Public repositories contain thousands of experiments and samples that are difficult to mine. Annotating the description of this data with controlled vocabularies or ontology terms could improve the retrieval of data of interest both programmatically or manually (Galeota and Pelizzola 2016). OnASSiS (Ontology Annotations and Semantic Similarity software) is a package aimed at matching metadata associated with biological experiments with concepts from ontologies, thus aiming at obtaining semantically coherent omics datasets, possibly representing various data types as derived from independent studies. The recognition of domain specific entities not only allows users to retrieve samples related to a given cell type or experimental condition, but also to discover different and not immediately obvious relationships between experiments. Onassis applies Natural Language Processing tools to annotate sample’s and experiments’ descriptions, recognizing concepts from a multitude of biomedical ontologies and quantifying the similarities/divergences between pairs or groups of query studies. In particular the software includes modules to assist on:
the retrieval of samples’ metadata from repositories of large scale biologial data
the annotation of these data with concepts belonging to OBO biomedical ontologies
the organization of available samples in comparable and coherent groups based on semantic similarity measures
the comparison of biological signal stored in a matrix of scores (e.g. gene expression in different samples) based on the annotated entities associated to each sample
Onassis uses Conceptmapper, an Apache UIMA (Unstructured Information Management Architecture) dictionary lookup tool to retrieve dictionary terms in a given text. https://uima.apache.org/downloads/sandbox/ConceptMapperAnnotatorUserGuide/ConceptMapperAnnotatorUserGuide.html
In particular, the ccp-nlp Conceptmapper wrapper, specific for the biomedical domain, implements a pipeline through which it is possible to retrieve concepts from OBO ontologies in any given text with different adjustable options (Verspoor et al. 2009).
Onassis features can be easily accessed through a main class named Onassis, having as slots ‘dictionary’, ‘entities’, ‘similarity’ and ‘scores’. In the following sections we first show details on the usage of the classes and methods that constitute the building blocks of typical metadata integration workflows and than we show how the Onassis class wraps all these functions for a simplified access and usage.
Onassis can handle any type of text as input, but is particularly well suited for the analysis of the metadata from Gene Expression Omnibus (GEO).Indeed it provides the possibility to associate concepts from any OBO ontology to GEO metadata retrieved using GEOmetadb. This represents a fundamental first step in the integrative analysis of the data from large scale repositories (Galeota and Pelizzola 2016). In general, any table or database (Sequence Read Archive (SRA) (Zhu et al. 2013) or Cistrome (Mei et al. 2017) ) containing textual descriptions that can be easily imported in R as a data frame can be used as input for Onassis. In addition to the ontological concepts, the recognition of gene/protein symbols or epigenetic modifications can be highly relevant, especially for experiments directed to those specific factors or marks (such as ChIP-seq experiments). The semantic similarity module uses different semantic similarity measures to determine the semantic similarity of concepts in a given ontology. This module has been developed on the basis of the Java slib http://www.semantic-measures-library.org/sml. The score module applies simple statistical tests to determine if biological signals from samples annotated with different concepts are significantly different.
To run Onassis Java (>= 1.8) is needed. Some of the optional functions, which will be described in the followign parts of the vignette, require additional libraries. For the analyses in this vignette please install following libraries:
source("https://bioconductor.org/biocLite.R")
biocLite('org.Hs.eg.db')
biocLite("GenomicRanges")
install.packages('data.table')
install.packages('DT')
install.packages('gplots')
One of the most straightforward ways to retrieve metadata of samples provided in GEO is through GEOmetadb package. In order to use GEOmetadb through Onassis, users should download the corresponding SQLite database file, by following the instructions provided in the package vignette. Onassis provides functions to help GEO metadata retrieval without the need of explicitly making SQL queries to the database. While GEOmetadb can be accessed on any platform, another important database SRAdb, is not available for Windows users. In the following sections we show how to query GEOmetadb through Onassis, but we also provide an example accessing SRAdb metadata.
Firstly, it is necessary to obtain a connection to the SQLite database. connectToGEODB
returns a connection to the database given the path of the SQLite database file. If the latter is missing, it will be automatically downloaded into the current working directory. Because of the size of this file (0.5 GB), the results of the queries illustrated below are available into Onassis for the subsequent analyses illustrated in this document. Then, the getGEOmetadata
function can be used to retrieve the metadata related to specific GEO samples, taking as minimal parameters the connection to the database and one of the experiment types available. Optionally it is possible to specify the organism and the platform.
