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1 Abstract

The affyPara package is part of the Bioconductor1 [1] project. The pack-
age extends the affy package. The affy package is meant to be an extensi-
ble, interactive environment for data analysis and exploration of Affymetrix
oligonucleotide array probe level data. For more details see the affy vignettes
or (author?) [2].

The affyPara package contains parallelized preprocessing methods for
high-density oligonucleotide microarray data. Partition of data could be
done on arrays and therefore parallelization of algorithms gets intuitive pos-
sible. The partition of data and distribution to several nodes solves the main
memory problems – caused by the AffyBatch object – and accelerates the
methods [5].

This document was created using R version 3.6.0 and versions 1.62.0,
0.4-3 and 3.52.0 of the packages affy , snow and vsn respectively.

2 Changes to previous Versions

For major changes see the NEWS file in the source code of the package or
use the function readNEWS().

3 Introduction

The functions in the affyPara package have the same functionality and a
very similar user-interface as the functions in the affy package. For a de-
tailed function and method description see the affy vignettes and help files.
The affyPara package contains parallelized preprocessing methods for high-
density oligonucleotide microarray data.

The package is designed for large numbers of microarray data and solves
the main memory problems caused by the AffyBatch object at only one
workstation or processor. Partition of data could be done on arrays and
therefore parallelization of algorithms gets intuitive possible. It is very diffi-
cult to define a concrete limit for a large number of data, because this strongly
depends on the computer system (architecture, main memory, operating sys-
tem). In general a computer cluster and the affyPara package should be

1http://www.bioconductor.org/
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used when working with more than 150 microarrays. The partition of data
and distribution to several nodes solves the main memory problems (at one
workstation) and accelerates the methods. Parallelization of existing prepro-
cessing methods produces, in view of machine accuracy, the same results as
serialized methods.

3.1 Requirements

The affyPara package requires the affy , snow and vsn package. From the affy
and vsn packages several subfunctions for preprocessing will be used. The
snow package [4] will be used as interface to a communication mechanism for
parallel computing. In the snow package four low level interfaces have been
implemented, one using PVM via the rpvm package by Li and Rossini, one
using MPI via the Rmpi [8] package by Hao Yu, one using NetWorkSpaces
via the NWS package by Revolution Computing and one using raw sockets
that may be useful if PVM and MPI are not available. For a comparison and
review of existing parallel computing techniques with the R language see [6].

For more details concerning the snow package, see the help files or the
webpage http://www.cs.uiowa.edu/~luke/R/cluster/cluster.html.

3.2 Loading the package

First of all you have to load the package and the depending packages.

> library(affyPara)

For demonstration we use the small AffyBatch object ’Dilution’ from the
affydata package:

> library(affydata)

Package LibPath Item

[1,] "affydata" "C:/Users/biocbuild/bbs-3.9-bioc/R/library" "Dilution"

Title

[1,] "AffyBatch instance Dilution"

> data(Dilution)

> Dilution
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AffyBatch object

size of arrays=640x640 features (38422 kb)

cdf=HG_U95Av2 (12625 affyids)

number of samples=4

number of genes=12625

annotation=hgu95av2

notes=

3.3 Starting and stopping cluster

After loading the libraries the computer cluster has to be initialized. Starting
a workstation cluster is the only step in using a computer cluster that depends
explicitly on the underlying communication mechanism. A cluster is started
by calling the makeCluster() function, but the details of the call depend
on the type of cluster. PVM, MPI or NWS cluster may also need some
preliminary preparations to start the systems. For some examples see the
webpage http://www.cs.uiowa.edu/~luke/R/cluster/cluster.html.

To start a cluster you should use

> cl <- makeCluster(4, type='SOCK')

with the first parameter ’4’ for the number of spawend slaves and a parameter
(type) for the used communication mechanism. In this example we use raw
socket connections. As default in the snow a cluster object ’cl’ will be created.

To stop a cluster you should use

> stopCluster(cl)

The affyPara package masks (overwrites) the functions makeCluster()

and stopCluster() from the snow package. The new functions save the
cluster object (cl) in the namespace environment. Therefore you do not have
to deal with the ’cl’ object in the function calls of the affyPara functions.
But it is still possible, using the parameter cluster=cl.

Socket clusters should stop automatically, when the process – that created
them – terminates. However, it is still a good idea to call stopCluster().

