K-nearest neighbors:

We read in input.scone.csv, which is our file modified (and renamed) from the get.marker.names() function. The K-nearest neighbor generation is derived from the Fast Nearest Neighbors (FNN) R package, within our function Fnn(), which takes as input the “input markers” to be used, along with the concatenated data previously generated, and the desired k. We advise the default selection to the total number of cells in the dataset divided by 100, as has been optimized on existing mass cytometry datasets. The output of this function is a matrix of each cell and the identity of its k-nearest neighbors, in terms of its row number in the dataset used here as input.

library(Sconify)
# Markers from the user-generated excel file
marker.file <- system.file('extdata', 'markers.csv', package = "Sconify")
markers <- ParseMarkers(marker.file)

# How to convert your excel sheet into vector of static and functional markers
markers
## $input
##  [1] "CD3(Cd110)Di"           "CD3(Cd111)Di"          
##  [3] "CD3(Cd112)Di"           "CD235-61-7-15(In113)Di"
##  [5] "CD3(Cd114)Di"           "CD45(In115)Di"         
##  [7] "CD19(Nd142)Di"          "CD22(Nd143)Di"         
##  [9] "IgD(Nd145)Di"           "CD79b(Nd146)Di"        
## [11] "CD20(Sm147)Di"          "CD34(Nd148)Di"         
## [13] "CD179a(Sm149)Di"        "CD72(Eu151)Di"         
## [15] "IgM(Eu153)Di"           "Kappa(Sm154)Di"        
## [17] "CD10(Gd156)Di"          "Lambda(Gd157)Di"       
## [19] "CD24(Dy161)Di"          "TdT(Dy163)Di"          
## [21] "Rag1(Dy164)Di"          "PreBCR(Ho165)Di"       
## [23] "CD43(Er167)Di"          "CD38(Er168)Di"         
## [25] "CD40(Er170)Di"          "CD33(Yb173)Di"         
## [27] "HLA-DR(Yb174)Di"       
## 
## $functional
##  [1] "pCrkL(Lu175)Di"  "pCREB(Yb176)Di"  "pBTK(Yb171)Di"  
##  [4] "pS6(Yb172)Di"    "cPARP(La139)Di"  "pPLCg2(Pr141)Di"
##  [7] "pSrc(Nd144)Di"   "Ki67(Sm152)Di"   "pErk12(Gd155)Di"
## [10] "pSTAT3(Gd158)Di" "pAKT(Tb159)Di"   "pBLNK(Gd160)Di" 
## [13] "pP38(Tm169)Di"   "pSTAT5(Nd150)Di" "pSyk(Dy162)Di"  
## [16] "tIkBa(Er166)Di"
# Get the particular markers to be used as knn and knn statistics input
input.markers <- markers[[1]]
funct.markers <- markers[[2]]

# Selection of the k. See "Finding Ideal K" vignette
k <- 30

# The built-in scone functions
wand.nn <- Fnn(cell.df = wand.combined, input.markers = input.markers, k = k)
# Cell identity is in rows, k-nearest neighbors are columns
# List of 2 includes the cell identity of each nn, 
#   and the euclidean distance between
#   itself and the cell of interest