## Running this function might take long time if the database has to be downloaded.
geo_con <- connectToGEODB(download=TRUE)
#Showing the experiment types available in GEO
experiments <- experiment_types(geo_con)
#Showing the organism types available in GEO
species <- organism_types(geo_con)
#Retrieving the metadata associated to experiment type "Methylation profiling by high througput sequencing"
meth_metadata <- getGEOMetadata(geo_con, experiment_type='Methylation profiling by high throughput sequencing', organism = 'Homo sapiens')
#Retrieving Human gene expression metadata, knowing the GEO platform identifier, e.g. the Affymetrix Human Genome U133 Plus 2.0 Array
expression <- getGEOMetadata(geo_con, experiment_type='Expression profiling by array', gpl='GPL570')
Some of the experiment types available are the following:
Experiment |
---|
Expression profiling by MPSS |
Expression profiling by RT-PCR |
Expression profiling by SAGE |
Expression profiling by SNP array |
Expression profiling by array |
Expression profiling by genome tiling array |
Expression profiling by high throughput sequencing |
Genome binding/occupancy profiling by SNP array |
Genome binding/occupancy profiling by array |
Genome binding/occupancy profiling by genome tiling array |
Some of the organisms available are the following:
Species |
---|
Homo sapiens |
Drosophila melanogaster |
Mus musculus |
Zea mays |
Arabidopsis thaliana |
Caenorhabditis elegans |
Helicobacter pylori |
Escherichia coli |
Rattus norvegicus |
Saccharomyces cerevisiae |
As specified before in this document, to correctly query GEOmetadb, it is necessary to download the corresponding database SQLite file, which occupies sever GB of disk space. Only for this vignette, meth_metadata was previously saved from the getGEOmetadata function and can be loaded from the Onassis package external data:
meth_metadata <- readRDS(system.file('extdata', 'vignette_data', 'GEOmethylation.rds', package='Onassis'))
series_id | gsm | title | gpl | source_name_ch1 | organism_ch1 | characteristics_ch1 | description | experiment_title | experiment_summary | |
---|---|---|---|---|---|---|---|---|---|---|
1251 | GSE42590 | GSM1045538 | 2316_DLPFC_Control | GPL10999 | Brain (dorsolateral prefrontal cortex) | Homo sapiens | tissue: Heterogeneous brain tissue | NA | Genome-wide DNA methylation profiling of human dorsolateral prefrontal cortex | Reduced representation bisulfite sequencing (RRBS) |
511 | GSE27432 | GSM678217 | hEB16d_H9_p65_RRBS | GPL9115 | embryoid body from hES H9 p65 | Homo sapiens | cell type: hEB16d_H9_p65 | reduced representation bisulfite sequencing | Genomic distribution and inter-sample variation of non-CG methylation across human cell types | DNA methylation plays an important role in develop |
2731 | GSE58889 | GSM1421876 | Normal_CD19_11 | GPL11154 | Normal CD19+ cells | Homo sapiens | cell type: Normal CD19+ cells; disease status: healthy | NA | Methylation disorder in CLL | We performed RRBS and WGBS on primary human chroni |
1984 | GSE50761 | GSM1228607 | Time Course Off-target Day 7 1 HBB133 | GPL15520 | K562 cells | Homo sapiens | cell line: K562 cells; target loci: Time Course Off-target Day 7 1 | 2013.03.16._MM364_analysis.csv | Targeted DNA demethylation using TALE-TET1 fusion proteins | Recent large-scale studies have defined genomewide |
851 | GSE36173 | GSM882245 | H1 human ES cells | GPL10999 | H1 human ES cells | Homo sapiens | cell line: H1 | 5-hmC whole genome bisulfite sequencing | Base Resolution Analysis of 5-Hydroxymethylcytosine in the Mammalian Genome | The study of 5-hydroxylmethylcytosines (5hmC), the |
1966 | GSE50761 | GSM1228589 | Time Course HB-6 Day 4 1 HBB115 | GPL15520 | K562 cells | Homo sapiens | cell line: K562 cells; target loci: Time Course HB-6 Day 4 1 | 2013.03.16._MM364_analysis.csv | Targeted DNA demethylation using TALE-TET1 fusion proteins | Recent large-scale studies have defined genomewide |
1827 | GSE50761 | GSM1228450 | Off target -650 to -850 3 RHOX117 | GPL15520 | 293 cells | Homo sapiens | cell line: 293 cells; target loci: Off target -650 to -850 3 | 2013-07-23-MM195-288-394_analysis.csv | Targeted DNA demethylation using TALE-TET1 fusion proteins | Recent large-scale studies have defined genomewide |
378 | GSE26592 | GSM655200 | Endometrial Recurrent 5 | GPL9052 | Human endometrial specimen | Homo sapiens | tissue: Human endometrial specimen; cell type: primary tissues; disease status: Recurrent; chromatin selection: MBD protein | MBDCap using MethylMiner Methylated DNA Enrichment Kit (Invitrogen, ME 10025); library strategy: Endometrial samples: MBDCao-seq. Breast cells: MBDCap-seq.; library selection: Endometrial samples: MBDCap. Breast cells: MBDCap-seq. | Neighboring genomic regions influence differential methylation patterns of CpG islands in endometrial and breast cancers | We report the global methylation patterns by MBDCa |
1754 | GSE50761 | GSM1228377 | Initial Screen RH-3 -250-+1 2 RHOX44 | GPL15520 | HeLa cells | Homo sapiens | cell line: HeLa cells; target loci: Initial Screen RH-3 -250-+1 2 | 2013-07-12-MM564_analysis.csv | Targeted DNA demethylation using TALE-TET1 fusion proteins | Recent large-scale studies have defined genomewide |
2371 | GSE54961 | GSM1327281 | Healthy Control | GPL9052 | Healthy Control | Homo sapiens | etiology: Healthy Control; tissue: Peripheral venous blood; molecule subtype: serum cell-free DNA | Sample 1 | Epigenome analysis of serum cell-free circulating DNA in progression of HBV-related Hepatocellular carcinoma | Purpose: Aberrantly methylated DNA are hallmarks |
In this section we provide an example showing how it is possible to retrieve data from other sources such as SRA. In this case we only show an example on how to query the database and store the metadata in a data frame table. The following code requires the file SRAmetadb.sqlite, containing SRA metadata. Since also this database occupies disk space (~4GB), we provide the results of the query as external data and running the following part of code is optional. The database file and the queries can be obtained and executed in R through the Bioconductor package SRAdb
.
