
Package ‘gQTLBase’
April 16, 2019

Title gQTLBase: infrastructure for eQTL, mQTL and similar studies

Version 1.14.0

Author VJ Carey <stvjc@channing.harvard.edu>

Description Infrastructure for eQTL, mQTL and similar studies.

Suggests geuvStore2, knitr, rmarkdown, BiocStyle, RUnit, GGtools,
Homo.sapiens, IRanges, erma, GenomeInfoDb, gwascat, geuvPack

Imports GenomicRanges, methods, BatchJobs, BBmisc, S4Vectors,
BiocGenerics, foreach, doParallel, bit, ff, rtracklayer,
ffbase, GenomicFiles, SummarizedExperiment

Depends
Maintainer VJ Carey <stvjc@channing.harvard.edu>

License Artistic-2.0

LazyLoad yes

VignetteBuilder knitr

BiocViews SNP, GenomeAnnotation, Genetics, DataImport,
FunctionalGenomics

Collate storeS4.R cb2range.R ffapp2.R gtpath.R storeFuncs.R
mergeToLoci.R ufeatByTiling.R d.R

git_url https://git.bioconductor.org/packages/gQTLBase

git_branch RELEASE_3_8

git_last_commit ed26678

git_last_commit_date 2018-10-30

Date/Publication 2019-04-15

R topics documented:
gQTLBase-package . 2
ciseStore-class . 2
describeStore . 3
extractByProbes . 4
mergeCIstates . 5
storeApply . 6
storeMapResults . 8
storeToFf . 9
ufeatByTiling . 10

1

2 ciseStore-class

Index 12

gQTLBase-package gQTLBase: infrastructure for eQTL, mQTL and similar studies

Description

Infrastructure for eQTL, mQTL and similar studies.

Details

The DESCRIPTION file: This package was not yet installed at build time.

Index: This package was not yet installed at build time.

Purpose is to define infrastructure on a comprehensive archive of eQTL, mQTL, dsQTL, etc., asso-
ciation statistics.

Package will complement gQTLStats. geuvStore2 is a basic illustration relative to GEUVADIS
paper.

matprint is exported from package ff.

Author(s)

VJ Carey <stvjc@channing.harvard.edu>

Maintainer: VJ Carey <stvjc@channing.harvard.edu>

ciseStore-class Class "ciseStore"

Description

wrap a BatchJobs registry that manages results of a cis-eQTL search

Objects from the Class

Objects can be created by calls of the form new("ciseStore", reg=reg, ...). All arguments
must be named.

We can also use ciseStore(reg, validJobs, addProbeMap = TRUE, addRangeMap = TRUE)
and the probemap and rangeMap slots will be populated appropriately. If validJobs is missing, the
validJobs slot will be populated by findDone(reg). This may be problematic for handcrafted extracts
from archives.

Slots

reg: Object of class "Registry" BatchJobs Registry instance
validJobs: Object of class "integer" vector of valid job identifiers for the registry
probemap: Object of class "data.frame" a map from expression probe identifiers to job identifiers

where results for the probe are stored
rangeMap: Object of class "GRanges" a map from ranges on chromosomes, to job identifiers, in

mcols()$jobid

describeStore 3

Methods

show

Function describeStore uses batchMapResults and reduceResults to leverage a parallel environ-
ment to collect information on numbers of tests and features. Arguments are described in the asso-
ciated man page.

Note

the construction of the maps occurs via storeApply, which

will use foreach, so that registration of a parallel back end using, e.g., registerDoParallel, will
determine the speed of construction

Any registry job results that do not inherit from GRanges are mapped to NULL and will not be
present in ultimate maps.

Examples

showClass("ciseStore")
get the global assignment back
require(BatchJobs)
if (require(geuvStore2)) {
store = makeGeuvStore2()
store
}

describeStore collect basic descriptive statistics on ciseStore instances

Description

collect basic descriptive statistics on ciseStore instances

Usage

describeStore(st, genetag = "probeid", snptag = "snp", ids = NULL,
resfilter = force, doChecks = TRUE, ...)

describeByFilts(st, filtlist, ...)

Arguments

st instance of ciseStore-class
genetag string for field name for name of quantitatively assayed feature, defaults to

"probeid"; for GTEx application "gene" is used
snptag string for field name for name of genotype feature
ids integerish vector of ids, can be left NULL to survey entire store
resfilter function applied to job results prior to summarization, defaults to force()
filtlist a list of functions suitable as resfilter arguments
doChecks logical – if true, will collect information on match between number probes re-

quested and number reported on, and two scans of VCF loci in cis to probes.
See details.

