the context of a fork (e.g. when processing the seed object in parallel) and tend to break when serializing the object.
It is highly recommended to provide a “seed constructor” e.g.:
ADSArraySeed <- function(filepath, other args)
{
sanity checks
...
filepath <- file_path_as_absolute(filepath)
...
new("ADSArraySeed", filepath=filepath, other args)
}
Note that file_path_as_absolute()
is defined in the tools package
so it needs to be imported by adding the following to the NAMESPACE file
of the ADSArray package:
importFrom(tools, file_path_as_absolute)
and adding tools to the Imports
field of the DESCRIPTION file of the
package.
Seed objects are expected to comply with the “seed contract” i.e. to
support dim()
, dimnames()
, and extract_array()
. This is normally
done by implementing methods for these generics, but, as we will
see below, a method is rarely needed for dim()
or dimnames()
.
For example, the dim
method for ADSArraySeed objects could look like
this:
### An implementation that extracts the dimensions from the file
### each time the method is called.
setMethod("dim", "ADSArraySeed",
function(x)
{
- open the connection to the file
- on.exit(close the connection)
- extract the dimensions and return them in an integer vector
}
)
Note that the above dim
method consults the ADS file each time it’s
called. However this can be avoided by adding a dim
(and dimnames
)
slot (of type integer
for dim
, of type list
for dimnames
) to
the ADSArraySeed class, and to populate it at construction time, so this
information is retrieved from the file only once. With this approach,
the dim
and dimnames
methods are actually not needed, because, by
default, the dim
and dimnames
primitive functions return the content
of these slots if present.
If the ADS format does not allow storage of the dimnames, then there
is no need to implement a dimnames
method or to add a dimnames
slot
to the ADSArraySeed class.
extract_array
is a generic function defined in the DelayedArray package:
library(DelayedArray)
?extract_array
It takes 2 arguments: x
and index
. x
is the seed object
to extract array values from. index
must be an unnamed list of
subscripts as positive integer vectors, one vector per seed dimension.
Empty and missing subscripts (represented by integer(0)
and NULL
list
elements, respectively) are allowed. The subscripts in index
can contain
duplicated indices. They cannot contain NAs or non-positive values.
The extract_array
method must return an ordinary array of the
appropriate type (i.e. integer
, double
, etc…). For example, if
x
is an ADSArraySeed object representing an M x N on-disk matrix
of complex numbers, extract_array(x, list(NULL, 2L))
must
return its 2nd column as an ordinary M x 1 matrix of type complex
.
Note that the extract_array
method needs to support empty and missing
subscripts e.g. extract_array(x, list(NULL, integer(0)))
must return
an M x 0 matrix of type complex
and
extract_array(x, list(integer(0), integer(0)))
a 0 x 0 matrix of
type complex
. This last edge case is important because the type
and show
methods for DelayedArray objects rely on it to work.
More precisely, once the extract_array
method supports an index
with empty integer vectors, the following should work:
seed <- ADSArraySeed(...)
M <- DelayedArray(seed)
type(M)
show(M)
Finally note that subscripts are allowed to contain duplicated indices
so things like extract_array(seed, list(c(1:3, 3:1), 2L))
need to be
supported.
Make sure the NAMESPACE file of the ADSArray package contains at least the following imports:
import(methods)
importFrom(tools, file_path_as_absolute)
import(BiocGenerics)
import(S4Vectors)
import(IRanges)
import(DelayedArray)
Unless you have a good reason for it, don’t try to selectively import things from the methods, BiocGenerics, S4Vectors, IRanges, and DelayedArray packages. This will only complicate maintenance of the ADSArray package in the long run and has no real benefits (contrary to popular belief).
Add methods, BiocGenerics, and DelayedArray to the Depends
field
of the DESCRIPTION file of the package, and tools, S4Vectors, and
IRanges to its Imports
field.
Make sure to export the ADSArraySeed class, its constructor, and the
dim
, dimnames
, and extract_array
methods.
At this point, you should be able to wrap an ADSArraySeed object seed
in a DelayedArray object with DelayedArray(seed)
, and this should return
a fully functional DelayedArray object.
These classes are not strictly needed but add a nice level of convenience.
An ADSArray or ADSMatrix object is a DelayedArray derivative that doesn’t carry delayed operations yet. As soon as the user will start operating on it, it will be degraded to a DelayedArray instance.
The ADSArray and ADSMatrix classes should extend the DelayedArray and DelayedMatrix classes, respectively, without adding any slot to them.
So just:
setClass("ADSArray",
contains="DelayedArray",
representation(seed="ADSArraySeed")
)
We’ll define the ADSMatrix class later.
ADSArray()
constructorAdd a DelayedArray
method for ADSArraySeed objects that does:
setMethod("DelayedArray", "ADSArraySeed",
function(seed) new_DelayedArray(seed, Class="ADSArray")
)
Now you should be able to construct an ADSArray object with:
DelayedArray(ADSArraySeed(...))
The ADSArray
constructor should just do that:
ADSArray <- function(filepath, other args)
DelayedArray(ADSArraySeed(filepath, other args))
However, it’s also nice to be able to pass an ADSArraySeed object to
this constructor (with ADSArray(seed)
). This can easily be supported
with something like:
### Works directly on an ADSArraySeed object, in which case it must be
### called with a single argument.
ADSArray <- function(filepath, other args)
{
if (is(filepath, "ADSArraySeed")) {
if (!(missing(other arg1) && missing(other arg2) && ...))
stop(wmsg("ADSArray() must be called with a single argument ",
"when passed an ADSArraySeed object"))
seed <- filepath
} else {
seed <- ADSArraySeed(filepath, other args)
}
DelayedArray(seed)
}
setClass("ADSMatrix", contains=c("ADSArray", "DelayedMatrix"))
Define a matrixClass
method for ADSArray objects as follow:
setMethod("matrixClass", "ADSArray", function(x) "ADSMatrix")
matrixClass
is a generic function defined in the DelayedArray package.
When passed an ADSArraySeed object, low-level constructor new_DelayedArray
(see below) will generally return an ADSArray instance, except when the
ADSArraySeed object is 2-dimensional, in which case it needs to return an
ADSMatrix instance. It will obtain the name of the class of the object to
return ("ADSMatrix"
in this case) by calling matrixClass
.
Also coercion from ADSArray to ADSMatrix needs to be supported with:
setAs("ADSArray", "ADSMatrix", function(from) new("ADSMatrix", from))
This coercion will make sure that the end-user gets the following error when trying to coerce an ADSArray object that is not 2-dimensional to ADSMatrix:
as(x, "ADSMatrix")
# Error in validObject(.Object) : invalid class "ADSMatrix" object:
# 'x' must have exactly 2 dimensions
Without the above coercion method, as(x, "ADSMatrix")
would silently
return an invalid ADSMatrix object.
The user should not be able to degrade an ADSMatrix object to an ADSArray
object so as(x, "ADSArray", strict=TRUE)
should fail or be a no-op
when x
is an ADSMatrix object. The easiest (and recommended) way to
achieve this is to define the following coercion method:
setAs("ADSMatrix", "ADSArray", function(from) from) # no-op
Make sure to export the ADSArray and ADSMatrix classes, the ADSArray
constructor, and the coerce
methods.
Install the ADSArray package and load it in a fresh R session:
library(ADSArray)
... coming soon ...