The following code shows how to obtain SRA metadata of ChIP-Seq human samples and Bisulfite sequencing samples:
# Connection to the SRAmetadb and potential download of the sqlite file
sqliteFileName <- './data/SRAdb.sqlite'
sra_con <- dbConnect(SQLite(), sqliteFileName)
# Query for the ChIP-Seq experiments contained in GEO for human samples
library_strategy <- 'ChIP-Seq' #ChIP-Seq data
library_source='GENOMIC'
taxon_id=9606 #Human samples
center_name='GEO' #Data from GEO
# Query to the sample table
samples_query <- paste0("select sample_accession, description, sample_attribute, sample_url_link from sample where taxon_id='", taxon_id, "' and sample_accession IS NOT NULL", " and center_name='", center_name, "'", )
samples_df <- dbGetQuery(sra_con, samples_query)
samples <- unique(as.character(as.vector(samples_df[, 1])))
# Query to the experiment table
experiment_query <- paste0("select experiment_accession, center_name, title, sample_accession, sample_name, experiment_alias, library_strategy, library_layout, experiment_url_link, experiment_attribute from experiment where library_strategy='",
library_strategy, "'" , " and library_source ='", library_source,
"' " )
experiment_df <- dbGetQuery(sra_con, experiment_query)
#Merging the columns from the sample and the experiment table
experiment_df <- merge(experiment_df, samples_df, by = "sample_accession")
# Replacing the field separators with white spaces
experiment_df$experiment_attribute <- sapply(experiment_df$experiment_attribute,
function(value) {
gsub("||", " ", value)
})
experiment_df$sample_attribute <- sapply(experiment_df$sample_attribute,
function(value) {
gsub("||", " ", value)
})
# Replacing the '_' character with white spaces
experiment_df$sample_name <- sapply(experiment_df$sample_name,
function(value) {
gsub("_", " ", value)
})
experiment_df$experiment_alias <- sapply(experiment_df$experiment_alias,
function(value) {
gsub("_", " ", value)
})
sra_chip_seq <- experiment_df
The previously saved sra_chip_seq can be retrieved in Onassis:
sra_chip_seq <- readRDS(system.file('extdata', 'vignette_data', 'GEO_human_chip.rds', package='Onassis'))
sample_accession | experiment_accession | center_name | title | library_strategy | library_layout | experiment_url_link | experiment_attribute | description | sample_attribute | sample_url_link | |
---|---|---|---|---|---|---|---|---|---|---|---|
5904 | SRS421364 | SRX278504 | GEO | GSM1142700: p53 ChIP LCL nutlin-3 treated; Homo sapiens; ChIP-Seq | ChIP-Seq | SINGLE - | GEO Sample: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1142700 | GEO Accession: GSM1142700 | NA | source_name: lymphoblastoid cells || cell type: nutlin-3 treated lymphoblastoid cells || coriell id: GM12878 || chip antibody: mouse monoclonal anti-human p53 (BD Pharmingen, cat# 554294) || BioSampleModel: Generic | GEO Sample GSM1142700: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1142700 |
4981 | SRS371783 | SRX199902 | GEO | GSM1022674: UW_ChipSeq_A549_InputRep1 | ChIP-Seq | SINGLE - | GEO Web Link: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1022674 | GEO Accession: GSM1022674 | NA | source_name: A549 || biomaterial_provider: ATCC || lab: UW || lab description: Stamatoyannopoulous - University of Washington || datatype: ChipSeq || datatype description: Chromatin IP Sequencing || cell: A549 || cell organism: human || cell description: epithelial cell line derived from a lung carcinoma tissue. (PMID: 175022), “This line was initiated in 1972 by D.J. Giard, et al. through explant culture of lung carcinomatous tissue from a 58-year-old caucasian male.” - ATCC, newly promoted to tier 2: not in 2011 analysis || cell karyotype: cancer || cell lineage: endoderm || cell sex: M || antibody: Input || antibody description: Control signal which may be subtracted from experimental raw signal before peaks are called. || treatment: None || treatment description: No special treatment or protocol applies || control: std || control description: Standard input signal for most experiments. || controlid: wgEncodeEH001904 || labexpid: DS18301 || labversion: WindowDensity-bin20-win+/-75 || replicate: 1 || BioSampleModel: Generic | GEO Sample GSM1022674: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1022674 |
4619 | SRS365824 | SRX190055 | GEO | GSM945272: UW_ChipSeq_HRPEpiC_Input | ChIP-Seq | SINGLE - | GEO Web Link: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM945272 | GEO Accession: GSM945272 | NA | source_name: HRPEpiC || biomaterial_provider: ScienCell || lab: UW || lab description: Stamatoyannopoulous - University of Washington || datatype: ChipSeq || datatype description: Chromatin IP Sequencing || cell: HRPEpiC || cell organism: human || cell description: retinal pigment epithelial cells || cell karyotype: normal || cell lineage: ectoderm || cell sex: U || antibody: Input || antibody description: Control signal which may be subtracted from experimental raw signal before peaks are called. || treatment: None || treatment description: No special treatment or protocol applies || control: std || control description: Standard input signal for most experiments. || controlid: wgEncodeEH000962 || labexpid: DS16014 || labversion: Bowtie 0.12.7 || replicate: 1 || BioSampleModel: Generic | GEO Sample GSM945272: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM945272 |
911 | SRS117344 | SRX028649 | GEO | GSM608166: H3K27me3_K562_ChIP-seq_rep1 | ChIP-Seq | SINGLE - | GEO Web Link: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM608166 | GEO Accession: GSM608166 | NA | source_name: chronic myeloid leukemia cell line || cell line: K562 || harvest date: 2008-06-12 || chip antibody: CST monoclonal rabbit rabbit anti-H3K27me3 || BioSampleModel: Generic | GEO Sample GSM608166: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM608166 |
