K-nearest neighbors:

We read in input.scone.csv, which is our file modified (and renamed) from the get.marker.names() function. The K-nearest neighbor generation is derived from the Fast Nearest Neighbors (FNN) R package, within our function Fnn(), which takes as input the “input markers” to be used, along with the concatenated data previously generated, and the desired k. We advise the default selection to the total number of cells in the dataset divided by 100, as has been optimized on existing mass cytometry datasets. The output of this function is a matrix of each cell and the identity of its k-nearest neighbors, in terms of its row number in the dataset used here as input.

library(Sconify)
# Markers from the user-generated excel file
marker.file <- system.file('extdata', 'markers.csv', package = "Sconify")
markers <- ParseMarkers(marker.file)

# How to convert your excel sheet into vector of static and functional markers
markers
## $input
##  [1] "CD3(Cd110)Di"           "CD3(Cd111)Di"          
##  [3] "CD3(Cd112)Di"           "CD235-61-7-15(In113)Di"
##  [5] "CD3(Cd114)Di"           "CD45(In115)Di"         
##  [7] "CD19(Nd142)Di"          "CD22(Nd143)Di"         
##  [9] "IgD(Nd145)Di"           "CD79b(Nd146)Di"        
## [11] "CD20(Sm147)Di"          "CD34(Nd148)Di"         
## [13] "CD179a(Sm149)Di"        "CD72(Eu151)Di"         
## [15] "IgM(Eu153)Di"           "Kappa(Sm154)Di"        
## [17] "CD10(Gd156)Di"          "Lambda(Gd157)Di"       
## [19] "CD24(Dy161)Di"          "TdT(Dy163)Di"          
## [21] "Rag1(Dy164)Di"          "PreBCR(Ho165)Di"       
## [23] "CD43(Er167)Di"          "CD38(Er168)Di"         
## [25] "CD40(Er170)Di"          "CD33(Yb173)Di"         
## [27] "HLA-DR(Yb174)Di"       
## 
## $functional
##  [1] "pCrkL(Lu175)Di"  "pCREB(Yb176)Di"  "pBTK(Yb171)Di"  
##  [4] "pS6(Yb172)Di"    "cPARP(La139)Di"  "pPLCg2(Pr141)Di"
##  [7] "pSrc(Nd144)Di"   "Ki67(Sm152)Di"   "pErk12(Gd155)Di"
## [10] "pSTAT3(Gd158)Di" "pAKT(Tb159)Di"   "pBLNK(Gd160)Di" 
## [13] "pP38(Tm169)Di"   "pSTAT5(Nd150)Di" "pSyk(Dy162)Di"  
## [16] "tIkBa(Er166)Di"
# Get the particular markers to be used as knn and knn statistics input
input.markers <- markers[[1]]
funct.markers <- markers[[2]]

# Selection of the k. See "Finding Ideal K" vignette
k <- 30

# The built-in scone functions
wand.nn <- Fnn(cell.df = wand.combined, input.markers = input.markers, k = k)
# Cell identity is in rows, k-nearest neighbors are columns
# List of 2 includes the cell identity of each nn, 
#   and the euclidean distance between
#   itself and the cell of interest

