
BrowserViz

Paul Shannon

April 30, 2018

Contents

1 Introduction . 1

2 A Standard Message Format . 2

3 The Simple BrowserViz “Application” 3

4 Simple Subclassing Overview. 4

1 Introduction

BrowserViz provides the basis for, and a very simple working example of, interactive R/browser
visualization. Thus two interactive powerful and complementary environments are linked, cre-
ating a powerful hybrid setting for exploratory data analysis.
This work is motivated by our belief that contemporary web browsers, supporting HTML5
and Canvas, and running increasingly powerful Javascript libraries (for example, d3 and
cytoscape.js have become the best setting in which to develop interactive graphics for ex-
ploratory data analysis. We predict that web browsers, already powerful and easily pro-
grammed, will steadily improve in rendiring power and interactivity, and thus remain the
optimal setting for interactive R visualization for years to come. (An example of what the
future of browser-based graphics may hold can be seen in Google’s NaCL project https:
//developer.chrome.com/native-client, a sand-boxing technique for running native OpenGL
3D applications in the browser.)
Shiny and htmlwidgets are two very popular packages which provide solutions to this same
general problem: how does one use the power of web browser graphics from R? Both of
these package create bindings in R to HTML widgets and Javascript objects. This creates
representations for these objects in R: a button, a d3 scatterplot, an interactive geographic
map. The two packages provide elegant support for these bindings and a clear path to
creating more of them.
BrowserViz’s difference from these fine and popular packages by provding only loose coupling
of R and the browser. In slogan form, our approach can be summarized, “let R be R,
and Javascript be Javascript”. Two rich programming environments are linked, but the
environments are kept maximally ignorant of each other. Only simple JSON messages pass
back and forth, and these are at a high semantic level: no HTML, CSS or Javascript. Rather
than creating representations of web objects in R, which would be tight-coupling of the two
environments, BrowserViz provides a style of programming in which

http://bioconductor.org/packages/BrowserViz
https://developer.chrome.com/native-client
https://developer.chrome.com/native-client
https://CRAN.R-project.org/package=Shiny
https://CRAN.R-project.org/package=htmlwidgets
http://bioconductor.org/packages/BrowserViz's
http://bioconductor.org/packages/BrowserViz

BrowserViz

• Web objects are (just as in standard widespread web programming) created in HTML,
CSS and Javascript

• JSON and websockets provide simple explicit message passing between R and the
browser

• High-level web objects (i.e., an xy plotter, or a network viewer) are created by and
manipulated by Javscript functions at the request of high-level R function calls

• Web elements can initiate (call back to) R functions
• A traditional event-driven architecture is used throughout, in which events are either R

function calls or user (keyboard or mouse) actions in the browser.
BrowserViz provides a very low threshold for those wishing to create R/web browser visualiza-
tions. This base package hides the complexity of websocket initiation and message passing.
The websocket communication channel is created with a single R function call. Passing
messages and handling responses is similarly simple. The intricacy (or simplicity) of the
web browser interface is determined by the programmer. A vast collection of easily available
books, examples, tutorials, and support websites make web browser programming especially
easy to learn. The BrowserViz approach will be of interest to any programmer interested in
the visualization of data, and proficient in – or willing to learn – both R and Javascript.
Standalone web sites can be created, but the primary intended audience for this package is
the R programmmer exploring and analyzing data in R and using the browser visualization
for the indispensable benefits it provides. We hope that many visualization tools will be
created. We provide a simple x-y plotter (see BrowserVizDemo) to illustrate how to write a
BrowserViz subclass application. The RCyjs is a full-featured visualization tool for network
visualization built upon cytoscape.js (see http://js.cytoscape.org). and the web browser.
The BrowserViz class, though a base class intended for subclassing, includes a simple demo
which performs a few elementary browser manipulations, and queries the browser for some
simple state (window size, window title, browser version). The principal goal of the package
is to provide the the websocket “plumbing” along with a standard (simple, open-ended)
message protocol for communicating between the two environments.

2 A Standard Message Format

Just as the ubiquitous and language-neutral websockets protocol provides the BrowserViz
communication mechanism, so does JSON provide the message notation. Native data types
in R (a named list) and Javascript (an object, with key:value pairs) are easily converted to and
from JSON by libraries standard in each language. We have adopted a simple, adaptable data
structure flexible enough for all of the uses so far encountered. In JSON (and Javascript):

{{cmd: "setBrowserWindowTitle", status: "request", callback:"handleResponse",

payload: "BrowserViz Demo"}}

Websocket servers both send and receive messages. Thus a typical BrowserViz event begins
with sending a message from one environment to the other, and often concludes with some
sort of a return or “callback” message.

• cmd : the name of the operation the sender wishes to be performed by the receiver.
• status: might be “success”, “failure”, “error”, “deferred response”.

2

http://bioconductor.org/packages/BrowserViz
http://bioconductor.org/packages/BrowserViz
http://bioconductor.org/packages/BrowserVizDemo
http://bioconductor.org/packages/RCyjs
http://js.cytoscape.org
http://bioconductor.org/packages/BrowserViz
http://bioconductor.org/packages/BrowserViz
http://bioconductor.org/packages/BrowserViz

BrowserViz

• callback: provided by the sender, this specifies the operation which the receiver is to
call in the client after it (the receiver) completes the operation it was asked to perform.

