K-nearest neighbors:

We read in input.scone.csv, which is our file modified (and renamed) from the get.marker.names() function. The K-nearest neighbor generation is derived from the Fast Nearest Neighbors (FNN) R package, within our function Fnn(), which takes as input the “input markers” to be used, along with the concatenated data previously generated, and the desired k. We advise the default selection to the total number of cells in the dataset divided by 100, as has been optimized on existing mass cytometry datasets. The output of this function is a matrix of each cell and the identity of its k-nearest neighbors, in terms of its row number in the dataset used here as input.

library(Sconify)
# Markers from the user-generated excel file
marker.file <- system.file('extdata', 'markers.csv', package = "Sconify")
markers <- ParseMarkers(marker.file)

# How to convert your excel sheet into vector of static and functional markers
markers
## $input
##  [1] "CD3(Cd110)Di"           "CD3(Cd111)Di"          
##  [3] "CD3(Cd112)Di"           "CD235-61-7-15(In113)Di"
##  [5] "CD3(Cd114)Di"           "CD45(In115)Di"         
##  [7] "CD19(Nd142)Di"          "CD22(Nd143)Di"         
##  [9] "IgD(Nd145)Di"           "CD79b(Nd146)Di"        
## [11] "CD20(Sm147)Di"          "CD34(Nd148)Di"         
## [13] "CD179a(Sm149)Di"        "CD72(Eu151)Di"         
## [15] "IgM(Eu153)Di"           "Kappa(Sm154)Di"        
## [17] "CD10(Gd156)Di"          "Lambda(Gd157)Di"       
## [19] "CD24(Dy161)Di"          "TdT(Dy163)Di"          
## [21] "Rag1(Dy164)Di"          "PreBCR(Ho165)Di"       
## [23] "CD43(Er167)Di"          "CD38(Er168)Di"         
## [25] "CD40(Er170)Di"          "CD33(Yb173)Di"         
## [27] "HLA-DR(Yb174)Di"       
## 
## $functional
##  [1] "pCrkL(Lu175)Di"  "pCREB(Yb176)Di"  "pBTK(Yb171)Di"  
##  [4] "pS6(Yb172)Di"    "cPARP(La139)Di"  "pPLCg2(Pr141)Di"
##  [7] "pSrc(Nd144)Di"   "Ki67(Sm152)Di"   "pErk12(Gd155)Di"
## [10] "pSTAT3(Gd158)Di" "pAKT(Tb159)Di"   "pBLNK(Gd160)Di" 
## [13] "pP38(Tm169)Di"   "pSTAT5(Nd150)Di" "pSyk(Dy162)Di"  
## [16] "tIkBa(Er166)Di"
# Get the particular markers to be used as knn and knn statistics input
input.markers <- markers[[1]]
funct.markers <- markers[[2]]

# Selection of the k. See "Finding Ideal K" vignette
k <- 30

# The built-in scone functions
wand.nn <- Fnn(cell.df = wand.combined, input.markers = input.markers, k = k)
# Cell identity is in rows, k-nearest neighbors are columns
# List of 2 includes the cell identity of each nn, 
#   and the euclidean distance between
#   itself and the cell of interest