# Indices
str(wand.nn[[1]])
##  int [1:1000, 1:30] 748 357 639 206 890 862 532 212 547 704 ...
wand.nn[[1]][1:20, 1:10]
##       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
##  [1,]  748  797  503  407  563   98  374  607  570   114
##  [2,]  357  282  515  286   17  886  903  244  465   536
##  [3,]  639  887    4  560  554  441  148  578  370   585
##  [4,]  206  947  578  547  815   85  533    3  731   497
##  [5,]  890  400   94   99  675  455  965  810  823   540
##  [6,]  862  700  156   14  452  720  881  437   59   896
##  [7,]  532  725  106  823  408  216  577  394   99   159
##  [8,]  212  179  100   71  286   17  515    2  410   465
##  [9,]  547  815  319  914  965  873  544  875  731   533
## [10,]  704   96  428  571  949  494  140  287  952   128
## [11,]  341  500  806  126  178  379  821  959  140   923
## [12,]  365  928  373  542  755  983  524   79  706   227
## [13,]  801  228  276  602  568  893   73  698  828   143
## [14,]  768  875  764  236  705  753  720  991  619   108
## [15,]  923  140  959  663  851  582  126  235  128   603
## [16,]  228   67 1000  893  300   20  229   73   80   371
## [17,]    2  778  536  286    8  357  282  212  100   929
## [18,]  721  825  436  873  588  644   69   57  470   104
## [19,]  412   68  709  136  657  522  267  300  535   108
## [20,]  893 1000  796  772  602  188  936  227   67    80
# Distance
str(wand.nn[[2]])
##  num [1:1000, 1:30] 3.75 2.55 3.69 3.28 3.48 ...
wand.nn[[2]][1:20, 1:10]
##           [,1]     [,2]     [,3]     [,4]     [,5]     [,6]     [,7]
##  [1,] 3.747977 3.993102 4.014178 4.190158 4.444663 4.465577 4.538928
##  [2,] 2.554459 2.618296 3.174172 3.265561 3.679249 3.785996 3.909199
##  [3,] 3.685447 3.730388 3.731102 3.779581 3.843437 3.870212 3.878723
##  [4,] 3.279469 3.444464 3.510274 3.545277 3.603576 3.607961 3.682184
##  [5,] 3.475765 3.588612 3.622264 3.624838 3.740483 3.763912 3.822214
##  [6,] 3.857160 3.898985 4.026514 4.270014 4.276164 4.291213 4.390021
##  [7,] 2.758565 2.998026 3.137071 3.229995 3.292420 3.358817 3.412648
##  [8,] 3.388935 3.582441 3.738259 3.814607 4.066634 4.146279 4.150085
##  [9,] 2.525279 2.584284 3.031190 3.071461 3.080451 3.084824 3.096479
## [10,] 4.225018 4.237876 4.617088 4.699386 4.757414 4.861939 4.920620
## [11,] 4.355181 4.392323 4.445316 4.449738 4.471956 4.578365 4.611345
## [12,] 3.289579 3.394217 3.465452 3.498359 3.515097 3.585324 3.664394
## [13,] 3.408984 3.460197 3.498565 3.556694 3.568768 3.573260 3.586969
## [14,] 3.281136 3.309226 3.417577 3.514027 3.548161 3.552353 3.573422
## [15,] 4.028213 4.211292 4.352254 4.359839 4.398015 4.409507 4.488994
## [16,] 2.857515 2.896975 2.978146 3.198153 3.217015 3.233042 3.305846
## [17,] 3.679249 3.904158 3.943316 3.986689 4.146279 4.236226 4.253201
## [18,] 2.810474 2.824842 2.843630 3.102102 3.230254 3.241720 3.329606
## [19,] 3.370914 3.654803 3.694001 3.821292 3.851958 3.855553 3.923677
## [20,] 2.071327 2.180085 2.330242 2.620281 2.637831 2.648087 2.648569
##           [,8]     [,9]    [,10]
##  [1,] 4.554106 4.589350 4.598470
##  [2,] 3.928391 3.945356 3.997474
##  [3,] 3.906250 3.922677 4.049898
##  [4,] 3.731102 3.837096 3.839162
##  [5,] 3.830374 3.849046 3.883309
##  [6,] 4.396711 4.460467 4.474204
##  [7,] 3.453405 3.589407 3.615929
##  [8,] 4.198159 4.323566 4.625197
##  [9,] 3.136830 3.164047 3.236257
## [10,] 4.921028 5.082532 5.089164
## [11,] 4.724322 4.796276 4.802364
## [12,] 3.691435 3.787543 3.793872
## [13,] 3.610366 3.633601 3.654356
## [14,] 3.582380 3.598714 3.661306
## [15,] 4.531708 4.549111 4.642835
## [16,] 3.330853 3.368265 3.418513
## [17,] 4.313055 4.395033 4.469473
## [18,] 3.333952 3.349297 3.358645
## [19,] 3.958140 4.021636 4.029057
## [20,] 2.668764 2.759300 2.760765

Finding scone values:

This function iterates through each KNN, and performs a series of calculations. The first is fold change values for each maker per KNN, where the user chooses whether this will be based on medians or means. The second is a statistical test, where the user chooses t test or Mann-Whitney U test. I prefer the latter, because it does not assume any properties of the distributions. Of note, the p values are adjusted for false discovery rate, and therefore are called q values in the output of this function. The user also inputs a threshold parameter (default 0.05), where the fold change values will only be shown if the corresponding statistical test returns a q value below said threshold. Finally, the “multiple.donor.compare” option, if set to TRUE will perform a t test based on the mean per-marker values of each donor. This is to allow the user to make comparisons across replicates or multiple donors if that is relevant to the user’s biological questions. This function returns a matrix of cells by computed values (change and statistical test results, labeled either marker.change or marker.qvalue). This matrix is intermediate, as it gets concatenated with the original input matrix in the post-processing step (see the relevant vignette). We show the code and the output below. See the post-processing vignette, where we show how this gets combined with the input data, and additional analysis is performed.

wand.scone <- SconeValues(nn.matrix = wand.nn, 
                      cell.data = wand.combined, 
                      scone.markers = funct.markers, 
                      unstim = "basal")