4244 | SRS362733 | SRX186665 | GEO | GSM1003469: Broad_ChipSeq_Dnd41_H3K79me2 | ChIP-Seq | SINGLE - | GEO Web Link: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1003469 | GEO Accession: GSM1003469 | NA | source_name: Dnd41 || biomaterial_provider: DSMZ || datatype: ChipSeq || datatype description: Chromatin IP Sequencing || antibody antibodydescription: Rabbit polyclonal antibody raised against a peptide containing K79 di-methylation. Antibody Target: H3K79me2 || antibody targetdescription: H3K79me2 is a mark of the transcriptional transition region - the region between the initiation marks (K4me3, etc) and the elongation marks (K36me3). || antibody vendorname: Active Motif || antibody vendorid: 39143 || controlid: wgEncodeEH002434 || replicate: 1,2 || softwareversion: ScriptureVPaperR3 || cell sex: M || antibody: H3K79me2 || antibody antibodydescription: Rabbit polyclonal antibody raised against a peptide containing K79 di-methylation. Antibody Target: H3K79me2 || antibody targetdescription: H3K79me2 is a mark of the transcriptional transition region - the region between the initiation marks (K4me3, etc) and the elongation marks (K36me3). || antibody vendorname: Active Motif || antibody vendorid: 39143 || treatment: None || treatment description: No special treatment or protocol applies || control: std || control description: Standard input signal for most experiments. || controlid: Dnd41/Input/std || softwareversion: ScriptureVPaperR3 || BioSampleModel: Generic | GEO Sample GSM1003469: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1003469 |
7502 | SRS494656 | SRX369112 | GEO | GSM1252315: CHG092; Homo sapiens; ChIP-Seq | ChIP-Seq | SINGLE - | GEO Sample GSM1252315: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1252315 | GEO Accession: GSM1252315 | NA | source_name: Gastric Primary Sample || tissuetype: Tumor || chip antibody: H3K4me1 || reads length: 101 || BioSampleModel: Generic | GEO Sample GSM1252315: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1252315 |
2127 | SRS266173 | SRX099863 | GEO | GSM808752: MCF7_CTCF_REP1 | ChIP-Seq | SINGLE - | GEO Web Link: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM808752 | GEO Accession: GSM808752: | NA | source_name: breast adenocarcinoma cells || cell type: breast adenocarcinoma cells || cell line: MCF7 || antibody: CTCF || BioSampleModel: Generic | GEO Sample GSM808752: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM808752 |
6299 | SRS468164 | SRX332680 | GEO | GSM1204476: Input DNA for ChIP; Homo sapiens; ChIP-Seq | ChIP-Seq | SINGLE - | GEO Sample GSM1204476: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1204476 | GEO Accession: GSM1204476 | NA | source_name: MDAMB231 || cell line: MDAMB231 || chip antibody: input || BioSampleModel: Generic | GEO Sample GSM1204476: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1204476 |
832 | SRS115184 | SRX027300 | GEO | GSM593367: H3K4me3_H3 | ChIP-Seq | SINGLE - | GEO Web Link: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM593367 | GEO Accession: GSM593367 | NA | source_name: LCL || chip antibody: H3K4me3 || cell type: lymphoblastoid cell line || BioSampleModel: Generic | GEO Sample GSM593367: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM593367 |
8638 | SRS598154 | SRX528309 | GEO | GSM1375207: H3_ChIPSeq_Human; Homo sapiens; ChIP-Seq | ChIP-Seq | SINGLE - | GEO Sample GSM1375207: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1375207 | GEO Accession: GSM1375207 | NA | source_name: H3_ChIPSeq_Human || donor age: adult || cell type: sperm || chip antibody: H3F3B || chip antibody vendor: Abnova || BioSampleModel: Generic | GEO Sample GSM1375207: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM1375207 |
The Onassis EntityFinder
class has methods for annotating any text with dictionary terms. More specifically, Onassis can take advantage of the OBO dictionaries (http://www.obofoundry.org/), as shown in the next section where we will define relationships between different samples annotated with different ontology concepts thanks to the structure of the ontology.
Input text can be provided as:
Conceptmapper dictionaries are XML files with a set of entries specified by the xml tag <token>
with a canonical name (the name of the entry) and one or more variants (synonyms). Additional properties are allowed. The following code represents a sample of the Conceptmapper dictionary obtained from the Brenda tissue ontology.
<?xml version="1.0" encoding="UTF-8" ?>
<synonym>
<token id="http://purl.obolibrary.org/obo/BTO_0005205" canonical="cerebral artery">
<variant base="cerebral artery"/>
</token>
<token id="http://purl.obolibrary.org/obo/BTO_0002179" canonical="184A1N4 cell">
<variant base="184A1N4 cell"/>
<variant base="A1N4 cell"/>
</token>
<token id="http://purl.obolibrary.org/obo/BTO_0003871" canonical="uterine endometrial cancer cell">
<variant base="uterine endometrial cancer cell"/>
<variant base="endometrial cancer cell"/>
<variant base="uterine endometrial carcinoma cell"/>
<variant base="endometrial carcinoma cell"/>
</token>
</synonym>
The constructor CMdictionary
creates an instance of the class CMdictionary
.
dictType
option to “CMDICT”.
# If a Conceptmapper dictionary is already available the dictType CMDICT can be specified and the corresponding file loaded
sample_dict <- CMdictionary(inputFileOrDb=system.file('extdata', 'cmDict-sample.cs.xml', package = 'Onassis'), dictType = 'CMDICT')
#Creation of a dictionary from the file sample.cs.obo available in OnassisJavaLibs
obo <- system.file('extdata', 'sample.cs.obo', package='OnassisJavaLibs')
sample_dict <- CMdictionary(inputFileOrDb=obo, outputDir=getwd(), synonymType='ALL')
# Creation of a dictionary for human genes/proteins
require(org.Hs.eg.db)
targets <- CMdictionary(dictType='TARGET', inputFileOrDb = 'org.Hs.eg.db')
Conceptmapper includes 7 different options controlling the annotation step. These are documented in detail in the documentation of the CMoptions function. They can be listed through the listCMOptions
function. The CMoptions
constructor instantiates an object of class CMoptions with the different parameters that will be required for the subsequent step of annotation. We also provided getter and setter methods for each of the 7 parameters.
