1 Introduction

Illumina Infinium HumanMethylation 450K BeadChip assay has become a standard tool to analyse methylation in human samples. Developed in 2011, it has already been used in projects such as The Cancer Genome Atlas (TCGA). Their 450.000 probes provide a good overall image of the methylation state of the genome, being one of the reasons of its success.

Given its complex design1 More information can be found at this minfi tutorial, many Bioconductor packages have been developed to assess normalization and pre-processing issues (e.g. minfi (Aryee et al. 2014) or lumi (Du, Kibbe, and Lin 2008)). In addition, these packages can detect differentially methylated probes (DMPs) and differentially methylated regions (DMRs). However, the interfaces are not very intuitive and several scripting steps are usually required.

MEAL aims to facilitate the analysis of Illumina Methylation 450K chips. We have included two methods to analyze DMPs (Differentially Methylated Probes), that test differences in means (limma) or differences in variance (DiffVar). We have included three DMRs (Differentially Methylated Regions) detection algorithms (bumphunter, blockFinder and DMRcate) and a new method to test differences in methylation in a target region (RDA). Finally, we have prepared plots for all these analyses as well as a wrapper to run all the analyses in the same dataset.

2 Input data

MEAL is meant to analyze methylation data already preprocessed. All our functions accept a GenomicRatioSet as input, which is a class from minfi package designed to manage preprocessed methylation data. Users willing to preprocess their own data are encouraged to take a look to minfi’s vignette

In this vignette, we will use methylation data from minfiData package.

library(MEAL)
library(MultiDataSet)
library(minfiData)
library(minfi)
library(ggplot2)

data("MsetEx")

MsetEx is a MethylationRatioSet that contains measurements for 485512 CpGs and 6 samples, as well as some phenotypic variables such as age or sex. The first step will be to convert it to a GenomicRatioSet. Then, we will add some extra features annotation. Finally, we will remove probes not measuring methylation, with SNPs or with NAs:

meth <- mapToGenome(ratioConvert(MsetEx))
rowData(meth) <- getAnnotation(meth)[, -c(1:3)]

## Remove probes measuring SNPs
meth <- dropMethylationLoci(meth)

## Remove probes with SNPs
meth <- dropLociWithSnps(meth)

## Remove probes with NAs
meth <- meth[!apply(getBeta(meth), 1, function(x) any(is.na(x))), ]

3 Analyzing Methylation data

3.1 Pipeline

The function runPipeline run all methods included in MEAL to the same dataset. We only need to pass to this function a GenomicRatioSet and the name of our variable of interest. In our case, we will analyze the effect of cancer on methylation:

res <- runPipeline(set = meth, variable_names = "status")

runPipeline includes several parameters to customize the analyses. The most important parameters are covariable_names, betas and sva. covariable_names is used to include covariates in our models. betas allows the user choosing between running the analyis with beta (TRUE) or M-values (FALSE). If sva is TRUE, Surrogate Variable Analysis is run and surrogate variables are included in the models. Finally, some parameters modify the behaviour of the methods included in the wrapper and they will be covered later on. More information about the parameters can be found in the documentation (by typing ?runPipeline).

We will run a new analysis including age as covariate:

resAdj <- runPipeline(set = meth, variable_names = "status", 
                      covariable_names = "age")
resAdj
## Object of class 'ResultSet'
##  . created with: runPipeline 
##  . sva:  no 
##  . #results: 5 ( error: 0 )
##  . featureData: 464876 probes x 35 variables

3.2 Managing the results

runPipeline generates a ResultSet object. ResultSet is a class designed to encapsulate different results from the same dataset. It contains the results of the different methods, the feature data and other data required to get tables or plots. We can examine the analyses included in a ResultSet with the function names:

names(resAdj)
## [1] "DiffMean"    "DiffVar"     "bumphunter"  "blockFinder" "dmrcate"

Both objects contains five analyses. DiffMean is an analysis of difference of means performed with limma while the others are named with the method name (DiffVar, bumphunter, blockFinder and dmrcate).

We can use the function getAssociation to get a data.frame with the results, independent of the original method. This function has two main arguments: object and rid. object is the ResultSet with our data and rid is the name or the index of the analysis we want to extract.