For more details see the snow package, the R package for your commu-
nication mechanism (Rmpi , Rpvm, NWS ), and the implementation of your
communication mechanism.
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3.4 Inputdata: CEL Files or AffyBatch

Before running any kind of proprocessing, the probe level data (CEL files)
have to be handled. As suggested in the affy package an object of class
AffyBatch can be created:

� Create a directory.

� Move all the relevant CEL files to that directory.

� Make sure your working directory contains the CEL files (getwd(),
setwd()).

� Then read in the data:

> AffyBatch <- ReadAffy()

This AffyBatch object can be used to do preprocessing (with functions from
the affyPara and affy package) on the data. Depending on the size of the
dataset and on the memory available at the computer system, you might
experience errors like ’Cannot allocate vector ...’.

The idea of the affyPara package is, that all probe level data will never be
needed at one place (computer) at the same time. Therefore it is much more
efficient and memory friendly to distribute the CEL files to the local disc of
the slave computers or to a shared memory system (e.g. samba device). To
build only small AffyBatch objects at the slaves, do preprocessing at the
slaves and rebuild the results (AffyBatch or ExpressionSet object) at the
master node. This process is implemented in the functions from the affyPara
package.

4 Function Description

4.1 Background Correction

Background correction (BGC) methods are used to adjust intensities ob-
served by means of image analysis to give an accurate measurement of spe-
cific hybridization. Therefore BGC is essential, since part of the measured
probe intensities are due to non-specific hybridization and the noise in the
optical detection system.
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In the affyPara package the same BGC methods as in the affy package
are available. To list the background correction methods – built into the
package – the function bgcorrect.method() can be used:

> bgcorrect.methods()

[1] "bg.correct" "mas" "none" "rma"

4.1.1 Use Background Correction Para

The function bgCorrectPara() needs an input data object (Dilution) and
the background correction method (method=”rma”) as input parameters.

> affyBatchBGC <- bgCorrectPara(Dilution,

+ method="rma", verbose=TRUE)

If you do not want to use an AffyBatch object as input data, you can
directly give the CEL files and a vector of the CEL files location respectively
to the function bgCorrectPara():

> files <- list.celfiles(full.names=TRUE)

> affyBatchGBC <- bgCorrectPara(files,

+ method="rma", cluster=cl)

For this method all CEL files have to be available at every node. This could
be achieved for example using a a shared memory system. If you want to
distribute the CEL files to the slaves, see Chapter 4.6.

Additionally this example demonstrates how to use an extra cluster object
(cluster=cl).

4.2 Normalization

Normalization methods make measurements from different arrays compara-
ble. Multi-chip methods have proved to perform very well. We parallelized
the following methods

contrast -> normalizeAffyBatchConstantPara

invariantset -> normalizeAffyBatchInvariantsetPara

loess -> normalizeAffyBatchLoessPara
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quantile -> normalizeAffyBatchQuantilesPara

vsn2 -> vsnPara

available from the affy package in the function normalize() and the vsn
package.

The parallelized normalization functions need an input data object and
the coresponding normalization parameters as input paramters.

4.2.1 Use Quantile Normalization Para

The function normalizeAffyBatchQuantilesPara() needs an input data
object (Dilution) and quantil normalization parameters as input parameters
(type = ”pmonly”).

> affyBatchNORM <- normalizeAffyBatchQuantilesPara(

+ Dilution, type = "pmonly", verbose=TRUE)

If you do not want to use an AffyBatch object as input data, you can
directly give the CEL files and a vector of the CEL files location respectively
to the function normalizeAffyBatchQuantilesPara():

> files <- list.celfiles(full.names=TRUE)

> affyBatchNORM <- normalizeAffyBatchQuantilesPara(

+ files, type = "pmonly")

For this method all CEL files have to be available from a shared memory
system. If you want to distribute the CEL files to the slaves, see Chapter 4.6.

4.3 Summarization

Summarization is the final step in preprocessing raw data. It combines the
multiple probe intensities for each probeset to produce expression values.
These values will be stored in the class called ExpressionSet. Compared to
the AffyBatch class, the ExpressionSet requires much less main memory,
because there are no more multiple data. Therefore the complete preprocess-
ing functions in the affyPara package are very effizient, because no complete
AffyBatch object has to be build, see Chapter 4.4.