#Creating a CMoptions object and showing hte default parameters
opts <- CMoptions()
show(opts)
## CMoptions object to set ConceptMapper Options
## SearchStrategy: CONTIGUOUS_MATCH
## CaseMatch: CASE_INSENSITIVE
## Stemmer: NONE
## StopWords: NONE
## OrderIndependentLookup: ON
## FindAllMatches: YES
## SynonymType: ALL
To list the possible combinations:
combinations <- listCMOptions()
To create a CMoptions object having has SynonymType ‘EXACT_ONLY’
myopts <- CMoptions(SynonymType = 'EXACT_ONLY')
myopts
## CMoptions object to set ConceptMapper Options
## SearchStrategy: CONTIGUOUS_MATCH
## CaseMatch: CASE_INSENSITIVE
## Stemmer: NONE
## StopWords: NONE
## OrderIndependentLookup: ON
## FindAllMatches: YES
## SynonymType: EXACT_ONLY
To change a given parameter
#Changing the SearchStrategy parameter
SearchStrategy(myopts) <- 'SKIP_ANY_MATCH_ALLOW_OVERLAP'
myopts
## CMoptions object to set ConceptMapper Options
## SearchStrategy: SKIP_ANY_MATCH_ALLOW_OVERLAP
## CaseMatch: CASE_INSENSITIVE
## Stemmer: NONE
## StopWords: NONE
## OrderIndependentLookup: ON
## FindAllMatches: YES
## SynonymType: EXACT_ONLY
The class EntityFinder
defines a type system and runs the Conceptmapper pipeline. It can find concepts of any OBO ontology in a given text. The findEntities
and annotateDF
methods accept text within files or data.frame, respectively, as described in Section 4.1.
The function EntityFinder
automatically adapts to the provided input type, creates an instance of the EntityFinder
class to initialize the type system and runs the pipeline with the provided options and dictionary.
For example, to annotate the metadata derived from ChIP-seq experiments obtained from SRA with tissue and cell type concepts belonging to BRENDA ontology the following code can be used:
chipseq_dict_annot <- EntityFinder(sra_chip_seq[1:20,c('sample_accession', 'title', 'experiment_attribute', 'sample_attribute', 'description')], dictionary=sample_dict, options=myopts)
The resulting data.frame contains, for each row, a match to the provided dictionary for a specific document/sample (indicated in the first column). The annotation is reported with the id of the concept (term_id), its canonical name (term name), its URL in the obo format, and the matching sentence of the document.
sample_id | term_id | term_name | term_url | matched_sentence |
---|---|---|---|---|
SRS115184 | CL_0000000 | cell | http://purl.obolibrary.org/obo/CL_0000000 | cell |
SRS117344 | CL_0000000 | cell | http://purl.obolibrary.org/obo/CL_0000000 | cell |
SRS213443 | CL_0000066 | epithelial cell | http://purl.obolibrary.org/obo/CL_0000066 | cell: HCPEpiC || cell organism: Human || cell description: Human Choroid Plexus Epithelial |
SRS213443 | CL_0000000 | cell | http://purl.obolibrary.org/obo/CL_0000000 | cell |
SRS213443 | CL_0000066 | epithelial cell | http://purl.obolibrary.org/obo/CL_0000066 | cell organism: Human || cell description: Human Choroid Plexus Epithelial |
SRS213443 | CL_0000066 | epithelial cell | http://purl.obolibrary.org/obo/CL_0000066 | cell description: Human Choroid Plexus Epithelial |
SRS213443 | CL_0000066 | epithelial cell | http://purl.obolibrary.org/obo/CL_0000066 | Epithelial Cells || cell |
SRS241934 | CL_0000000 | cell | http://purl.obolibrary.org/obo/CL_0000000 | cell |
SRS266173 | CL_0000000 | cell | http://purl.obolibrary.org/obo/CL_0000000 | cell |
SRS285318 | CL_0000000 | cell | http://purl.obolibrary.org/obo/CL_0000000 | cell |
SRS336079 | CL_0000236 | B cell | http://purl.obolibrary.org/obo/CL_0000236 | cell: GM12878 || cell organism: human || cell description: B |
SRS336079 | CL_0000000 | cell | http://purl.obolibrary.org/obo/CL_0000000 | cell |
SRS336079 | CL_0000236 | B cell | http://purl.obolibrary.org/obo/CL_0000236 | cell organism: human || cell description: B |
SRS336079 | CL_0000236 | B cell | http://purl.obolibrary.org/obo/CL_0000236 | cell description: B |
SRS336079 | CL_0000945 | lymphocyte of B lineage | http://purl.obolibrary.org/obo/CL_0000945 | B-lymphocyte, lymphoblastoid, International HapMap Project - CEPH/Utah - European Caucasion, Epstein-Barr Virus || cell karyotype: normal || cell lineage: mesoderm || cell sex: F || treatment: None || treatment description: No special treatment or protocol applies || antibody: Pol2(phosphoS2) || antibody antibodydescription: Rabbit polyclonal against peptide conjugated to KLH derived from within residues 1600 - 1700 of |
SRS336079 | CL_0000236 | B cell | http://purl.obolibrary.org/obo/CL_0000236 | B-lymphocyte, lymphoblastoid, International HapMap Project - CEPH/Utah - European Caucasion, Epstein-Barr Virus || cell |
SRS336079 | CL_0000236 | B cell | http://purl.obolibrary.org/obo/CL_0000236 | B-lymphocyte |
SRS336079 | CL_0000542 | lymphocyte | http://purl.obolibrary.org/obo/CL_0000542 | lymphocyte |
SRS346539 | CL_0000000 | cell | http://purl.obolibrary.org/obo/CL_0000000 | cell |
SRS362733 | CL_0000000 | cell | http://purl.obolibrary.org/obo/CL_0000000 | cell |
The function EntityFinder
can also be used to identify the targeted entity of each ChIP-seq experiment, by retrieving gene names and histone types or modifications in the ChIP-seq metadata.