... used with describeByFilts, pass to storeApply

4 extractByProbes

Details

uses parallel infrastructure of foreach on contents managed by st@reg

describeByFilts returns a matrix of descriptions with one row per filtlist element

storeDescription holds results of a describe task and includes information on noncongruence of
features with cis tests and of results of two distinct scans of VCF: one with readGT on a single
sample, the other with readVcf on all samples. If there are discrepancies between features given and
tests returned, [storeDescription]@reqfail will give the job ids for these. If there are discrepancies
between the numbers of loci retrieved on the two VCF scans, @locfail will tive the job ids for these.
@reqfail events may be legitimate when a feature has no SNP in cis at the given radius. @locfail
events usually indicate an I/O problem and the jobs should be resubmitted.

Value

list with elements ntests, ngene.uniq, nsnp.uniq

Examples

Not run:
library(geuvStore2)
mm = makeGeuvStore2()
describeStore(mm, ids=1:10, resfilter=function(x) x[x$mindist < 50000])

End(Not run)

extractByProbes retrieve eqtlTest results from a ciseStore instance

Description

retrieve eqtlTest results from a ciseStore instance

Usage

extractByProbes(store, probeids, extractTag = "probeid")
extractByRanges(store, gr)
extractBySymbols(store, symbols, sym2probe, extractTag = "probeid")

Arguments

store instance of ciseStore-class
probeids, symbols

vector character tokens

gr instance of GRanges-class

sym2probe named character vector of probeids with names given by corresponding symbols

extractTag character atom telling what field in the archived GRanges is regarded as the
probe or gene identifier

... extra arguments to extractByProbes

Details

an index will be searched if created by the ciseStore constructor

mergeCIstates 5

Value

a GRanges instance

Author(s)

VJ Carey <stvjc@channing.harvard.edu>

Examples

if (require(geuvStore2)) {
store = makeGeuvStore2()
ebp = extractByProbes(store, c("ENSG00000183814.10", "ENSG00000174827.9"))
ebp
rr = range(ebp)
ebr = extractByRanges(store, rr)
ebr
s2p = structure(c("ENSG00000183814.10", "ENSG00000163207.5", "ENSG00000228449.1",

"ENSG00000137962.8", "ENSG00000232848.1", "ENSG00000227280.1",
"ENSG00000238081.1", "ENSG00000117480.10", "ENSG00000253368.2",
"ENSG00000174827.9"), .Names = c("LIN9", "IVL", "RP11-177A2.4",
"ARHGAP29", "CTA-215D11.4", "RP11-458D21.2", "RP4-620F22.3",
"FAAH", "TRNP1", "PDZK1"))
ss = extractBySymbols(store, c("IVL", "FAAH", "PDZK1"), s2p)
ss
}

mergeCIstates merge ChromImpute chromatin states, or GWAS hit indicators, to a
GRanges

Description

merge ChromImpute chromatin states, or GWAS hit indicators, to a GRanges

Usage

mergeCIstates(gr, ermaset=NULL, epig, genome = "hg19", importFull=FALSE, useErma = TRUE, stateGR=NULL)
mergeGWhits(gr, gwcat, use=c("both", "addr", "name")[1],

grSnpField="SNP")

Arguments

gr a GRanges instance

ermaset an instance of ErmaSet-class. if NULL, supply a GRanges as stateGR, with
fields states and statecols

gwcat an instance of gwaswloc-class, or any compliant GRanges instance – must
have mcols field SNPS with snp identifier

epig the standardized epigenome name of the epigenome to use

genome a tag for genome build

importFull logical, set to TRUE to acquire entire content (for LNG.FET, 800K ranges), to
avoid contention for connections in parallel applications

6 storeApply

useErma logical – at the moment, must be TRUE; plan is to allow use of elements of
AnnotationHub

use character string selecting approach for linking loci in gr to those in gwcat – if
"both", coincidence in address or name are both checked and used; if "addr",
only address is checked, if "name", only SNP name.

grSnpField character string naming the field in mcols(gr) with SNP id

stateGR a GRanges instance as imported from erma package or from AnnotationHub,
with mcols field states denoting chromatin state and statecols the associated col-
ors for rendering

Value

for mergeCIstates, a GRanges instance with additional fields in mcols: fullStates, states, and state-
cols, denoting respectively the full annotation of ChromImpute for the inferred state, an abbreviated
tag that collapses related states, and a color tag for rendering, that does not replicate the colors in the
ChromImpute bed files. The states field is a factor with levels c("Het", "DNAse", "Enh", "Prom", "Quies", "ReprPC", "Tss", "Tx","ZNF/Rp").

for mergeGWhits, a single mcols field is added, isGwasHit, that is 1 for coincident hit and 0
otherwise. Eventually phenotype information will be collected and added.