# Indices
str(wand.nn[[1]])
##  int [1:1000, 1:30] 480 787 974 187 13 549 635 756 320 306 ...
wand.nn[[1]][1:20, 1:10]
##       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
##  [1,]  480  482  934   60  433  441  259  902   40   493
##  [2,]  787  257  634  816  702  839  815  143  644   970
##  [3,]  974  335  884  757  136  836  730  965  455   856
##  [4,]  187  404  984  457  653  387  212  982  945   934
##  [5,]   13  519  995  442  794  959  940  455   32   536
##  [6,]  549  994  957  522  986  583   30  102  120   647
##  [7,]  635  766  143  755  786  815  617  859  682   686
##  [8,]  756  367  403  463  823  405  320  874  239   315
##  [9,]  320  541  614  265  422  252   10  908  306   810
## [10,]  306  723  951  614  501  450  172  662  568   589
## [11,]  326  897  453  485  833  949  880  412  869   725
## [12,]  470  712  907  391  870  300  397  715  781   653
## [13,]  630  442  680  134  794    5  237  700  251   396
## [14,]  884  586  294  960  935  217  501  841  679   974
## [15,]  965  225  773  101   53  935  841  400  264   761
## [16,]  534  667  529  450  172  884  838  673  968   329
## [17,]  702  189  644  638  650    2  634  920   86   787
## [18,]  884  782  355  225   63  455  408  662  821   856
## [19,]  701  714  503  186   83  518  473  421  161   308
## [20,]  387  128  592  187  607  654  462  300  907    29
# Distance
str(wand.nn[[2]])
##  num [1:1000, 1:30] 3.58 3.33 2.59 2.55 3.29 ...
wand.nn[[2]][1:20, 1:10]
##           [,1]     [,2]     [,3]     [,4]     [,5]     [,6]     [,7]
##  [1,] 3.579092 3.637451 3.748994 3.883009 4.027999 4.048328 4.090647
##  [2,] 3.327672 3.339597 3.556047 3.600312 3.662678 3.692267 3.712295
##  [3,] 2.587125 2.637243 2.668626 2.702495 2.703718 2.793637 2.952970
##  [4,] 2.551225 2.955893 2.961839 2.968610 3.108063 3.118125 3.157874
##  [5,] 3.289788 3.473572 3.473815 3.561651 3.680828 3.718976 3.785921
##  [6,] 3.049277 3.504955 3.537386 3.705962 3.779936 3.789844 3.790647
##  [7,] 3.862025 4.074709 5.265335 5.364972 5.434077 5.499014 5.531422
##  [8,] 4.092943 4.184986 4.192058 4.252569 4.338093 4.395456 4.453105
##  [9,] 2.998301 3.042024 3.120326 3.206119 3.270726 3.315812 3.326392
## [10,] 2.556705 2.649796 2.794155 2.986650 3.030603 3.043650 3.080150
## [11,] 3.431571 3.518805 3.526893 3.617614 3.654889 3.714632 3.755645
## [12,] 2.994119 3.522647 3.782354 3.811089 3.880291 3.922244 3.971995
## [13,] 2.999932 3.006798 3.044497 3.169950 3.246766 3.289788 3.454380
## [14,] 2.716895 3.053206 3.085479 3.150775 3.188968 3.252136 3.254383
## [15,] 3.586537 3.729572 3.900928 3.931624 3.959967 4.012199 4.035777
## [16,] 3.219148 3.355825 3.398960 3.540684 3.555666 3.638664 3.657513
## [17,] 3.747788 3.906058 3.960628 3.980267 4.026421 4.102520 4.134095
## [18,] 3.418597 3.647291 3.755778 3.798833 3.837787 3.838603 3.880798
## [19,] 3.211137 3.266432 3.639487 3.668870 3.928391 4.199958 4.593757
## [20,] 3.606321 3.712502 3.967855 4.010675 4.212640 4.273506 4.276874
##           [,8]     [,9]    [,10]
##  [1,] 4.190563 4.206754 4.251649
##  [2,] 3.793516 3.832197 3.938747
##  [3,] 2.970473 2.983170 3.015582
##  [4,] 3.191967 3.196639 3.200104
##  [5,] 3.885938 3.934462 3.971722
##  [6,] 3.860449 3.977665 4.006072
##  [7,] 5.554769 5.599368 5.655597
##  [8,] 4.694595 4.699085 4.707577
##  [9,] 3.330879 3.334825 3.362373
## [10,] 3.083338 3.091964 3.125666
## [11,] 3.885352 3.886642 3.899068
## [12,] 3.986756 4.010023 4.028750
## [13,] 3.476104 3.544441 3.585621
## [14,] 3.284016 3.392694 3.397599
## [15,] 4.041363 4.064772 4.127169
## [16,] 3.679266 3.693353 3.698848
## [17,] 4.162057 4.200801 4.249254
## [18,] 3.908863 3.911043 3.923105
## [19,] 4.611769 4.696108 4.828115
## [20,] 4.277263 4.317648 4.338199

Finding scone values:

