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1 Overview

In this document, we show how to conduct a differential expression (DE) analysis that
controls for “unwanted variation”, e.g., batch, library preparation, and other nuisance
effects, using the between-sample normalization methods proposed in [1]. We call this
approach RUVSeq for remove unwanted variation from RNA-Seq data.

Briefly, RUVSeq works as follows. For n samples and J genes, consider the following
generalized linear model (GLM), where the RNA-Seq read counts are regressed on both
the known covariates of interest and unknown factors of unwanted variation,

logE[Y |W,X,O] =Wα+Xβ +O. 1
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Here, Y is the n × J matrix of observed gene-level read counts, W is an n × k matrix
corresponding to the factors of “unwanted variation” and α its associated k × J matrix
of nuisance parameters, X is an n × p matrix corresponding to the p covariates of
interest/factors of “wanted variation” (e.g., treatment effect) and β its associated p × J
matrix of parameters of interest, and O is an n×J matrix of offsets that can either be set
to zero or estimated with some other normalization procedure (such as upper-quartile
normalization).

The matrix X is a random variable, assumed to be known a priori. For instance, in the
usual two-class comparison setting (e.g., treated vs. control samples), X is an n × 2
design matrix with a column of ones corresponding to an intercept and a column of
indicator variables for the class of each sample (e.g., 0 for control and 1 for treated)
[2]. The matrix W is an unobserved random variable and α, β, and k are unknown
parameters.

The simultaneous estimation of W , α, β, and k is infeasible. For a given k, we consider
instead the following three approaches to estimate the factors of unwanted variation W :

• RUVg uses negative control genes, assumed to have constant expression across
samples;

• RUVs uses centered (technical) replicate/negative control samples for which the
covariates of interest are constant;

• RUVr uses residuals, e.g., from a first-pass GLM regression of the counts on the
covariates of interest.

The resulting estimate ofW can then be plugged into Equation 1 , for the full set of genes
and samples, and α and β estimated by GLM regression. Normalized read counts can
be obtained as residuals from ordinary least squares (OLS) regression of log Y − O on
the estimated W .

Note that although here we illustrate the RUV approach using the GLM implementation
of edgeR and DESeq2, all three RUV versions can be readily adapted to work with any
DE method formulated within a GLM framework.

See [1] for full details and algorithms for each of the three RUV procedures.

2 A typical differential expression analysis workflow

In this section, we consider the RUVg function to estimate the factors of unwanted vari-
ation using control genes. See Sections 3 and 4, respectively, for examples using the
RUVs and RUVr approaches.

We consider the zebrafish dataset of [3], available through the Bioconductor package
zebrafishRNASeq. The data correspond to RNA libraries for three pairs of gallein-
treated and control embryonic zebrafish cell pools. For each of the 6 samples, we have
RNA-Seq read counts for 32,469 Ensembl genes and 92 ERCC spike-in sequences. See
[1] and the zebrafishRNASeq package vignette for details.

library(RUVSeq)
library(zebrafishRNASeq)
data(zfGenes)
head(zfGenes)
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## Ctl1 Ctl3 Ctl5 Trt9 Trt11 Trt13
## ENSDARG00000000001 304 129 339 102 16 617
## ENSDARG00000000002 605 637 406 82 230 1245
## ENSDARG00000000018 391 235 217 554 451 565
## ENSDARG00000000019 2979 4729 7002 7309 9395 3349
## ENSDARG00000000068 89 356 41 149 45 44
## ENSDARG00000000069 312 184 844 269 513 243

tail(zfGenes)

## Ctl1 Ctl3 Ctl5 Trt9 Trt11 Trt13
## ERCC-00163 204 59 183 152 104 59
## ERCC-00164 6 1 74 11 206 21
## ERCC-00165 140 119 93 331 52 38
## ERCC-00168 0 0 0 0 2 0
## ERCC-00170 216 145 111 456 196 552
## ERCC-00171 12869 6682 7675 47488 24322 26112

2.1 Filtering and exploratory data analysis

We filter out non-expressed genes, by requiring more than 5 reads in at least two sam-
ples for each gene.

filter <- apply(zfGenes, 1, function(x) length(x[x>5])>=2)
filtered <- zfGenes[filter,]
genes <- rownames(filtered)[grep("^ENS", rownames(filtered))]
spikes <- rownames(filtered)[grep("^ERCC", rownames(filtered))]

After the filtering, we are left with 20806 genes and 59 spike-ins.

