fmcsR 1.24.0
Note: the most recent version of this tutorial can be found here and a short overview slide show here.
Maximum common substructure (MCS) algorithms rank among the most
sensitive and accurate methods for measuring structural similarities
among small molecules. This utility is critical for many research areas
in drug discovery and chemical genomics. The MCS problem is a
graph-based similarity concept that is defined as the largest
substructure (sub-graph) shared among two compounds (Wang et al. 2013; Cao, Jiang, and Girke 2008).
It fundamentally differs from the
structural descriptor-based strategies like fingerprints or structural
keys. Another strength of the MCS approach is the identification of the
actual MCS that can be mapped back to the source compounds in order to
pinpoint the common and unique features in their structures. This output
is often more intuitive to interpret and chemically more meaningful than
the purely numeric information returned by descriptor-based approaches.
Because the MCS problem is NP-complete, an efficient algorithm is
essential to minimize the compute time of its extremely complex search
process. The fmcsR
package implements an efficient backtracking algorithm that
introduces a new flexible MCS (FMCS) matching strategy to identify MCSs
among compounds containing atom and/or bond mismatches. In contrast to
this, other MCS algorithms find only exact MCSs that are perfectly
contained in two molecules. The details about the FMCS algorithm are
described in the Supplementary Materials Section of the associated
publication (Wang et al. 2013). The package provides several utilities to
use the FMCS algorithm for pairwise compound comparisons, structure
similarity searching and clustering. To maximize performance, the time
consuming computational steps of fmcsR
are implemented in C++. Integration
with the ChemmineR
package provides visualization functionalities of MCSs and
consistent structure and substructure data handling routines (Cao et al. 2008; Backman, Cao, and Girke 2011).
The following gives an overview of the most important functionalities provided by
fmcsR
.
The R software for running fmcsR
and ChemmineR
can be downloaded from CRAN
(http://cran.at.r-project.org/). The fmcsR
package can be installed from an
open R session using the BiocManager::install()
command.
if (!requireNamespace("BiocManager", quietly=TRUE))
install.packages("BiocManager")
BiocManager::install("fmcsR")
To demo the main functionality of the fmcsR
package, one can load its sample
data stored as SDFset
object. The generic plot
function can be used to visualize the
corresponding structures.
library(fmcsR)
data(fmcstest)
plot(fmcstest[1:3], print=FALSE)
The fmcs
function computes the MCS/FMCS shared among two compounds, which can
be highlighted in their structure with the plotMCS
function.
test <- fmcs(fmcstest[1], fmcstest[2], au=2, bu=1)
plotMCS(test,regenCoords=TRUE)
library("fmcsR") # Loads the package
library(help="fmcsR") # Lists functions/classes provided by fmcsR
library(help="ChemmineR") # Lists functions/classes from ChemmineR
vignette("fmcsR") # Opens this PDF manual
vignette("ChemmineR") # Opens ChemmineR PDF manual
The help documents for the different functions and container classes can be accessed with the standard R help syntax.
?fmcs
?"MCS-class"
?"SDFset-class"
The following loads the sample data set provided by the fmcsR
package. It
contains the SD file (SDF) of 3 molecules stored in an SDFset
object.
data(fmcstest)
sdfset <- fmcstest
sdfset
## An instance of "SDFset" with 3 molecules
Custom compound data sets can be imported and exported with the read.SDFset
and write.SDF
functions, respectively. The following demonstrates this by
exporting the sdfset
object to a file named sdfset.sdf
. The latter is then reimported
into R with the read.SDFset
function.
write.SDF(sdfset, file="sdfset.sdf")
mysdf <- read.SDFset(file="sdfset.sdf")
The fmcs
function accepts as input two molecules provided as SDF
or SDFset
objects. Its
output is an S4 object of class MCS
. The default printing behavior
summarizes the MCS result by providing the number of MCSs it found, the
total number of atoms in the query compound a, the total number of
atoms in the target compound b, the number of atoms in their MCS c
and the corresponding Tanimoto Coefficient. The latter is a widely
used similarity measure that is defined here as c/(a+b−c). In
addition, the Overlap Coefficient is provided, which is defined as
c/min(a,b). This coefficient is often useful for detecting
similarities among compounds with large size differences.
mcsa <- fmcs(sdfset[[1]], sdfset[[2]])
mcsa
## An instance of "MCS"
## Number of MCSs: 7
## CMP1: 14 atoms
## CMP2: 33 atoms
## MCS: 8 atoms
## Tanimoto Coefficient: 0.20513
## Overlap Coefficient: 0.57143
mcsb <- fmcs(sdfset[[1]], sdfset[[3]])
mcsb
## An instance of "MCS"
## Number of MCSs: 1
## CMP1: 14 atoms
## CMP2: 25 atoms
## MCS: 14 atoms
## Tanimoto Coefficient: 0.56
## Overlap Coefficient: 1
If fmcs
is run with fast=TRUE
then it returns the numeric summary information in a
named vector
.