#Finding the TARGET entities
target_entities <- EntityFinder(input=sra_chip_seq[1:20,c('sample_accession', 'title', 'experiment_attribute', 'sample_attribute', 'description')], options = myopts, dictionary=targets)
sample_id | term_id | term_name | term_url | matched_sentence |
---|---|---|---|---|
SRS115184 | Reference T1 H3K4me3 | H3K4me3 | NA | H3K4me3 |
SRS117344 | Reference T1 H3K27me3 | H3K27me3 | NA | H3K27me3 |
SRS362733 | Reference T1 H3K79me2 | H3K79me2 | NA | H3K79me2 |
SRS362733 | Reference T2 H3K79me2 | H3K79me2 | NA | H3K79me2 |
SRS362733 | Reference T3 H3K79me2 | H3K79me2 | NA | H3K79me2 |
SRS362733 | Reference T4 H3K79me2 | H3K79me2 | NA | H3K79me2 |
SRS362733 | Reference T5 H3K79me2 | H3K79me2 | NA | H3K79me2 |
SRS362801 | Reference T1 H3K79me2 | H3K79me2 | NA | H3K79me2 |
SRS362801 | Reference T2 H3K79me2 | H3K79me2 | NA | H3K79me2 |
SRS362801 | Reference T3 H3K79me2 | H3K79me2 | NA | H3K79me2 |
SRS362801 | Reference T4 H3K79me2 | H3K79me2 | NA | H3K79me2 |
SRS362801 | Reference T5 H3K79me2 | H3K79me2 | NA | H3K79me2 |
SRS410226 | Reference T1 H3K27ac | H3K27ac | NA | H3K27ac |
SRS494656 | Reference T1 H3K4me1 | H3K4me1 | NA | H3K4me1 |
With Onassis it is possible to quantify the semantic similarity between the concepts of a given ontology using different semantic similarity measures. Similarity
is an Onassis class applying methods of the Java library slib (Harispe et al. 2014), which builds a semantic graph starting from OBO ontology concepts and their hierarchical relationships.
The following methods are available and are automatically chosen depending on the settings of the Similarity
function. The sim
and groupsim
methods allow the computation of semantic similarity between single terms (pairwise measures) and between group of terms (groupwise measures), respectively. Pairwise measures can be edge based, if they rely only on the structure of the ontology, or information-content based if they also consider the information that each term in the ontology carries. Rather, groupwise measures can be indirect, if they compute the pairwise similarity between each couple of terms, or direct if they consider each set of concepts as a whole.
The samplesim
method allows to determine the semantic similarity between two documents, each possibly associated to multiple concepts, using groupwise measures. Finally, the multisim
method allows to determine the semantic similarity between documents annotated with two or more ontologies: first samplesim
is run for each ontology, then a user defined function can be used to aggregate the resulting semantic similarities for each pair of documents.
The function listSimilarities
shows all the measures supported by Onassis. For details about the measures run {?Similarity}
.
#Instantiating the Similarity
similarities <- listSimilarities()
The following example shows the pairwise similarities between sample cell concepts obtained annotating the ChIP-seq metadata. The lin similarity measure is used by default, which relies on a ratio between the Information content (IC) of the Most Specific Common Ancestor of the compared concepts and the sum of their IC based on the information content of the most informative common ancestor of the considered concepts. In particular, the seco information content is used by default, which determines the specificity of each concept based on the number of concepts it subsumes.
found_terms <- unique(chipseq_dict_annot$term_url)
n <- length(found_terms)
ontologyfile <- obo
pairwise_results <- data.frame(term1 = character(0), term2= character(0), value = double(0L))
for(i in 1:(n-1)){
term1 <- as.character(found_terms[i])
j = i + 1
for(k in j:n){
term2 <- as.character(found_terms[k])
two_term_similarity <- Similarity(ontologyfile, term1, term2 )
new_row <- cbind(term1, term2, two_term_similarity)
pairwise_results <- rbind(pairwise_results, new_row )
}
}
pairwise_results <- unique(pairwise_results)
pairwise_results <- merge(pairwise_results, chipseq_dict_annot[, c('term_url', 'term_name')], by.x='term2', by.y='term_url', all.x=TRUE)
colnames(pairwise_results)[length(colnames(pairwise_results))] <- 'term2_name'
pairwise_results <- merge(pairwise_results, chipseq_dict_annot[, c('term_url', 'term_name')], by.x='term1', by.y='term_url', all.x=TRUE)
colnames(pairwise_results)[length(colnames(pairwise_results))] <- 'term1_name'
pairwise_results <- unique(pairwise_results)
In the following code the semantic similarity between two groups of terms is computed using the ui measure, a groupwise direct measure combining the intersection and the union of the set of ancestors of the two groups of concepts.
Similarity(obo, found_terms[1:2], found_terms[3])
## [1] 0.1875
Lastly, the pariwise semantic similarity between ChIP-seq samples is illustrated.
annotated_samples <- as.character(as.vector(unique(chipseq_dict_annot$sample_id)))
n <- length(annotated_samples)
samples_results <- data.frame(sample1 = character(0), sample2= character(0), value = double(0L))
samples_results <- matrix(0, nrow=n, ncol=n)
rownames(samples_results) <- colnames(samples_results) <- annotated_samples
for(i in 1:(n-1)){
sample1 <- as.character(annotated_samples[i])
j = i + 1
for(k in j:n){
sample2 <- as.character(annotated_samples[k])
two_samples_similarity <- Similarity(ontologyfile, sample1, sample2, chipseq_dict_annot)
samples_results[i, k] <- samples_results[k, i] <- two_samples_similarity
}
}
diag(samples_results) <- 1
heatmap.2(samples_results, density.info = "none", trace="none", main='Semantic similarity of annotated samples', margins=c(5,5))
The class Onassis was built to wrap the main functionalities of the package in a single class. It consists of 4 slots:
dictionary: stores the source dictionary used to find entities.
entities: a table containing the annotations of documents (samples). The list of unique concepts belonging to the dictionary and found in the metadata representing a given sample can be defined as a semantic set
similarity: a matrix of the similarities between the unique semantic sets identified in the entities table
scores: a dataset of quantitative measurements (e.g. gene expression) associated to the samples annotated in entities and separated in the different semantic sets identified in the annotation process.