head(getAssociation(resAdj, "DiffMean"))
##                 logFC       CI.L       CI.R   AveExpr         t      P.Value
## cg09383816 -0.5938196 -0.6310585 -0.5565807 0.4885486 -42.94192 7.147556e-07
## cg27651090  0.5433331  0.5073130  0.5793532 0.5411453  40.62051 9.092184e-07
## cg21938148 -0.6659934 -0.7114994 -0.6204875 0.4712352 -39.41178 1.036252e-06
## cg25104555 -0.5254995 -0.5614327 -0.4895664 0.3906114 -39.38227 1.039618e-06
## cg25937714 -0.5906359 -0.6311714 -0.5501004 0.4350042 -39.23815 1.056248e-06
## cg15732851 -0.5760397 -0.6165580 -0.5355214 0.3869865 -38.28468 1.174927e-06
##             adj.P.Val        B         SE
## cg09383816 0.01808345 5.578902 0.03360340
## cg27651090 0.01808345 5.494733 0.01992266
## cg21938148 0.01808345 5.446147 0.03810597
## cg25104555 0.01808345 5.444916 0.02470939
## cg25937714 0.01808345 5.438874 0.01417408
## cg15732851 0.01808345 5.397542 0.02840324
head(getAssociation(resAdj, "DiffVar"))
##                logFC      CI.L      CI.R  AveExpr         t      P.Value
## cg02939019 -2.166225 -2.927983 -1.404467 1.203729 -6.824129 0.0003375482
## cg11847929 -2.327910 -3.149902 -1.505918 1.465679 -6.796091 0.0003457268
## cg22976979 -1.910704 -2.585431 -1.235977 1.173032 -6.795573 0.0003458801
## cg25385529 -2.223012 -3.010252 -1.435771 1.347720 -6.776338 0.0003516238
## cg22676401 -1.914225 -2.596416 -1.232034 1.233126 -6.733607 0.0003647752
## cg27402591  2.710765  1.744380  3.677151 1.706821  6.731349 0.0003654855
##            adj.P.Val         B         SE
## cg02939019 0.1789425 0.2046014 0.16205491
## cg11847929 0.1789425 0.1896636 0.09848762
## cg22976979 0.1789425 0.1893866 0.15402291
## cg25385529 0.1789425 0.1790827 0.11296652
## cg22676401 0.1789425 0.1560305 0.11488471
## cg27402591 0.1789425 0.1548062 0.10400866
head(getAssociation(resAdj, "bumphunter"))
##         chr     start       end      value     area cluster indexStart
## 86177  chr6 133561649 133562776 -0.4137316 15.30807  161402     173009
## 72799 chr10 118030848 118034357 -0.4244696 12.73409   27119     255180
## 85444  chr6  29520698  29521803 -0.3009453 11.73687  155567     151996
## 75309 chr13  78492568  78493590 -0.4345396 11.73257   53247     318486
## 81792 chr20  61050560  61051915 -0.4558366 11.39591  116792     439865
## 80368  chr2  63279693  63285365 -0.3692168 10.33807  102613      54191
##       indexEnd  L clusterL
## 86177   173045 37       41
## 72799   255209 30       30
## 85444   152034 39       40
## 75309   318512 27       49
## 81792   439889 25       26
## 80368    54218 28       41
head(getAssociation(resAdj, "blockFinder"))
##        chr     start       end     value     area cluster indexStart
## 423   chr2 217468708 219051445 0.1725776 28.47531     107      34602
## 2194 chr15  25145254  26095690 0.1317540 21.34416     699     158363
## 1237  chr7  40098119  42760642 0.1744860 21.11281     378      87342
## 119   chr1 152053201 153177304 0.1724642 19.14353      35      13139
## 505   chr3  54169983  56448270 0.1642120 18.06332     125      41752
## 1860 chr11 131278641 132728088 0.1503282 16.83676     588     134392
##      indexEnd   L clusterL
## 423     34801 165      500
## 2194   158548 162      623
## 1237    87490 121     1575
## 119     13278 111     1545
## 505     41884 110     1630
## 1860   134513 112     1659
head(getAssociation(resAdj, "dmrcate"))
##                          coord no.cpgs        minfdr     Stouffer  maxbetafc
## 3470    chr6:33130696-33148812     135  1.093719e-73 1.844138e-46  0.4429870
## 3630  chr6:133561368-133564578      51  0.000000e+00 2.905878e-31 -0.6600767
## 1574   chr16:51183363-51190201      47 2.603037e-189 2.562262e-30 -0.5757717
## 475  chr10:118030292-118034357      31  0.000000e+00 4.965712e-30 -0.6980408
## 3386    chr6:29520527-29521803      40 5.746100e-205 3.535914e-28 -0.5406367
## 1579   chr16:54964677-54973966      42 5.649098e-112 5.549090e-26 -0.6023573
##      meanbetafc
## 3470  0.2055207
## 3630 -0.3596354
## 1574 -0.3019712
## 475  -0.4162689
## 3386 -0.2956325
## 1579 -0.2411854

DiffMean and DiffVar are internally stored as a MArrayLM, the class from limma results. This class allows testing different constrasts or evaluating different variables simultaneously. The function getProbeResults helps the user performing these operations. It also has the arguments object and rid from getAssociation. coef is a numeric with the index of the coefficient from which we want the results. If we did not pass a custom model to runPipeline, the first coefficient (coef = 1) is the intercept and the second coefficient (coef = 2) is the first variable that we included in variable_names. We can evaluate different coefficients simultaneously by passing a vector to coef. contrast is a matrix with the contrasts that we want to evaluate. This option is useful when our variable of interest is a factor with several levels and we want to do all the different comparisons. Finally, the argument fNames is used to select the variables from features annotation that will be added to the tables.