fmcs(sdfset[1], sdfset[2], fast=TRUE)
## Query_Size Target_Size MCS_Size Tanimoto_Coefficient
## 14.0000000 33.0000000 8.0000000 0.2051282
## Overlap_Coefficient
## 0.5714286
The MCS
class contains three components named stats
, mcs1
and mcs2
. The stats
slot stores the
numeric summary information, while the structural MCS information for
the query and target structures is stored in the mcs1
and mcs2
slots,
respectively. The latter two slots each contain a list
with two
subcomponents: the original query/target structures as SDFset
objects as well
as one or more numeric index vector(s) specifying the MCS information in
form of the row positions in the atom block of the corresponding SDFset
. A
call to fmcs
will often return several index vectors. In those cases the
algorithm has identified alternative MCSs of equal size.
slotNames(mcsa)
## [1] "stats" "mcs1" "mcs2"
Accessor methods are provided to return the different data components of
the MCS
class.
stats(mcsa) # or mcsa[["stats"]]
## Query_Size Target_Size MCS_Size Tanimoto_Coefficient
## 14.0000000 33.0000000 8.0000000 0.2051282
## Overlap_Coefficient
## 0.5714286
mcsa1 <- mcs1(mcsa) # or mcsa[["mcs1"]]
mcsa2 <- mcs2(mcsa) # or mcsa[["mcs2"]]
mcsa1[1] # returns SDFset component
## $query
## An instance of "SDFset" with 1 molecules
mcsa1[[2]][1:2] # return first two index vectors
## $CMP1_fmcs_1
## [1] 3 8 7 4 9 5 11 1
##
## $CMP1_fmcs_2
## [1] 3 8 7 4 9 5 1 13
The mcs2sdfset
function can be used to return the substructures stored in an
MCS
instance as SDFset
object. If type='new'
new atom numbers will be assigned to the
subsetted SDF, while type='old'
will maintain the atom numbers from its source. For
details consult the help documents ?mcs2sdfset
and ?atomsubset
.
mcstosdfset <- mcs2sdfset(mcsa, type="new")
plot(mcstosdfset[[1]], print=FALSE)
To construct an MCS
object manually, one can provide the required data
components in a list
.
mylist <- list(stats=stats(mcsa), mcs1=mcs1(mcsa), mcs2=mcs2(mcsa))
as(mylist, "MCS")
## An instance of "MCS"
## Number of MCSs: 7
## CMP1: 14 atoms
## CMP2: 33 atoms
## MCS: 8 atoms
## Tanimoto Coefficient: 0.20513
## Overlap Coefficient: 0.57143
If fmcs
is run with its default paramenters then it returns the MCS of two
compounds, because the mismatch parameters are all set to zero. To
identify FMCSs, one has to increase the number of upper bound atom mismatches au
and/or bond mismatches bu
to interger values above zero.
plotMCS(fmcs(sdfset[1], sdfset[2], au=0, bu=0))
plotMCS(fmcs(sdfset[1], sdfset[2], au=1, bu=1))
plotMCS(fmcs(sdfset[1], sdfset[2], au=2, bu=2))
plotMCS(fmcs(sdfset[1], sdfset[3], au=0, bu=0))
The fmcsBatch
function provides FMCS search functionality for compound collections
stored in SDFset
objects.
data(sdfsample) # Loads larger sample data set
sdf <- sdfsample
fmcsBatch(sdf[1], sdf[1:30], au=0, bu=0)
## Query_Size Target_Size MCS_Size Tanimoto_Coefficient Overlap_Coefficient
## CMP1 33 33 33 1.0000000 1.0000000
## CMP2 33 26 11 0.2291667 0.4230769
## CMP3 33 26 10 0.2040816 0.3846154
## CMP4 33 32 9 0.1607143 0.2812500
## CMP5 33 23 14 0.3333333 0.6086957
## CMP6 33 19 13 0.3333333 0.6842105
## CMP7 33 21 9 0.2000000 0.4285714
## CMP8 33 31 8 0.1428571 0.2580645
## CMP9 33 21 9 0.2000000 0.4285714
## CMP10 33 21 8 0.1739130 0.3809524
## CMP11 33 36 15 0.2777778 0.4545455
## CMP12 33 26 12 0.2553191 0.4615385
## CMP13 33 26 11 0.2291667 0.4230769
## CMP14 33 16 12 0.3243243 0.7500000
## CMP15 33 34 15 0.2884615 0.4545455
## CMP16 33 25 8 0.1600000 0.3200000
## CMP17 33 19 8 0.1818182 0.4210526
## CMP18 33 24 10 0.2127660 0.4166667
## CMP19 33 25 14 0.3181818 0.5600000
## CMP20 33 26 10 0.2040816 0.3846154
## CMP21 33 25 15 0.3488372 0.6000000
## CMP22 33 21 11 0.2558140 0.5238095
## CMP23 33 26 11 0.2291667 0.4230769
## CMP24 33 17 6 0.1363636 0.3529412
## CMP25 33 27 9 0.1764706 0.3333333
## CMP26 33 24 13 0.2954545 0.5416667
## CMP27 33 26 11 0.2291667 0.4230769
## CMP28 33 20 10 0.2325581 0.5000000
## CMP29 33 20 8 0.1777778 0.4000000
## CMP30 33 18 7 0.1590909 0.3888889
The fmcsBatch
function can be used to compute a similarity matrix for clustering
with various algorithms available in R. The following example uses the
FMCS algorithm to compute a similarity matrix that is used for
hierarchical clustering with the hclust
function and the result is plotted in
form of a dendrogram.