In this section we illustrate the use of the Onassis class to annotate the previously retrieved metadata. The method annotate
takes as input a data frame of metadata to annotate, the type of dictionary and the path of an ontology file and returns an instance of class Onassis.
onassis_annotations <- annotate(sra_chip_seq, 'OBO',obo )
To retrieve the annotations in an object of class Onassis we provided the accessor method entities
onassis_entities <- entities(onassis_annotations)
sample_id | term_id | term_name | term_url | matched_sentence |
---|---|---|---|---|
SRS452629 | CL_0000000 | cell | http://purl.obolibrary.org/obo/CL_0000000 | cell |
SRS414704 | CL_0000000 | cell | http://purl.obolibrary.org/obo/CL_0000000 | cell |
SRS335861 | CL_0000000 | cell | http://purl.obolibrary.org/obo/CL_0000000 | cell |
SRS636394 | CL_0000000 | cell | http://purl.obolibrary.org/obo/CL_0000000 | cell |
SRS484930 | CL_0000000 | cell | http://purl.obolibrary.org/obo/CL_0000000 | Cell |
SRS519445 | CL_0000000 | cell | http://purl.obolibrary.org/obo/CL_0000000 | cell |
SRS287353 | CL_0000000 | cell | http://purl.obolibrary.org/obo/CL_0000000 | cell |
SRS518763 | CL_0000000 | cell | http://purl.obolibrary.org/obo/CL_0000000 | cell |
SRS366237 | CL_0000000 | cell | http://purl.obolibrary.org/obo/CL_0000000 | cell |
SRS335949 | CL_0000000, CL_0000236, CL_0000542 | cell, B cell, lymphocyte | http://purl.obolibrary.org/obo/CL_0000000, http://purl.obolibrary.org/obo/CL_0000236, http://purl.obolibrary.org/obo/CL_0000542 | cell, B-lymphocyte, lymphocyte |
The filterconcepts
method can be used to filter out unwanted annotations. It takes the Onassis object and removes from its entities the undesired concepts.
filtered_onassis <- filterconcepts(onassis_annotations, c('cell'))
sample_id | term_id | term_name | term_url | matched_sentence | |
---|---|---|---|---|---|
26 | SRS114716 | CL_0000988 | hematopoietic cell | http://purl.obolibrary.org/obo/CL_0000988 | cell, hematopoietic cell |
38 | SRS150662 | CL_0000066 | epithelial cell | http://purl.obolibrary.org/obo/CL_0000066 | cell, epithelial cell |
55 | SRS193335 | CL_0000988 | hematopoietic cell | http://purl.obolibrary.org/obo/CL_0000988 | cell, hematopoietic cell |
74 | SRS213465 | CL_0000236,CL_0000542 | B cell,lymphocyte | http://purl.obolibrary.org/obo/CL_0000236,http://purl.obolibrary.org/obo/CL_0000542 | cell, B-Lymphocyte, Lymphocyte |
84 | SRS259401 | CL_0000236 | B cell | http://purl.obolibrary.org/obo/CL_0000236 | B-cell, cell |
91 | SRS266509 | CL_0000066 | epithelial cell | http://purl.obolibrary.org/obo/CL_0000066 | cell, epithelial cell |
92 | SRS266540 | CL_0000066 | epithelial cell | http://purl.obolibrary.org/obo/CL_0000066 | cell, epithelial cell |
118 | SRS300080 | CL_0000236 | B cell | http://purl.obolibrary.org/obo/CL_0000236 | B-cell, cell |
119 | SRS300093 | CL_0000236 | B cell | http://purl.obolibrary.org/obo/CL_0000236 | B-cell, cell |
120 | SRS300100 | CL_0000236 | B cell | http://purl.obolibrary.org/obo/CL_0000236 | B-cell, cell |
123 | SRS309788 | CL_0000066 | epithelial cell | http://purl.obolibrary.org/obo/CL_0000066 | cell, epithelial cell |
128 | SRS334493 | CL_0000236 | B cell | http://purl.obolibrary.org/obo/CL_0000236 | B-cell, cell |
140 | SRS335949 | CL_0000236,CL_0000542 | B cell,lymphocyte | http://purl.obolibrary.org/obo/CL_0000236,http://purl.obolibrary.org/obo/CL_0000542 | cell, B-lymphocyte, lymphocyte |
146 | SRS336079 | CL_0000236,CL_0000542 | B cell,lymphocyte | http://purl.obolibrary.org/obo/CL_0000236,http://purl.obolibrary.org/obo/CL_0000542 | cell, B-lymphocyte, lymphocyte |
180 | SRS362679 | CL_0000066 | epithelial cell | http://purl.obolibrary.org/obo/CL_0000066 | cell, epithelial cell |
181 | SRS362689 | CL_0000236,CL_0000542 | B cell,lymphocyte | http://purl.obolibrary.org/obo/CL_0000236,http://purl.obolibrary.org/obo/CL_0000542 | cell, B-lymphocyte, lymphocyte |
206 | SRS365917 | CL_0000066 | epithelial cell | http://purl.obolibrary.org/obo/CL_0000066 | cell, epithelial cell |
207 | SRS365919 | CL_0000066 | epithelial cell | http://purl.obolibrary.org/obo/CL_0000066 | cell, epithelial cell |
211 | SRS365957 | CL_0000540 | neuron | http://purl.obolibrary.org/obo/CL_0000540 | Neuron, cell |
216 | SRS366055 | CL_0000066 | epithelial cell | http://purl.obolibrary.org/obo/CL_0000066 | cell, epithelial cell |
226 | SRS371749 | CL_0000066 | epithelial cell | http://purl.obolibrary.org/obo/CL_0000066 | cell, epithelial cell |
227 | SRS371783 | CL_0000066 | epithelial cell | http://purl.obolibrary.org/obo/CL_0000066 | cell, epithelial cell |
264 | SRS430188 | CL_0000081,CL_0000542 | blood cell,lymphocyte | http://purl.obolibrary.org/obo/CL_0000081,http://purl.obolibrary.org/obo/CL_0000542 | Blood || cell, cell, lymphocyte |
301 | SRS478217 | CL_0000236 | B cell | http://purl.obolibrary.org/obo/CL_0000236 | B cell, cell |
336 | SRS494681 | CL_0000542 | lymphocyte | http://purl.obolibrary.org/obo/CL_0000542 | cell, lymphocyte |
379 | SRS580028 | CL_0000236 | B cell | http://purl.obolibrary.org/obo/CL_0000236 | B-cell, cell |
383 | SRS606839 | CL_0000236 | B cell | http://purl.obolibrary.org/obo/CL_0000236 | B-cell, cell |
427 | SRS716511 | CL_0000236 | B cell | http://purl.obolibrary.org/obo/CL_0000236 | B cell, cell |
428 | SRS716512 | CL_0000236 | B cell | http://purl.obolibrary.org/obo/CL_0000236 | B cell, cell |
The method sim
cretes a matrix of the semantic similarities between the annotations of each couple of samples annotated in the entities slot of an Onassis object.