We store the data in an object of S4 class SeqExpressionSet from the EDASeq pack-
age. This allows us to make full use of the plotting and normalization functionality of
EDASeq. Note, however, that all the methods in RUVSeq are implemented for both
SeqExpressionSet and matrix objects. See the help pages for details.

x <- as.factor(rep(c("Ctl", "Trt"), each=3))
set <- newSeqExpressionSet(as.matrix(filtered),

phenoData = data.frame(x, row.names=colnames(filtered)))
set

## SeqExpressionSet (storageMode: lockedEnvironment)
## assayData: 20865 features, 6 samples
## element names: counts, normalizedCounts, offset
## protocolData: none
## phenoData
## sampleNames: Ctl1 Ctl3 ... Trt13 (6 total)
## varLabels: x
## varMetadata: labelDescription
## featureData: none
## experimentData: use 'experimentData(object)'
## Annotation:

3

http://bioconductor.org/packages/RUVSeq
http://bioconductor.org/packages/EDASeq
http://bioconductor.org/packages/EDASeq
http://bioconductor.org/packages/RUVSeq


RUVSeq: Remove Unwanted Variation from RNA-Seq Data

The boxplots of relative log expression (RLE = log-ratio of read count to median read
count across sample) and plots of principal components (PC) in Figure 1 reveal a clear
need for betwen-sample normalization.

library(RColorBrewer)
colors <- brewer.pal(3, "Set2")
plotRLE(set, outline=FALSE, ylim=c(-4, 4), col=colors[x])
plotPCA(set, col=colors[x], cex=1.2)
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Figure 1: No normalization

We can use the betweenLaneNormalization function of EDASeq to normalize the
data using upper-quartile (UQ) normalization [4].

set <- betweenLaneNormalization(set, which="upper")
plotRLE(set, outline=FALSE, ylim=c(-4, 4), col=colors[x])
plotPCA(set, col=colors[x], cex=1.2)
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Figure 2: Upper-quartile normalization

After upper-quartile normalization, treated sample Trt11 still shows extra variability when
compared to the rest of the samples (Figure 2a). This is reflected by the first principal
component (Figure 2b), that is driven by the difference between Trt11 and the other
samples.

2.2 RUVg: Estimating the factors of unwanted variation using
control genes

To estimate the factors of unwanted variation, we need a set of negative control genes,
i.e., genes that can be assumed not to be influenced by the covariates of interest (in the
case of the zebrafish dataset, the Gallein treatment). In many cases, such a set can
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be identified, e.g., housekeeping genes or spike-in controls. If a good set of negative
controls is not readily available, one can define a set of “in-silico empirical” controls as
in Section 2.4.

Here, we use the ERCC spike-ins as controls and we consider k = 1 factors of unwanted
variation. See [1] and [5] for a discussion on the choice of k.

set1 <- RUVg(set, spikes, k=1)
pData(set1)

## x W_1
## Ctl1 Ctl -0.04539413
## Ctl3 Ctl 0.50347642
## Ctl5 Ctl 0.40575319
## Trt9 Trt -0.30773479
## Trt11 Trt -0.68455406
## Trt13 Trt 0.12845337

plotRLE(set1, outline=FALSE, ylim=c(-4, 4), col=colors[x])
plotPCA(set1, col=colors[x], cex=1.2)
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Figure 3: RUVg normalization based on spike-in controls

The RUVg function returns two pieces of information: the estimated factors of unwanted
variation (added as columns to the phenoData slot of set) and the normalized counts
obtained by regressing the original counts on the unwanted factors. The normalized
values are stored in the normalizedCounts slot of set and can be accessed with the
normCounts method. These counts should be used only for exploration. It is important
that subsequent DE analysis be done on the original counts (accessible through the
counts method), as removing the unwanted factors from the counts can also remove
part of a factor of interest [6].