sdf <- sdf[1:7]
d <- sapply(cid(sdf), function(x) fmcsBatch(sdf[x], sdf, au=0, bu=0, matching.mode="aromatic")[,"Overlap_Coefficient"])
d
## CMP1 CMP2 CMP3 CMP4 CMP5 CMP6 CMP7
## CMP1 1.0000000 0.2307692 0.2307692 0.2812500 0.5217391 0.6842105 0.2857143
## CMP2 0.2307692 1.0000000 0.4230769 0.5384615 0.2173913 0.4736842 0.2857143
## CMP3 0.2307692 0.4230769 1.0000000 0.3076923 0.2173913 0.4736842 0.9047619
## CMP4 0.2812500 0.5384615 0.3076923 1.0000000 0.3043478 0.5263158 0.2857143
## CMP5 0.5217391 0.2173913 0.2173913 0.3043478 1.0000000 0.5789474 0.2380952
## CMP6 0.6842105 0.4736842 0.4736842 0.5263158 0.5789474 1.0000000 0.3157895
## CMP7 0.2857143 0.2857143 0.9047619 0.2857143 0.2380952 0.3157895 1.0000000
hc <- hclust(as.dist(1-d), method="complete")
plot(as.dendrogram(hc), edgePar=list(col=4, lwd=2), horiz=TRUE)
The FMCS shared among compound pairs of interest can be visualized
with plotMCS
, here for the two most similar compounds from the previous tree:
plotMCS(fmcs(sdf[3], sdf[7], au=0, bu=0, matching.mode="aromatic"))
sessionInfo()
## R version 3.5.1 Patched (2018-07-12 r74967)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 16.04.5 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.8-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.8-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8
## [4] LC_COLLATE=C LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C
## [10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] fmcsR_1.24.0 ChemmineOB_1.20.0 ChemmineR_3.34.0 BiocStyle_2.10.0
##
## loaded via a namespace (and not attached):
## [1] Rcpp_0.12.19 bindr_0.1.1 compiler_3.5.1 pillar_1.3.0 BiocManager_1.30.3
## [6] plyr_1.8.4 zlibbioc_1.28.0 base64enc_0.1-3 bitops_1.0-6 tools_3.5.1
## [11] digest_0.6.18 evaluate_0.12 tibble_1.4.2 gtable_0.2.0 png_0.1-7
## [16] pkgconfig_2.0.2 rlang_0.3.0.1 DBI_1.0.0 parallel_3.5.1 yaml_2.2.0
## [21] xfun_0.4 bindrcpp_0.2.2 gridExtra_2.3 stringr_1.3.1 dplyr_0.7.7
## [26] knitr_1.20 htmlwidgets_1.3 DT_0.4 tidyselect_0.2.5 rprojroot_1.3-2
## [31] grid_3.5.1 glue_1.3.0 R6_2.3.0 rmarkdown_1.10 bookdown_0.7
## [36] purrr_0.2.5 ggplot2_3.1.0 magrittr_1.5 codetools_0.2-15 backports_1.1.2
## [41] scales_1.0.0 htmltools_0.3.6 assertthat_0.2.0 colorspace_1.3-2 rsvg_1.3
## [46] stringi_1.2.4 RCurl_1.95-4.11 lazyeval_0.2.1 munsell_0.5.0 crayon_1.3.4
## [51] rjson_0.2.20
Backman, T W, Y Cao, and T Girke. 2011. “ChemMine tools: an online service for analyzing and clustering small molecules.” Nucleic Acids Res 39 (Web Server issue):486–91. https://doi.org/10.1093/nar/gkr320.
Cao, Y, A Charisi, L C Cheng, T Jiang, and T Girke. 2008. “ChemmineR: a compound mining framework for R.” Bioinformatics 24 (15):1733–4. https://doi.org/10.1093/bioinformatics/btn307.
Cao, Y, T Jiang, and T Girke. 2008. “A maximum common substructure-based algorithm for searching and predicting drug-like compounds.” Bioinformatics 24 (13):366–74. https://doi.org/10.1093/bioinformatics/btn186.
Wang, Y, T W Backman, K Horan, and T Girke. 2013. “fmcsR: Mismatch Tolerant Maximum Common Substructure Searching in R.” Bioinformatics, August. https://doi.org/10.1093/bioinformatics/btt475.