• payload An open-ended data structure, sometimes empty, as simple as a character
string, as complex as any conceivable deeply nested list.

> library(jsonlite)

> msg <- toJSON(list(cmd="setBrowserWindowTitle", status="request",

+ callback="handleResponse", payload="BrowserViz demo"))

The callback for this request could be empty, which by convention we encode as the empty
string. The calling code, in R, and the receiving code, in Javascript, only need to be consis-
tent. If the caller provides a non-empty callback, the Javascript receiver should craft and send
a return message with the canonical four fields specifying cmd=callback and any payload the
caller expects, perhaps

{cmd: "handleResponse", status: "success", callback:"", payload: "BrowserViz Demo"}

An empty payload could also be used, in which case the success status of the return command
is the only information returned from Javascript to R. All decisions of this sort are left to the
programmer. Often the same person writes the R and the Javascript code that talk back and
forth over the websocket. If different programmers are involved, then careful communication
and documentation is required, of the expectations, contraints and payload structure.

3 The Simple BrowserViz “Application”

We predict that the principal use of BrowserViz will be as a base class for other rich visualza-
tion packages, and that authors of those derived classes will be be able to proceed without
any direct involvement in the nuts and bolts of websocket creation and handling. Nonethe-
less, BrowserViz is a complete R/browser application, albeit one with only a few features.
These features (R methods on the BrowserViz object), few though they be, are automatically
available to all BrowserViz subclasses.

• port:
• ready :
• browserResponseReady :
• getBrowserResponse:
• closeWebSocket:
• send :
• getBrowserWindowSize:
• getBrowserWindowTitle:
• setBrowserWindowTitle:

This describes the R component of the package. It is complemented by an HTML/Javascript/CSS
component; call it the “web component”. In simple visualizations this web component is a
single file whose name is provided to the BrowserViz constructor. We depend upon the
httpuv package: it functions primarily as a websocket server, but also includes (and starts
up as) a simple http web server. Once the web socket is created and opened by BrowserViz ,
the constructor asks the default web browser to display the web component’s html page.

3

http://bioconductor.org/packages/BrowserViz
http://bioconductor.org/packages/BrowserViz
http://bioconductor.org/packages/BrowserViz
http://bioconductor.org/packages/httpuv
http://bioconductor.org/packages/BrowserViz

BrowserViz

Javascript in this page then opens a connection back to the BrowserViz web socket server,
and the application is ready to go, driven by user events – either function calls in R, or mouse
and keyboard events in the browser.

4 Simple Subclassing Overview

The BrowserVizDemo package shows how to build upon BrowserViz . BrowserVizDemo is an
S4 class; its Javascript component uses the d3 graphics library to render x,y points onto an
auto-scaled canvas with labeled axes. The class contains BrowserViz and thus has all of the
above operations, and these in addition

• plot: takes an x and y vector as arguments
• getSelection: returns the names of all d3 selected points, in the browser plot, to R.

Thus the R programming is quite simple.
Neither Javascript nor HTML provide any native mechanism for class inheritance. So in
order to create the web component of a new visualization application, we provide a simple
Javascript module, BrowserViz.js available (for now; a better location will be found) at
http://oncoscape.sttrcancer.org/oncoscape/js/BrowserViz.js
It simplifies your Javascript coding significantly. It is used in your webapp (Javascript, HTML,
CSS file/s) like this (see BrowserVizDemo for the full story).

hub = BrowserViz(); // create an instance of the BrowserViz hub

bvDemo = BrowserVizDemo() // create your own Javascript module object

bvDemo.init(hub); // initialization of your module

hub.addOnDocumentReadyFunction(bvDemo.initializUI); // register functions for the hub to call

// register your web apps message handlers: the hub will dispatch

// incoming messages to these, based on the "cmd" field in the JSON message

hub.addMessageHandler("ready", ready)

hub.addMessageHandler("plotxy", d3plotPrep)

hub.addMessageHandler("getSelection", getSelection)

// with all setup complete, now

hub.init(); // socket connections setup

hub.start(); // and started

// your handlers (locally defined functions which do things in the browser)

// will sometimes (or often) send a response back to R

// the hub makes that easy.

// first, build up your four-field JSON message, then

hub.send(return_msg);

A close study of the BrowserVizDemo will give you a good start towards creating your own
custom webapp and BrowserViz subclass.

4

http://bioconductor.org/packages/BrowserViz
http://bioconductor.org/packages/BrowserVizDemo
http://bioconductor.org/packages/BrowserViz
http://bioconductor.org/packages/BrowserVizDemo
http://bioconductor.org/packages/BrowserViz
http://oncoscape.sttrcancer.org/oncoscape/js/BrowserViz.js
http://bioconductor.org/packages/BrowserVizDemo
http://bioconductor.org/packages/BrowserVizDemo

	1 Introduction
	2 A Standard Message Format
	3 The Simple BrowserViz ``Application''
	4 Simple Subclassing Overview