To exemplify the use of this function, we will evaluate our whole adjusted model, including age coefficient. We will also add some annotation of the CpGs:

head(getProbeResults(resAdj, rid = 1, coef = 2:3, 
                     fNames = c("chromosome", "start")))
##            statusnormal           age   AveExpr        F      P.Value
## cg09383816   -0.5938196 -0.0026657333 0.4885486 930.0807 1.937243e-06
## cg27651090    0.5433331 -0.0009235097 0.5411453 826.0491 2.504222e-06
## cg25104555   -0.5254995 -0.0031493548 0.3906114 787.5881 2.776367e-06
## cg21938148   -0.6659934 -0.0028869823 0.4712352 782.9876 2.811782e-06
## cg25937714   -0.5906359  0.0009181122 0.4350042 770.6247 2.910287e-06
## cg15732851   -0.5760397 -0.0050629750 0.3869865 757.4667 3.020764e-06
##             adj.P.Val SE.statusnormal       SE.age chromosome     start
## cg09383816 0.04782436    0.0336034035 0.0016117775       chr8  67344556
## cg27651090 0.04782436    0.0199226569 0.0009555845      chr13 109270071
## cg25104555 0.04782436    0.0381059727 0.0018277420      chr10  16562998
## cg21938148 0.04782436    0.0247093863 0.0011851786      chr13 110958977
## cg25937714 0.04782436    0.0141740814 0.0006798557       chr3  44036492
## cg15732851 0.04782436    0.0284032366 0.0013623530       chr1 203598761

When more than one coefficient is evaluated, a estimate for each coefficient is returned and the t-statistic is substituted by a F-statistic. More information about linear models, including a detailed section of how to create a constrast matrix can be found in limma users’ guide.

Finally, we can obtain the results of CpGs mapped to some genes with the function getGeneVals. This function accepts the same arguments than getProbeResults but includes the arguments gene and genecol to pass the names of the genes to be selected and the column name of feature data containing gene names.

We will retrieve the difference in variance results for all CpGs mapped to ARMS2. We can see in the rowData of meth that gene names are in the column ‘UCSC_RefGene_Name’:

getGeneVals(resAdj, "ARMS2", genecol = "UCSC_RefGene_Name", fNames = c("chromosome", "start"))
##                logFC         CI.L      CI.R   AveExpr        t     P.Value
## cg24296920 0.3258748  0.159072418 0.4926771 0.5876988 5.261053 0.004972695
## cg24884230 0.1925476  0.066951396 0.3181439 0.6064401 4.128436 0.012262156
## cg00676728 0.1106853  0.012546532 0.2088240 0.8206485 3.037200 0.034639784
## cg03623097 0.1255012 -0.008866243 0.2598686 0.5342317 2.515231 0.060880693
## cg18222240 0.1874701 -0.015810610 0.3907509 0.5432686 2.483476 0.063093712
## cg13265583 0.1911058 -0.059969571 0.4421812 0.6897652 2.049717 0.104248164
##             adj.P.Val         B         SE chromosome     start
## cg24296920 0.06757389 -1.904354 0.03225175      chr10 124214120
## cg24884230 0.10906357 -2.942678 0.06287739      chr10 124216658
## cg00676728 0.19474309 -4.128563 0.06953081      chr10 124213760
## cg03623097 0.26596849 -4.759333 0.01297918      chr10 124213466
## cg18222240 0.27137500 -4.798762 0.01276563      chr10 124213527
## cg13265583 0.35287264 -5.344456 0.04044509      chr10 124214151
##            UCSC_RefGene_Name
## cg24296920             ARMS2
## cg24884230             ARMS2
## cg00676728             ARMS2
## cg03623097             ARMS2
## cg18222240             ARMS2
## cg13265583             ARMS2

3.3 Plotting the results

We can easily get Manhattan plots, Volcano plots and QQ-plots for the probes results (DiffMean and DiffVar) using plot method. Our extension of plot method to ResultSet includes the arguments rid or coef that were already present in getProbeResult. In addition, the argument type allows choosing between a Manhattan plot (“manhattan”), a Volcano plot (“volcano”) or a qq-plot (“qq”).

3.3.1 Manhattan plot

We can customize different aspects of a Manhattan plot. We can highlight the CpGs of a target region by passing a GenomicRanges to the argument highlight. Similarly, we can get a Manhattan plot with only the CpGs of our target region passing a GenomicRanges to the argument subset. It should be noticed that the GenomicRange should have the chromosome as a number (1-24).

We will show these capabilities by highlighting and subsetting a region of ten Mb in chromosome X:

targetRange <- GRanges("23:13000000-23000000")
plot(resAdj, rid = "DiffMean", type = "manhattan", highlight = targetRange)