The parallelized summarization functions need an input data object and
the coresponding summarization parameters as input paramters. To see
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the summarization methods and PM correct methods that are built into
the package the function express.summary.stat.methods() and pmcor-

rect.methods() can be used:

> express.summary.stat.methods()

[1] "avgdiff" "liwong" "mas"

[4] "medianpolish" "playerout" "medianpolish_orig"

[7] "liwong_orig" "farms_orig" "playerout_orig"

> pmcorrect.methods()

[1] "mas" "methods" "pmonly" "subtractmm"

4.3.1 Use Summarization Para

The function computeExprSetPara() needs an input data object (Dilution)
and the summarization parameters as input parameters (pmcorrect.method
= ”pmonly”, summary.method = ”avgdiff”).

> esset <- computeExprSetPara(

+ Dilution,

+ pmcorrect.method = "pmonly",

+ summary.method = "avgdiff")

If you do not want to use an AffyBatch object as input data, you can
directly give the CEL files and a vector of the CEL files location respectively
to the function computeExprSetPara():

> files <- list.celfiles(full.names=TRUE)

> esset <- normalizeAffyBatchQuantilesPara(

+ files,

+ pmcorrect.method = "pmonly",

+ summary.method = "avgdiff")

For this method all CEL files have to be available from a shared memory
system. If you want to distribute the CEL files to the slaves, see Chapter 4.6.
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4.4 Complete Preprocessing

By combining the background correction, normalization and summarization
methods to one single method for preprocessing an efficient method can be
obtained. For parallelization, the combination has the big advantage of re-
ducing the exchange of data between master and slaves. Moreover, at no
point a complete AffyBatch object needs to be built, and the time-consuming
rebuilding of the AffyBatch objects is no longer necessary.

4.4.1 Use Preprocessing Para

It is important to note that not every preprocessing method can be combined
together. For more details see the vignettes in the affy package.

The function preproPara() needs an input data object (Dilution) and the
parameters for BGC, normalization and summarization as input parameters.

> esset <- preproPara(

+ Dilution,

+ bgcorrect = TRUE, bgcorrect.method = "rma",

+ normalize = TRUE, normalize.method = "quantil",

+ pmcorrect.method = "pmonly",

+ summary.method = "avgdiff")

The function works very similar to the expresso() function from the affy
package. It is not very reasonable to have an AffyBatch object as input data
object for this function. Because therefore you have to create a complete
AffyBatch object. (very memory intensive). It is much better to use a vector
of CEL files as input data object. And at no point a complete AffyBatch

object needs to be built:

> files <- list.celfiles(full.names=TRUE)

> esset <- preproPara(

+ files,

+ bgcorrect = TRUE, bgcorrect.method = "rma",

+ normalize = TRUE, normalize.method = "quantil",

+ pmcorrect.method = "pmonly",

+ summary.method = "avgdiff")

For this method all CEL files have to be available from a shared memory
system. If you want to distribute the CEL files to the slaves, see Chapter 4.6.
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4.4.2 Use RMA Para

RMA is a famous [3] complete preprocessing method. This function converts
an AffyBatch object into an ExpressionSet object using the robust multi-
array average (RMA) expression measure. There exists a function justRMA()

in the affy package, which reads CEL files and computes an expression mea-
sure without using an AffyBatch object.

The parallelized version of rma() is called rmaPara() and is a ’simple’
wrapper function for the function preproPara().

> esset <- rmaPara(Dilution)

It is not very reasonable to have an AffyBatch object as input data object
for this function. Because therefore you have to create a complete AffyBatch
object (very memory intensive).

It is much better to use a vector of CEL files as input data object. And
at no point a complete AffyBatch object needs to be built:

> files <- list.celfiles(full.names=TRUE)

> esset <- rmaPara(files)

For this method all CEL files have to be available from a shared memory
system. If you want to distribute the CEL files to the slaves, see Chapter 4.6.

4.4.3 Use vsnRMA Para

An other famous preprocessing method is vsnrma(). This uses varianze
stabilization normalization for normalization and rma for summarization.
The parallelized version is called vsnrmaPara().

4.5 Quality Control and Assessment

Quality control and assessment gets very difficult for a huge number of mi-
croarrays data. It takes a lot of computation time and it requires a lot of
main memory. In addition most methods for quality control are graphical
tools and using more than 200 arrays no more information can be readout of
the figures.

Therefore some optimized functions for quality control were implemented
in parallel:
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> boxplotPara(Dilution)

> MAplotPara(Dilution)

These functions create output tables with the quality assessment for all arrays
and create optimized graphics (plot=TRUE) for huge numbers of arrays.