Examples

if (require(gwascat) && require(erma)) {
#
demonstrate Tx state for exon starts
#

gm = resize(genemodel("ORMDL3"),1)
es = makeErmaSet()
g1 = mergeCIstates(gm, es, "LNG.FET")
g1

#
set up for GWAS
#

require(GenomeInfoDb)
data(ebicat37)
genome(ebicat37) = "hg19"
seqlevelsStyle(ebicat37) = "UCSC"
g1 = c(g1, g1[1]) # add a known hit
start(g1[length(g1)]) = 38062196
mergeGWhits(g1, ebicat37)
}

storeApply apply a function over job results in a ciseStore instance

Description

apply a function over job results in a ciseStore instance

Usage

storeApply(store, f, n.chunks, ids=NULL, ..., verbose = FALSE, flatten1=TRUE)

storeApply 7

Arguments

store instance of ciseStore-class

f function on GRanges stored in ciseStore

n.chunks Number of chunks into which the jobs are to be broken; the

series of chunks is handed to foreach to extract results and apply f to them.

If missing, the value of getDoParWorkers() used.

ids defaults to NULL; if non-null, the jobs to be processed are limited to those
identified in this vector.

... additional arguments to foreach

verbose if TRUE will allow progressbars and other messages to display

flatten1 if TRUE will execute unlist(...,recursive=FALSE) on output, defaulted to FALSE
in previous version

Details

The chunking of job identifiers will determine the degree of parallelization of application, and the
form of the list that is returned. flatten1 will eventually default to TRUE.

Value

A list whose structure depends on the chunking of job identifiers. See the examples.

Note

eqtlStore imports BiocParallel’s bpparam function, and this determines in real time the number of
workers to be employed by storeApply.

See Also

storeMapResults will apply over the store using the batch jobs submission infrastructure and can
target specific results via ids; storeApply uses bplapply over the entire store

Examples

if (require(geuvStore2)) {
require(BatchJobs)
store = makeGeuvStore2()
storeApply(store, length)
storeApply(store, length, ids=c(1:3,603))
}

8 storeMapResults

storeMapResults use batchMapResults infrastructure to process results in a ciseStore
instance

Description

use batchMapResults infrastructure to process results in a ciseStore instance

Usage

storeMapResults(store, reg2, fun, ...,
ids = NULL, part = NA_character_, more.args = list())

loadAndFilterResult(reg,
id, filter=force, part = NA_character_, missing.ok = FALSE)

Arguments

store an instance of ciseStore-class

reg instance of BatchJobs Registry class

reg2 an empty instance of the Registry class (see makeRegistry)

fun A function to map over results in store, with formals (job, res, ...).

filter a function that accepts and returns a GRanges instance, to be applied just after
loading a result from the store

... additional arguments to vectorize over (should be same length as length(findDone(store@reg))

ids ids of job results to be mapped; if missing, map all job results

id a single job id

part see batchMapResults

missing.ok see loadResult

more.args a list of other arguments to be passed to fun; default is empty list.

Value

integer vector with job ids. Main purpose is to prepare the registry for submitJobs.

Note

loadAndFilterResult is not intended to be exported and may be removed in future versions.