# Indices
str(wand.nn[[1]])
##  int [1:1000, 1:30] 222 509 790 245 796 502 538 508 50 317 ...
wand.nn[[1]][1:20, 1:10]
##       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
##  [1,]  222  821  910  578  307  250  748  152  624   996
##  [2,]  509  315  630  308  120  940  177   39  564   379
##  [3,]  790  773  365   43  820  450  482  940  177   713
##  [4,]  245  545  605  885  509  843  183  616   76   727
##  [5,]  796  872  209  934  148 1000  815  100  700   719
##  [6,]  502  430  877  905   56  355  721  872   79   148
##  [7,]  538  456  356  674  613  336  749  462  726   874
##  [8,]  508  763  800  882  978  858  731  392  929   698
##  [9,]   50  903  864  804  531   49  778  260  924   460
## [10,]  317  886  376  799  366  251  946  550  165   656
## [11,]  960  152   64  125  447  571  785  222  683   619
## [12,]   80  184  172  223   14  637  385  245  703   280
## [13,]  614   56  562  930  744  872  852  690  780   576
## [14,]   80  711  210  110  855  227  669  600  172   382
## [15,]  987  313  970  984  527  270  463  348  912   732
## [16,]  744  353  805  264  804  765  754  998  529   615
## [17,]  213  528  185  600  512  972  648  349  753    38
## [18,]  843  250  577  990  365  466  398  170  125   564
## [19,]  110  210   80  492   44  166  902  184  711   514
## [20,]  600  687   12   14  175  245  878  855  274   952
# Distance
str(wand.nn[[2]])
##  num [1:1000, 1:30] 3.95 3.64 3.04 3.29 2.53 ...
wand.nn[[2]][1:20, 1:10]
##           [,1]     [,2]     [,3]     [,4]     [,5]     [,6]     [,7]
##  [1,] 3.947773 4.321813 4.367830 4.554976 4.571980 4.623731 4.648086
##  [2,] 3.642712 3.649257 3.652448 3.745536 3.786412 3.790938 3.822202
##  [3,] 3.037948 3.244502 3.302855 3.344558 3.382285 3.417346 3.419764
##  [4,] 3.287269 3.315326 3.494212 3.535462 3.562311 3.626131 3.634984
##  [5,] 2.527691 2.881735 2.927257 2.972622 3.030286 3.075083 3.119821
##  [6,] 3.016322 3.263121 3.309315 3.314453 3.330960 3.373050 3.385717
##  [7,] 5.003977 5.061926 5.185661 5.254434 5.382539 5.397472 5.491799
##  [8,] 3.642857 4.050647 4.404500 5.120571 5.317012 5.425431 5.445113
##  [9,] 3.510749 3.529860 3.540246 3.540643 3.559376 3.631369 3.788734
## [10,] 3.874611 3.895141 3.905281 3.920055 3.969588 3.980752 3.992020
## [11,] 4.250474 4.481757 4.551554 4.552649 4.637174 4.680834 4.697840
## [12,] 2.781037 3.011127 3.072591 3.122978 3.214481 3.295270 3.303830
## [13,] 3.258224 3.489008 3.635788 3.820010 3.826104 3.867156 3.885381
## [14,] 2.564697 2.608074 2.767854 2.806661 2.987004 2.991700 2.993643
## [15,] 4.257666 4.947874 4.997540 5.131117 5.234520 5.237404 5.259828
## [16,] 3.997052 4.060528 4.122820 4.244086 4.262393 4.335013 4.460616
## [17,] 2.803685 3.575070 3.602938 3.749763 3.918905 3.940382 4.090389
## [18,] 2.795223 2.979887 3.090327 3.105851 3.137071 3.262575 3.279787
## [19,] 2.850529 3.164105 3.172309 3.188833 3.221579 3.397758 3.421214
## [20,] 3.160723 3.540613 3.558196 3.593978 3.646674 3.652203 3.698915
##           [,8]     [,9]    [,10]
##  [1,] 4.648924 4.685547 4.694246
##  [2,] 3.824388 3.827633 3.829362
##  [3,] 3.460411 3.573983 3.642213
##  [4,] 3.661115 3.726571 3.813664
##  [5,] 3.163289 3.190914 3.238994
##  [6,] 3.428579 3.599161 3.645284
##  [7,] 5.554961 5.601588 5.630743
##  [8,] 5.646037 5.699146 6.003307
##  [9,] 3.845087 3.911953 3.915101
## [10,] 3.998920 4.013817 4.032743
## [11,] 4.699965 4.860398 4.861193
## [12,] 3.336839 3.372531 3.399645
## [13,] 3.911072 3.952541 3.977788
## [14,] 3.122293 3.143366 3.151570
## [15,] 5.323673 5.352525 5.454072
## [16,] 4.472868 4.532881 4.559057
## [17,] 4.102293 4.107369 4.153447
## [18,] 3.348188 3.365303 3.369229
## [19,] 3.422338 3.443828 3.452237
## [20,] 3.736120 3.761742 3.767822

Finding scone values:

This function iterates through each KNN, and performs a series of calculations. The first is fold change values for each maker per KNN, where the user chooses whether this will be based on medians or means. The second is a statistical test, where the user chooses t test or Mann-Whitney U test. I prefer the latter, because it does not assume any properties of the distributions. Of note, the p values are adjusted for false discovery rate, and therefore are called q values in the output of this function. The user also inputs a threshold parameter (default 0.05), where the fold change values will only be shown if the corresponding statistical test returns a q value below said threshold. Finally, the “multiple.donor.compare” option, if set to TRUE will perform a t test based on the mean per-marker values of each donor. This is to allow the user to make comparisons across replicates or multiple donors if that is relevant to the user’s biological questions. This function returns a matrix of cells by computed values (change and statistical test results, labeled either marker.change or marker.qvalue). This matrix is intermediate, as it gets concatenated with the original input matrix in the post-processing step (see the relevant vignette). We show the code and the output below. See the post-processing vignette, where we show how this gets combined with the input data, and additional analysis is performed.