4.6 Distributing Data

At a workstation cluster the CEL files could be available by a shared mem-
ory system. At a workstation cluster, this is often done by a samba device.
But this could be the bottle neck for communication traffic. For distributed
memory systems, the function distributeFiles() for (hierarchically) dis-
tributing files from the master to a special directory (e.g. ’/tmp/’) at all
slaves was designed. R or the faster network protocols SCP or RCP can be
used for the process of distributing.

> path <- "tmp/CELfiles" # path at local computer system (master)

> files <- list.files(path,full.names=TRUE)

> distList <- distributeFiles(CELfiles, protocol="RCP")

> eset <- rmaPara(distList$CELfiles)

With the paramteter hierarchicallyDist hierarchically distribution could
be used. If hierarchicallyDist = TRUE data will be hierarchically dis-
tributed to all slaves. If hierarchicallyDist = FALSE at every slave only a
part of data is available. This function and the corresponding input data ob-
ject (distList$CELfiles) could be used for every parallelized preprocessing
method in the affyPara package.

There is also a function to remove distributed files:

> removeDistributedFiles("/usr1/tmp/CELfiles")

5 Results and Discuccion

This article proposes the new package called affyPara for parallelized prepro-
cessing of high-density oligonucleotide microarrays. Parallelization of existing
preprocessing methods produces, in view of machine accuracy, the same re-
sults as serialized methods. The partition of data and distribution to several
nodes solves the main memory problems and accelerates the methods.
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5.1 Test for Accuracy

In view of machine accuracy, the parallelized functions produce same results
as serialized methods. To compare results from different functions you can
use the functions identical() or all.equal() from the base package.

> affybatch1 <- bg.correct(Dilution,

+ method="rma")

> affybatch2 <- bgCorrectPara(Dilution,

+ method="rma")

> identical(exprs(affybatch1),exprs(affybatch2))

> all.equal(exprs(affybatch1),exprs(affybatch2))

Attention: If you directly compare the AffyBatch or ExpressionSet objects
there are some warnings or not similar results. This is being caused by
different values of the ’Title’ and ’notes’ slots in experimentData. Using
the function exprs() to get the expression data equal results – in view of
machine accuracy – can be proven.

Attention for loess normalization: In loess normalization a random sub
sample will be created. For generating the same results the random generator
has to be reset for every run:

> set.seed(1234)

> affybatch1 <- normalize.AffyBatch.loess(Dilution)

> set.seed(1234)

> affybatch2 <- normalizeAffyBatchLoessPara(Dilution, verbose=TRUE)

> identical(exprs(affybatch1),exprs(affybatch2))

5.2 Speedup

In order to illustrate by how much the parallel algorithms are faster than
the corresponding sequential algorithms, Figure 1 shows the speedup for the
parallelized preprocessing methods for 50, 100 and 200 CEL files. An average
speedup of up to the factor 10 for 200 arrays or more may be achieved.

The computation time for parallel algorithms is compared to the orig-
inal serial code. It is well known that parts of the original code are not
very well implemented. Therefore an increased speedup (super-linear) could
be achieved for low numbers of processors, the outliers are mostly gener-
ated by unbalanced data distribution. For example 200 microarrays can not
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be equally distributed to 23 nodes, there are some computers who have to
calculate with one more array. Furthermore foreign network traffic in the
workstation cluster at the IBE is a reason for outliers. After a special num-
ber of processors (depending on number of arrays and method) the plots for
all parallelized function get a flat. This means, by using more processors no
more speedup could be achieved. Therefore for example for 200 microrrays
circa 10 nodes will be enough.

The cluster at the Department for Medical Information, Biometrics and
Epidemiology (IBE, University of Munich) consists of 32 personal computers
with 8 GB main memory and two dual core Intel Xeon DP 5150 processors.
Using this cluster, about 16.000 (32 nodes · approximately 500 CEL files)
microarrays of the type HGU-133A can be preprocessed using the function
preproPara(). By expanding the cluster, the number of microarrays can be
increased to any given number.

The affyPara package is tested in different hardware environments:

Computer Cluster: IBE, Linux-Cluster(LRZ, Munich, Germany), HLRB2(LRZ,
Munich, Germany), Hoppy (FHCRC, Seattle, WA, USA)

Multicore: IBE, HLRB2(LRZ, Munich, Germany), lamprey (FHCRC, Seat-
tle, WA, USA)

Thanks a lot to the institutes for providing access to their computer ressources.

> stopCluster()
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Figure 1: Speedup for the parallelized preprocessing methods for 200, 100
and 50 microarrays.
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