Note that one can relax the negative control gene assumption by requiring instead the
identification of a set of positive or negative controls, with a priori known expression
fold-changes between samples, i.e., known β. One can then use the centered counts
for these genes (log Y −Xβ) for normalization purposes.

2.3 Differential expression analysis

Now, we are ready to look for differentially expressed genes, using the negative binomial
GLM approach implemented in edgeR (see the edgeR package vignette for details).
This is done by considering a design matrix that includes both the covariates of interest
(here, the treatment status) and the factors of unwanted variation.
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design <- model.matrix(~x + W_1, data=pData(set1))
y <- DGEList(counts=counts(set1), group=x)
y <- calcNormFactors(y, method="upperquartile")
y <- estimateGLMCommonDisp(y, design)
y <- estimateGLMTagwiseDisp(y, design)

fit <- glmFit(y, design)
lrt <- glmLRT(fit, coef=2)

topTags(lrt)

2.4 Empirical control genes

If no genes are known a priori not to be influenced by the covariates of interest, one can
obtain a set of “in-silico empirical” negative controls, e.g., least significantly DE genes
based on a first-pass DE analysis performed prior to RUVg normalization.

design <- model.matrix(~x, data=pData(set))
y <- DGEList(counts=counts(set), group=x)
y <- calcNormFactors(y, method="upperquartile")
y <- estimateGLMCommonDisp(y, design)
y <- estimateGLMTagwiseDisp(y, design)

fit <- glmFit(y, design)
lrt <- glmLRT(fit, coef=2)

top <- topTags(lrt, n=nrow(set))$table
empirical <- rownames(set)[which(!(rownames(set) %in% rownames(top)[1:5000]))]

Here, we consider all but the top 5,000 genes as ranked by edgeR p-values.

set2 <- RUVg(set, empirical, k=1)
pData(set2)

## x W_1
## Ctl1 Ctl -0.10879677
## Ctl3 Ctl 0.23066424
## Ctl5 Ctl 0.19926266
## Trt9 Trt 0.07672121
## Trt11 Trt -0.83540924
## Trt13 Trt 0.43755790

plotRLE(set2, outline=FALSE, ylim=c(-4, 4), col=colors[x])
plotPCA(set2, col=colors[x], cex=1.2)
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Figure 4: RUVg normalization based on empirical controls

2.5 Differential expression analysis with DESeq2

In alternative to edgeR, one can perform differential expression analysis with DESeq2.
The approach is very similar, namely, we will use the same design matrix specified in
Section 2.3, but we need to specify it within the DESeqDataSet object.

library(DESeq2)
dds <- DESeqDataSetFromMatrix(countData = counts(set1),

colData = pData(set1),
design = ~ W_1 + x)

dds <- DESeq(dds)
res <- results(dds)
res

Note that this will perform by default a Wald test of significance of the last variable in the
design formula, in this case x. If one wants to perform a likelihood ratio test, she needs
to specify a reduced model that includes W (see the DESeq2 vignette for more details
on the test statistics).

dds <- DESeq(dds, test="LRT", reduced=as.formula("~ W_1"))
res <- results(dds)
res

3 RUVs: Estimating the factors of unwanted variation
using replicate samples

As an alternative approach, one can use the RUVs method to estimate the factors of
unwanted variation using replicate/negative control samples for which the covariates of
interest are constant.

First, we need to construct a matrix specifying the replicates. In the case of the zebrafish
dataset, we can consider the three treated and the three control samples as replicate
groups. The function makeGroups can be used.

differences <- makeGroups(x)
differences
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## [,1] [,2] [,3]
## [1,] 1 2 3
## [2,] 4 5 6

Although in principle one still needs control genes for the estimation of the factors of
unwanted variation, we found that RUVs is robust to that choice and that using all the
genes works well in practice [1].

set3 <- RUVs(set, genes, k=1, differences)
pData(set3)

4 RUVr: Estimating the factors of unwanted variation
using residuals

Finally, a third approach is to consider the residuals (e.g., deviance residuals) from
a first-pass GLM regression of the counts on the covariates of interest. This can be
achieved with the RUVr method.

