flowPloidy: Determining Genome Size and Ploidy from Flow Cytometry Histograms in R

Tyler Smith¹, Paul Kron² and Sara Martin¹

¹Agriculture and Agri-Food Canada, ²University of Guelph

Evolutionary biologists working with polyploid taxa

Population screening:

- large sample sizes
- poor tissue quality

Genome size assessment:

- repeat measurements of fresh/greenhouse tissue
- high precision required

Need high-throughput, high-precision genome size estimates

Tissue preparation

Chop and stain tissue

solution contains 1000s of individual nuclei (and debris)

Flow Cytometer

Measure the fluorescence properties of each nuclei:

- size (forward scatter)
- DNA content (fluorescence)
- granularity (side scatter)

Histogram Construction

aggregate data into bins (256, 512, 1024)

Ideal Histogram

G1 peak Gap 1 diploid cellsG2 peak Gap 2 tetraploid cells (pre-division)S Phase Synthesis cells (actively duplicating DNA)

(Co-Chopped Standard Peak ignored for now)

Empirical Histogram

G1 peak Gap 1 diploid cells

G2 peak Gap 2 tetraploid cells (pre-division)

S Phase Synthesis cells (actively duplicating DNA)

Debris Damaged nuclei, cell components, contaminants

Aggregates clusters of two or more nuclei stuck together

NOISE Measurement error, capriciousness of life

(Co-Chopped Standard Peak ignored for now)

Manual Histogram Analysis

Manual Histogram Analysis

Advantages

- Intuitive
- Several Programs Available
- Can be done ad-hoc in R

Disadvantages

- Subjective
 - CV estimate depends on user
- Doesn't account for overlapping components
 - G1 cell count estimate inflated by debris and S-phase

Overlapping Histogram Components

Non-linear Regression Histogram Analysis

Model histogram components using mathematical functions:

- G1 and G2 peaks fit as Normal curves
- Debris and aggregates fit using theoretical models

Advantages

- objective
- estimates taken directly from the data

Disadvantages

- availability (few programs, expensive licenses)
- conceptually complex

Source

Bagwell, C. B. (1993). Chapt. 3 *In* K. D. Bauer et al., Clinical flow cytometry: principles and applications. Williams & Wilkins.

Non-linear Regression Histogram Analysis

Co-Chopped Standard

Issues with ModFit

- Cost and accessibility
- Functionality (too much and too little)

flowPloidy Goals

- Streamline our workflow, integrate with R
- Increase our understanding of histogram analysis
- Platform for developing best practices

Open access for everyone in our lab and yours

You can learn from my work

You can improve and extend my work

Builds on existing tools for flow cytometry in R
Installation is simple:
source("https://bioconductor.org/biocLite.R")
biocLite("flowPloidy")
biocLite("flowPloidyData") # for examples

batch1 <- browseFlowHist(batch1)</pre>

Reviewing Histograms

Reviewing Histograms

Reviewing Histograms

Exit	Pr	File 1 of 1	14 ext	
Samples		Peak		
2	•	Α	•	
Standard Va	alue	Standar	d Peak	
0	•	X	•	
Linearity		Debris Model		
Variable	•	SC	-	

Correcting Histograms

Correcting Histograms

Exit	Pr	File 1 of	14 lext
Samples		Peak	
2	÷	Α	•
Standard Va	alue	Standar	d Peak
Standard Va	alue •	Standar X	d Peak -
Standard Va 0 Linearity		Standar X Debris M	d Peak T

240+S.LMD

240+S.LMD

One size doesn't fit all

Depends on:

- species
- preparation method
- individual sample quality

Response

Make switching components quick and easy

Impact on parameter estimates is usually small

RCS provides an objective basis for choice

There is no direct solution for non-linear regression

Sometimes the algorithm gets stuck in a local minima:

Local Minima

734.LMD

734.LMD

Save to file or use directly in R:

tabulateFlowHist(batch1)

	countsA	sizeA	cvA	AB
188-15.LMD	1440.229	99.034	0.022	0.727
240-4-2+rad.LMD	449.525	64.598	0.028	0.597
248+S.LMD	2651.879	77.773	0.027	0.395

Flow data is not always pretty

Compared to modFit:

- parameter estimates within 1%
- simpler interface
- integration with R
- cost

Compared to manual analysis:

objective and repeatable

Gating:

less sensitive to subjective gating decisions

- better define or automate best practice
- more sophisticated options for pulse analysis
- impact of gating on theoretical model components

tyler@plantarum.ca

plantarum.github.io/flowPloidy

flowPloidy

An R package for flow cytometry histogram analysis

View the Project on GitHub

Introduction

A tutorial overview of flowPloidy is available on the Bloconductor website. This vignette is provided with the package, so once you have flowPloidy installed you can access it from with R (see below).