Author(s)

VJ Carey <stvjc@channing.harvard.edu>

storeToFf 9

Examples

Not run:
if (require(geuvStore2)) {
require(BatchJobs)
store = makeGeuvStore2()
fd = tempfile()
tempreg = makeRegistry("tempSMR", file.dir=fd)
storeMapResults(store, tempreg, fun=function(job, res, ...) length(res))
showStatus(tempreg)
submitJobs(tempreg, 1:2)
loadResults(tempreg)
unlink(fd)
}

End(Not run)

storeToFf extract a vector from store results as ff (out of memory reference);
support statistical reductions

Description

extract a vector from store results as ff (out of memory reference); support statistical reductions

Usage

storeToFf(store, field, ids = NULL, filter=force, ..., checkField = FALSE,
ischar=FALSE)

Arguments

store instance of ciseStore-class

field character tag, length one. If name of a numeric field in the result set (typically
something like ’chisq’ in the GRanges generated by cisAssoc), ff is applied
directly. Character variables are converted to factors before ff is applied.

ids job ids to be used; if NULL, process all jobs

filter function to be applied when GRanges is loaded from results store, should accept
and return a GRanges instance

... supplied to makeRegistry for a temporary registry: typically will be a vector of
package names if additional packages are needed to process results

checkField if TRUE steps will be taken to verify that the tag to which ’field’ evaluates is
present in result in the first job

ischar must be true for character vector to be handled properly as a factor, otherwise
NA will be returned

Details

uses current BatchJobs configuration to parallelize extraction; reduceResults could be used for a
sequential solution

10 ufeatByTiling

Value

a vector as ff reference

Note

uses ffbase:::c.ff explicitly to concatenate outputs; there is no guarantee of order among elements

Examples

if (require(geuvStore2)) {
require(BatchJobs)
store = makeGeuvStore2()
smchisq = storeToFf(store, "chisq", ids=store@validJobs[1:3])
smchisq
}

ufeatByTiling split featurenames of SummarizedExperiment according to tiling, or to
achieve simple balance within seqnames

Description

split featurenames of SummarizedExperiment according to tiling, without redundancies

Usage

ufeatByTiling(se, tiling, maxlen=20)
balancedFeatList(se, maxlen=20)

Arguments

se instance of SummarizedExperiment

tiling GRanges instance corresponding to a genomic tiling

maxlen numeric ... list elements longer than maxlen are chopped up to have this length,
to foster load balancing

Details

ufeatByTiling uses findOverlaps, balancedFeatList uses split on seqnames and BBmisc::chunk

Value

a list with elements of names(rowRanges(se)) corresponding to the elements of the tiling

ufeatByTiling 11

Examples

Not run:
library(geuvPack)
data(geuFPKM)
library(Homo.sapiens)
au = paste0("chr", 1:22)
tg_500k = tileGenome(seqinfo(TxDb(Homo.sapiens))[au,], tilewidth=500000,

cut.last.tile.in.chrom=TRUE)
sn = ufeatByTiling(geuFPKM, tg_500k)
summary(sapply(sn,length))
sn2 = balancedFeatList(geuFPKM)
summary(sapply(sn2,length))

End(Not run)

Index

∗Topic classes
ciseStore-class, 2

∗Topic models
describeStore, 3
extractByProbes, 4
mergeCIstates, 5
storeApply, 6
storeMapResults, 8
storeToFf, 9
ufeatByTiling, 10

balancedFeatList (ufeatByTiling), 10
batchMapResults, 8

ciseStore (ciseStore-class), 2
ciseStore-class, 2

describeByFilts (describeStore), 3
describeStore, 3

extractByProbes, 4
extractByProbes,ciseStore,character,character-method

(extractByProbes), 4
extractByProbes,ciseStore,character,missing-method

(extractByProbes), 4
extractByRanges (extractByProbes), 4
extractByRanges,ciseStore,GRanges-method

(extractByProbes), 4
extractBySymbols (extractByProbes), 4
extractBySymbols,ciseStore,character,character,character-method

(extractByProbes), 4
extractBySymbols,ciseStore,character,character,missing-method

(extractByProbes), 4

foreach, 3, 7

gQTLBase (gQTLBase-package), 2
gQTLBase-package, 2

loadAndFilterResult (storeMapResults), 8
loadResult, 8

makeRegistry, 8
matprint, 2
matprint (gQTLBase-package), 2

mergeCIstates, 5
mergeGWhits (mergeCIstates), 5

registerDoParallel, 3

show (describeStore), 3
show,ciseStore-method

(ciseStore-class), 2
show,storeDescription-method

(describeStore), 3
storeApply, 3, 6
storeDescription-class (describeStore),

3
storeMapResults, 7, 8
storeToFf, 9

ufeatByTiling, 10

12

	gQTLBase-package
	ciseStore-class
	describeStore
	extractByProbes
	mergeCIstates
	storeApply
	storeMapResults
	storeToFf
	ufeatByTiling
	Index