filtered_onassis <- sim(filtered_onassis)
Annotations with semantic similarities above a given threshold can be unified using the method collapse
. This method unifies the similar annotations by concatenating their unique concepts. Entities are replaced with the new concatenated annotations. For each concept in the concatenated annotations the number of samples associated is also reported, together with the total number of samples annotated with the new annotations.
The similarity slot will be consequently updated.
collapsed_onassis <- Onassis::collapse(filtered_onassis, 0.8)
head(entities(collapsed_onassis))
heatmap.2(simil(collapsed_onassis), margins=c(15,15), cexRow = 1, cexCol = 1)
Here is the output of sessionInfo() on the system on which this document was compiled through kintr:
## R version 3.5.1 Patched (2018-07-12 r74967)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 16.04.5 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.7-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.7-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=en_US.UTF-8
## [9] LC_ADDRESS=en_US.UTF-8 LC_TELEPHONE=en_US.UTF-8
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=en_US.UTF-8
##
## attached base packages:
## [1] parallel stats4 stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] kableExtra_0.9.0 org.Hs.eg.db_3.6.0 AnnotationDbi_1.42.1
## [4] IRanges_2.14.11 S4Vectors_0.18.3 Biobase_2.40.0
## [7] BiocGenerics_0.26.0 gplots_3.0.1 DT_0.4
## [10] Onassis_1.2.7 OnassisJavaLibs_1.2.0 rJava_0.9-10
## [13] BiocStyle_2.8.2
##
## loaded via a namespace (and not attached):
## [1] Rcpp_0.12.18 tidyr_0.8.1 gtools_3.8.1
## [4] assertthat_0.2.0 rprojroot_1.3-2 digest_0.6.17
## [7] R6_2.2.2 backports_1.1.2 RSQLite_2.1.1
## [10] evaluate_0.11 highr_0.7 httr_1.3.1
## [13] pillar_1.3.0 rlang_0.2.2 rstudioapi_0.7
## [16] data.table_1.11.4 gdata_2.18.0 blob_1.1.1
## [19] rmarkdown_1.10 readr_1.1.1 stringr_1.3.1
## [22] htmlwidgets_1.2 RCurl_1.95-4.11 bit_1.1-14
## [25] munsell_0.5.0 compiler_3.5.1 xfun_0.3
## [28] pkgconfig_2.0.2 htmltools_0.3.6 tidyselect_0.2.4
## [31] tibble_1.4.2 GEOquery_2.48.0 bookdown_0.7
## [34] viridisLite_0.3.0 crayon_1.3.4 dplyr_0.7.6
## [37] bitops_1.0-6 DBI_1.0.0 magrittr_1.5
## [40] scales_1.0.0 KernSmooth_2.23-15 stringi_1.2.4
## [43] bindrcpp_0.2.2 limma_3.36.3 xml2_1.2.0
## [46] tools_3.5.1 bit64_0.9-7 glue_1.3.0
## [49] purrr_0.2.5 hms_0.4.2 yaml_2.2.0
## [52] colorspace_1.3-2 caTools_1.17.1.1 rvest_0.3.2
## [55] memoise_1.1.0 GEOmetadb_1.42.0 knitr_1.20
## [58] bindr_0.1.1
Galeota, Eugenia, and Mattia Pelizzola. 2016. “Ontology-Based Annotations and Semantic Relations in Large-Scale (Epi) Genomics Data.” Briefings in Bioinformatics. Oxford Univ Press, bbw036.
Harispe, Sébastien, Sylvie Ranwez, Stefan Janaqi, and Jacky Montmain. 2014. “The Semantic Measures Library and Toolkit: Fast Computation of Semantic Similarity and Relatedness Using Biomedical Ontologies.” Bioinformatics 30 (5). Oxford Univ Press:740–42.
Mei, Shenglin, Qian Qin, Qiu Wu, Hanfei Sun, Rongbin Zheng, Chongzhi Zang, Muyuan Zhu, et al. 2017. “Cistrome Data Browser: A Data Portal for Chip-Seq and Chromatin Accessibility Data in Human and Mouse.” Nucleic Acids Research 45 (D1):D658–D662. https://doi.org/10.1093/nar/gkw983.
Verspoor, K., W. Baumgartner Jr, C. Roeder, and L. Hunter. 2009. “Abstracting the Types away from a UIMA Type System.” From Form to Meaning: Processing Texts Automatically. Tübingen:Narr, 249–56.
Zhu, Yuelin, Robert M. Stephens, Paul S. Meltzer, and Sean R. Davis. 2013. “SRAdb: Query and Use Public Next-Generation Sequencing Data from Within R.” BMC Bioinformatics 14 (1):19. https://doi.org/10.1186/1471-2105-14-19.