First, we need to compute the residuals from the GLM fit, without RUVg normalization,
but possibly after normalization using a method such as upper-quartile normalization.

design <- model.matrix(~x, data=pData(set))
y <- DGEList(counts=counts(set), group=x)
y <- calcNormFactors(y, method="upperquartile")
y <- estimateGLMCommonDisp(y, design)
y <- estimateGLMTagwiseDisp(y, design)

fit <- glmFit(y, design)
res <- residuals(fit, type="deviance")

Again, we can use all the genes to estimate the factors of unwanted variation.

set4 <- RUVr(set, genes, k=1, res)
pData(set4)

5 Session info

toLatex(sessionInfo())

• R version 3.5.2 (2018-12-20), x86_64-pc-linux-gnu

• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8,
LC_COLLATE=C, LC_MONETARY=en_US.UTF-8,
LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C,
LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8,
LC_IDENTIFICATION=C

• Running under: Ubuntu 16.04.5 LTS

8

http://bioconductor.org/packages/RUVSeq


RUVSeq: Remove Unwanted Variation from RNA-Seq Data

• Matrix products: default

• BLAS: /home/biocbuild/bbs-3.8-bioc/R/lib/libRblas.so

• LAPACK: /home/biocbuild/bbs-3.8-bioc/R/lib/libRlapack.so

• Base packages: base, datasets, grDevices, graphics, methods, parallel, stats,
stats4, utils

• Other packages: Biobase 2.42.0, BiocGenerics 0.28.0, BiocParallel 1.16.5,
Biostrings 2.50.2, DelayedArray 0.8.0, EDASeq 2.16.1, GenomeInfoDb 1.18.1,
GenomicAlignments 1.18.1, GenomicRanges 1.34.0, IRanges 2.16.0,
RColorBrewer 1.1-2, RUVSeq 1.16.1, Rsamtools 1.34.0, S4Vectors 0.20.1,
ShortRead 1.40.0, SummarizedExperiment 1.12.0, XVector 0.22.0,
edgeR 3.24.3, knitr 1.21, limma 3.38.3, matrixStats 0.54.0,
zebrafishRNASeq 1.2.0

• Loaded via a namespace (and not attached): AnnotationDbi 1.44.0,
BiocManager 1.30.4, BiocStyle 2.10.0, DBI 1.0.0, DESeq 1.34.1,
GenomeInfoDbData 1.2.0, GenomicFeatures 1.34.1, MASS 7.3-51.1,
Matrix 1.2-15, R.methodsS3 1.7.1, R.oo 1.22.0, R.utils 2.7.0, R6 2.3.0,
RCurl 1.95-4.11, RSQLite 2.1.1, Rcpp 1.0.0, XML 3.98-1.16, annotate 1.60.0,
aroma.light 3.12.0, assertthat 0.2.0, biomaRt 2.38.0, bit 1.1-14, bit64 0.9-7,
bitops 1.0-6, blob 1.1.1, codetools 0.2-16, compiler 3.5.2, crayon 1.3.4,
digest 0.6.18, evaluate 0.12, genefilter 1.64.0, geneplotter 1.60.0, grid 3.5.2,
highr 0.7, hms 0.4.2, htmltools 0.3.6, httr 1.4.0, hwriter 1.3.2, lattice 0.20-38,
latticeExtra 0.6-28, locfit 1.5-9.1, magrittr 1.5, memoise 1.1.0, pkgconfig 2.0.2,
prettyunits 1.0.2, progress 1.2.0, rlang 0.3.0.1, rmarkdown 1.11,
rtracklayer 1.42.1, splines 3.5.2, stringi 1.2.4, stringr 1.3.1, survival 2.43-3,
tools 3.5.2, xfun 0.4, xtable 1.8-3, yaml 2.2.0, zlibbioc 1.28.0
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