This function iterates through each KNN, and performs a series of calculations. The first is fold change values for each maker per KNN, where the user chooses whether this will be based on medians or means. The second is a statistical test, where the user chooses t test or Mann-Whitney U test. I prefer the latter, because it does not assume any properties of the distributions. Of note, the p values are adjusted for false discovery rate, and therefore are called q values in the output of this function. The user also inputs a threshold parameter (default 0.05), where the fold change values will only be shown if the corresponding statistical test returns a q value below said threshold. Finally, the “multiple.donor.compare” option, if set to TRUE will perform a t test based on the mean per-marker values of each donor. This is to allow the user to make comparisons across replicates or multiple donors if that is relevant to the user’s biological questions. This function returns a matrix of cells by computed values (change and statistical test results, labeled either marker.change or marker.qvalue). This matrix is intermediate, as it gets concatenated with the original input matrix in the post-processing step (see the relevant vignette). We show the code and the output below. See the post-processing vignette, where we show how this gets combined with the input data, and additional analysis is performed.

wand.scone <- SconeValues(nn.matrix = wand.nn, 
                      cell.data = wand.combined, 
                      scone.markers = funct.markers, 
                      unstim = "basal")

wand.scone
## # A tibble: 1,000 x 34
##    `pCrkL(Lu175)Di… `pCREB(Yb176)Di… `pBTK(Yb171)Di.… `pS6(Yb172)Di.I…
##               <dbl>            <dbl>            <dbl>            <dbl>
##  1            0.967                1            1                    1
##  2            0.773                1            0.943                1
##  3            0.765                1            0.943                1
##  4            0.902                1            0.973                1
##  5            0.940                1            0.943                1
##  6            0.583                1            0.943                1
##  7            0.970                1            0.943                1
##  8            0.989                1            0.973                1
##  9            0.855                1            0.943                1
## 10            0.989                1            0.960                1
## # ... with 990 more rows, and 30 more variables:
## #   `cPARP(La139)Di.IL7.qvalue` <dbl>, `pPLCg2(Pr141)Di.IL7.qvalue` <dbl>,
## #   `pSrc(Nd144)Di.IL7.qvalue` <dbl>, `Ki67(Sm152)Di.IL7.qvalue` <dbl>,
## #   `pErk12(Gd155)Di.IL7.qvalue` <dbl>,
## #   `pSTAT3(Gd158)Di.IL7.qvalue` <dbl>, `pAKT(Tb159)Di.IL7.qvalue` <dbl>,
## #   `pBLNK(Gd160)Di.IL7.qvalue` <dbl>, `pP38(Tm169)Di.IL7.qvalue` <dbl>,
## #   `pSTAT5(Nd150)Di.IL7.qvalue` <dbl>, `pSyk(Dy162)Di.IL7.qvalue` <dbl>,
## #   `tIkBa(Er166)Di.IL7.qvalue` <dbl>, `pCrkL(Lu175)Di.IL7.change` <dbl>,
## #   `pCREB(Yb176)Di.IL7.change` <dbl>, `pBTK(Yb171)Di.IL7.change` <dbl>,
## #   `pS6(Yb172)Di.IL7.change` <dbl>, `cPARP(La139)Di.IL7.change` <dbl>,
## #   `pPLCg2(Pr141)Di.IL7.change` <dbl>, `pSrc(Nd144)Di.IL7.change` <dbl>,
## #   `Ki67(Sm152)Di.IL7.change` <dbl>, `pErk12(Gd155)Di.IL7.change` <dbl>,
## #   `pSTAT3(Gd158)Di.IL7.change` <dbl>, `pAKT(Tb159)Di.IL7.change` <dbl>,
## #   `pBLNK(Gd160)Di.IL7.change` <dbl>, `pP38(Tm169)Di.IL7.change` <dbl>,
## #   `pSTAT5(Nd150)Di.IL7.change` <dbl>, `pSyk(Dy162)Di.IL7.change` <dbl>,
## #   `tIkBa(Er166)Di.IL7.change` <dbl>, IL7.fraction.cond.2 <dbl>,
## #   density <dbl>

For programmers: performing additional per-KNN statistics

If one wants to export KNN data to perform other statistics not available in this package, then I provide a function that produces a list of each cell identity in the original input data matrix, and a matrix of all cells x features of its KNN.

I also provide a function to find the KNN density estimation independently of the rest of the “scone.values” analysis, to save time if density is all the user wants. With this density estimation, one can perform interesting analysis, ranging from understanding phenotypic density changes along a developmental progression (see post-processing vignette for an example), to trying out density-based binning methods (eg. X-shift). Of note, this density is specifically one divided by the aveage distance to k-nearest neighbors. This specific measure is related to the Shannon Entropy estimate of that point on the manifold (https://hal.archives-ouvertes.fr/hal-01068081/document).