wand.scone <- SconeValues(nn.matrix = wand.nn, 
                      cell.data = wand.combined, 
                      scone.markers = funct.markers, 
                      unstim = "basal")

wand.scone
## # A tibble: 1,000 x 34
##    `pCrkL(Lu175)Di… `pCREB(Yb176)Di… `pBTK(Yb171)Di.… `pS6(Yb172)Di.I…
##               <dbl>            <dbl>            <dbl>            <dbl>
##  1            0.641            0.977            0.899            1    
##  2            0.733            0.993            0.766            0.916
##  3            0.929            0.975            1                0.596
##  4            0.790            0.977            1                1    
##  5            1                1                0.966            0.996
##  6            0.903            1                0.907            0.950
##  7            0.942            1                0.766            1    
##  8            0.822            0.977            0.980            1    
##  9            0.771            0.953            0.519            0.916
## 10            0.984            0.977            0.908            1    
## # … with 990 more rows, and 30 more variables:
## #   `cPARP(La139)Di.IL7.qvalue` <dbl>, `pPLCg2(Pr141)Di.IL7.qvalue` <dbl>,
## #   `pSrc(Nd144)Di.IL7.qvalue` <dbl>, `Ki67(Sm152)Di.IL7.qvalue` <dbl>,
## #   `pErk12(Gd155)Di.IL7.qvalue` <dbl>,
## #   `pSTAT3(Gd158)Di.IL7.qvalue` <dbl>, `pAKT(Tb159)Di.IL7.qvalue` <dbl>,
## #   `pBLNK(Gd160)Di.IL7.qvalue` <dbl>, `pP38(Tm169)Di.IL7.qvalue` <dbl>,
## #   `pSTAT5(Nd150)Di.IL7.qvalue` <dbl>, `pSyk(Dy162)Di.IL7.qvalue` <dbl>,
## #   `tIkBa(Er166)Di.IL7.qvalue` <dbl>, `pCrkL(Lu175)Di.IL7.change` <dbl>,
## #   `pCREB(Yb176)Di.IL7.change` <dbl>, `pBTK(Yb171)Di.IL7.change` <dbl>,
## #   `pS6(Yb172)Di.IL7.change` <dbl>, `cPARP(La139)Di.IL7.change` <dbl>,
## #   `pPLCg2(Pr141)Di.IL7.change` <dbl>, `pSrc(Nd144)Di.IL7.change` <dbl>,
## #   `Ki67(Sm152)Di.IL7.change` <dbl>, `pErk12(Gd155)Di.IL7.change` <dbl>,
## #   `pSTAT3(Gd158)Di.IL7.change` <dbl>, `pAKT(Tb159)Di.IL7.change` <dbl>,
## #   `pBLNK(Gd160)Di.IL7.change` <dbl>, `pP38(Tm169)Di.IL7.change` <dbl>,
## #   `pSTAT5(Nd150)Di.IL7.change` <dbl>, `pSyk(Dy162)Di.IL7.change` <dbl>,
## #   `tIkBa(Er166)Di.IL7.change` <dbl>, IL7.fraction.cond.2 <dbl>,
## #   density <dbl>

For programmers: performing additional per-KNN statistics

If one wants to export KNN data to perform other statistics not available in this package, then I provide a function that produces a list of each cell identity in the original input data matrix, and a matrix of all cells x features of its KNN.

I also provide a function to find the KNN density estimation independently of the rest of the “scone.values” analysis, to save time if density is all the user wants. With this density estimation, one can perform interesting analysis, ranging from understanding phenotypic density changes along a developmental progression (see post-processing vignette for an example), to trying out density-based binning methods (eg. X-shift). Of note, this density is specifically one divided by the aveage distance to k-nearest neighbors. This specific measure is related to the Shannon Entropy estimate of that point on the manifold (https://hal.archives-ouvertes.fr/hal-01068081/document).

I use this metric to avoid the unusual properties of the volume of a sphere as it increases in dimensions (https://en.wikipedia.org/wiki/Volume_of_an_n-ball). This being said, one can modify this vector to be such a density estimation (example http://www.cs.haifa.ac.il/~rita/ml_course/lectures_old/KNN.pdf), by treating the distance to knn as the radius of a n-dimensional sphere and incoroprating said volume accordingly.

An individual with basic programming skills can iterate through these elements to perform the statistics of one’s choosing. Examples would include per-KNN regression and classification, or feature imputation. The additional functionality is shown below, with the example knn.list in the package being the first ten instances:

# Constructs KNN list, computes KNN density estimation
wand.knn.list <- MakeKnnList(cell.data = wand.combined, nn.matrix = wand.nn)
wand.knn.list[[8]]
## # A tibble: 30 x 51
##    `CD3(Cd110)Di` `CD3(Cd111)Di` `CD3(Cd112)Di` `CD235-61-7-15(…
##             <dbl>          <dbl>          <dbl>            <dbl>
##  1        -0.313         -0.0154         0.0303            0.120
##  2        -0.697         -0.789         -0.706            -1.01 
##  3         0.272         -0.133          0.572             0.471
##  4        -0.0385        -0.224         -0.194             0.227
##  5        -0.190         -0.0925        -0.479             0.764
##  6        -0.650         -0.0338        -0.779            -1.05 
##  7         0.291         -0.161         -0.104            -1.50 
##  8        -0.113         -0.0204        -0.118            -0.894
##  9        -0.0733        -0.0195        -0.207            -0.462
## 10         0.360         -0.113          0.894            -0.315
## # … with 20 more rows, and 47 more variables: `CD3(Cd114)Di` <dbl>,
## #   `CD45(In115)Di` <dbl>, `CD19(Nd142)Di` <dbl>, `CD22(Nd143)Di` <dbl>,
## #   `IgD(Nd145)Di` <dbl>, `CD79b(Nd146)Di` <dbl>, `CD20(Sm147)Di` <dbl>,
## #   `CD34(Nd148)Di` <dbl>, `CD179a(Sm149)Di` <dbl>, `CD72(Eu151)Di` <dbl>,
## #   `IgM(Eu153)Di` <dbl>, `Kappa(Sm154)Di` <dbl>, `CD10(Gd156)Di` <dbl>,
## #   `Lambda(Gd157)Di` <dbl>, `CD24(Dy161)Di` <dbl>, `TdT(Dy163)Di` <dbl>,
## #   `Rag1(Dy164)Di` <dbl>, `PreBCR(Ho165)Di` <dbl>, `CD43(Er167)Di` <dbl>,
## #   `CD38(Er168)Di` <dbl>, `CD40(Er170)Di` <dbl>, `CD33(Yb173)Di` <dbl>,
## #   `HLA-DR(Yb174)Di` <dbl>, Time <dbl>, Cell_length <dbl>,
## #   `cPARP(La139)Di` <dbl>, `pPLCg2(Pr141)Di` <dbl>,
## #   `pSrc(Nd144)Di` <dbl>, `pSTAT5(Nd150)Di` <dbl>, `Ki67(Sm152)Di` <dbl>,
## #   `pErk12(Gd155)Di` <dbl>, `pSTAT3(Gd158)Di` <dbl>,
## #   `pAKT(Tb159)Di` <dbl>, `pBLNK(Gd160)Di` <dbl>, `pSyk(Dy162)Di` <dbl>,
## #   `tIkBa(Er166)Di` <dbl>, `pP38(Tm169)Di` <dbl>, `pBTK(Yb171)Di` <dbl>,
## #   `pS6(Yb172)Di` <dbl>, `pCrkL(Lu175)Di` <dbl>, `pCREB(Yb176)Di` <dbl>,
## #   `DNA1(Ir191)Di` <dbl>, `DNA2(Ir193)Di` <dbl>,
## #   `Viability1(Pt195)Di` <dbl>, `Viability2(Pt196)Di` <dbl>,
## #   wanderlust <dbl>, condition <chr>
# Finds the KNN density estimation for each cell, ordered by column, in the 
# original data matrix
wand.knn.density <- GetKnnDe(nn.matrix = wand.nn)
str(wand.knn.density)
##  num [1:1000] 0.209 0.254 0.264 0.257 0.301 ...