I use this metric to avoid the unusual properties of the volume of a sphere as it increases in dimensions (https://en.wikipedia.org/wiki/Volume_of_an_n-ball). This being said, one can modify this vector to be such a density estimation (example http://www.cs.haifa.ac.il/~rita/ml_course/lectures_old/KNN.pdf), by treating the distance to knn as the radius of a n-dimensional sphere and incoroprating said volume accordingly.

An individual with basic programming skills can iterate through these elements to perform the statistics of one’s choosing. Examples would include per-KNN regression and classification, or feature imputation. The additional functionality is shown below, with the example knn.list in the package being the first ten instances:

# Constructs KNN list, computes KNN density estimation
wand.knn.list <- MakeKnnList(cell.data = wand.combined, nn.matrix = wand.nn)
wand.knn.list[[8]]
## # A tibble: 30 x 51
##    `CD3(Cd110)Di` `CD3(Cd111)Di` `CD3(Cd112)Di` `CD235-61-7-15(…
##             <dbl>          <dbl>          <dbl>            <dbl>
##  1        -0.0113        -0.0986        -0.181            0.514 
##  2        -0.455         -0.0338        -0.0623          -0.400 
##  3        -0.180          0.697          0.571           -0.287 
##  4        -0.173         -0.0759         1.28            -0.0842
##  5         0.138         -0.363         -0.707           -0.649 
##  6        -0.181         -0.166         -0.0167          -0.848 
##  7        -0.138          0.0267        -0.215            0.756 
##  8        -0.228          0.610         -0.115           -0.396 
##  9        -0.132          0.408          0.925           -0.124 
## 10        -0.761         -0.724         -0.677           -1.57  
## # ... with 20 more rows, and 47 more variables: `CD3(Cd114)Di` <dbl>,
## #   `CD45(In115)Di` <dbl>, `CD19(Nd142)Di` <dbl>, `CD22(Nd143)Di` <dbl>,
## #   `IgD(Nd145)Di` <dbl>, `CD79b(Nd146)Di` <dbl>, `CD20(Sm147)Di` <dbl>,
## #   `CD34(Nd148)Di` <dbl>, `CD179a(Sm149)Di` <dbl>, `CD72(Eu151)Di` <dbl>,
## #   `IgM(Eu153)Di` <dbl>, `Kappa(Sm154)Di` <dbl>, `CD10(Gd156)Di` <dbl>,
## #   `Lambda(Gd157)Di` <dbl>, `CD24(Dy161)Di` <dbl>, `TdT(Dy163)Di` <dbl>,
## #   `Rag1(Dy164)Di` <dbl>, `PreBCR(Ho165)Di` <dbl>, `CD43(Er167)Di` <dbl>,
## #   `CD38(Er168)Di` <dbl>, `CD40(Er170)Di` <dbl>, `CD33(Yb173)Di` <dbl>,
## #   `HLA-DR(Yb174)Di` <dbl>, Time <dbl>, Cell_length <dbl>,
## #   `cPARP(La139)Di` <dbl>, `pPLCg2(Pr141)Di` <dbl>,
## #   `pSrc(Nd144)Di` <dbl>, `pSTAT5(Nd150)Di` <dbl>, `Ki67(Sm152)Di` <dbl>,
## #   `pErk12(Gd155)Di` <dbl>, `pSTAT3(Gd158)Di` <dbl>,
## #   `pAKT(Tb159)Di` <dbl>, `pBLNK(Gd160)Di` <dbl>, `pSyk(Dy162)Di` <dbl>,
## #   `tIkBa(Er166)Di` <dbl>, `pP38(Tm169)Di` <dbl>, `pBTK(Yb171)Di` <dbl>,
## #   `pS6(Yb172)Di` <dbl>, `pCrkL(Lu175)Di` <dbl>, `pCREB(Yb176)Di` <dbl>,
## #   `DNA1(Ir191)Di` <dbl>, `DNA2(Ir193)Di` <dbl>,
## #   `Viability1(Pt195)Di` <dbl>, `Viability2(Pt196)Di` <dbl>,
## #   wanderlust <dbl>, condition <chr>
# Finds the KNN density estimation for each cell, ordered by column, in the 
# original data matrix
wand.knn.density <- GetKnnDe(nn.matrix = wand.nn)
str(wand.knn.density)
##  num [1:1000] 0.232 0.243 0.33 0.302 0.248 ...