wand.scone
## # A tibble: 1,000 x 34
##    `pCrkL(Lu175)Di… `pCREB(Yb176)Di… `pBTK(Yb171)Di.… `pS6(Yb172)Di.I…
##               <dbl>            <dbl>            <dbl>            <dbl>
##  1                1            1                0.945            0.719
##  2                1            1                1                0.975
##  3                1            1                0.948            0.899
##  4                1            1                0.968            0.971
##  5                1            1                0.805            0.814
##  6                1            1                0.748            0.806
##  7                1            1                1                0.985
##  8                1            0.943            1                1    
##  9                1            1                0.698            0.971
## 10                1            0.883            1                0.674
## # ... with 990 more rows, and 30 more variables:
## #   `cPARP(La139)Di.IL7.qvalue` <dbl>, `pPLCg2(Pr141)Di.IL7.qvalue` <dbl>,
## #   `pSrc(Nd144)Di.IL7.qvalue` <dbl>, `Ki67(Sm152)Di.IL7.qvalue` <dbl>,
## #   `pErk12(Gd155)Di.IL7.qvalue` <dbl>,
## #   `pSTAT3(Gd158)Di.IL7.qvalue` <dbl>, `pAKT(Tb159)Di.IL7.qvalue` <dbl>,
## #   `pBLNK(Gd160)Di.IL7.qvalue` <dbl>, `pP38(Tm169)Di.IL7.qvalue` <dbl>,
## #   `pSTAT5(Nd150)Di.IL7.qvalue` <dbl>, `pSyk(Dy162)Di.IL7.qvalue` <dbl>,
## #   `tIkBa(Er166)Di.IL7.qvalue` <dbl>, `pCrkL(Lu175)Di.IL7.change` <dbl>,
## #   `pCREB(Yb176)Di.IL7.change` <dbl>, `pBTK(Yb171)Di.IL7.change` <dbl>,
## #   `pS6(Yb172)Di.IL7.change` <dbl>, `cPARP(La139)Di.IL7.change` <dbl>,
## #   `pPLCg2(Pr141)Di.IL7.change` <dbl>, `pSrc(Nd144)Di.IL7.change` <dbl>,
## #   `Ki67(Sm152)Di.IL7.change` <dbl>, `pErk12(Gd155)Di.IL7.change` <dbl>,
## #   `pSTAT3(Gd158)Di.IL7.change` <dbl>, `pAKT(Tb159)Di.IL7.change` <dbl>,
## #   `pBLNK(Gd160)Di.IL7.change` <dbl>, `pP38(Tm169)Di.IL7.change` <dbl>,
## #   `pSTAT5(Nd150)Di.IL7.change` <dbl>, `pSyk(Dy162)Di.IL7.change` <dbl>,
## #   `tIkBa(Er166)Di.IL7.change` <dbl>, IL7.fraction.cond.2 <dbl>,
## #   density <dbl>

For programmers: performing additional per-KNN statistics

If one wants to export KNN data to perform other statistics not available in this package, then I provide a function that produces a list of each cell identity in the original input data matrix, and a matrix of all cells x features of its KNN.

I also provide a function to find the KNN density estimation independently of the rest of the “scone.values” analysis, to save time if density is all the user wants. With this density estimation, one can perform interesting analysis, ranging from understanding phenotypic density changes along a developmental progression (see post-processing vignette for an example), to trying out density-based binning methods (eg. X-shift). Of note, this density is specifically one divided by the aveage distance to k-nearest neighbors. This specific measure is related to the Shannon Entropy estimate of that point on the manifold (https://hal.archives-ouvertes.fr/hal-01068081/document).

I use this metric to avoid the unusual properties of the volume of a sphere as it increases in dimensions (https://en.wikipedia.org/wiki/Volume_of_an_n-ball). This being said, one can modify this vector to be such a density estimation (example http://www.cs.haifa.ac.il/~rita/ml_course/lectures_old/KNN.pdf), by treating the distance to knn as the radius of a n-dimensional sphere and incoroprating said volume accordingly.

An individual with basic programming skills can iterate through these elements to perform the statistics of one’s choosing. Examples would include per-KNN regression and classification, or feature imputation. The additional functionality is shown below, with the example knn.list in the package being the first ten instances:

# Constructs KNN list, computes KNN density estimation
wand.knn.list <- MakeKnnList(cell.data = wand.combined, nn.matrix = wand.nn)
wand.knn.list[[8]]
## # A tibble: 30 x 51
##    `CD3(Cd110)Di` `CD3(Cd111)Di` `CD3(Cd112)Di` `CD235-61-7-15(…
##             <dbl>          <dbl>          <dbl>            <dbl>
##  1        -0.358         -0.126       -0.0997          -1.14    
##  2        -1.13          -0.888        0.165           -1.49    
##  3        -1.06          -1.16        -1.39            -1.54    
##  4        -0.660         -0.364       -0.141            0.450   
##  5        -0.0337        -0.117       -0.583            0.0137  
##  6        -0.207         -0.184       -0.562           -2.39    
##  7        -0.0894        -0.309       -0.000283         0.253   
##  8        -0.0638        -0.235       -0.265           -0.240   
##  9        -0.138          1.73        -0.0919          -0.000499
## 10        -0.692         -0.0685       0.141           -0.633   
## # ... with 20 more rows, and 47 more variables: `CD3(Cd114)Di` <dbl>,
## #   `CD45(In115)Di` <dbl>, `CD19(Nd142)Di` <dbl>, `CD22(Nd143)Di` <dbl>,
## #   `IgD(Nd145)Di` <dbl>, `CD79b(Nd146)Di` <dbl>, `CD20(Sm147)Di` <dbl>,
## #   `CD34(Nd148)Di` <dbl>, `CD179a(Sm149)Di` <dbl>, `CD72(Eu151)Di` <dbl>,
## #   `IgM(Eu153)Di` <dbl>, `Kappa(Sm154)Di` <dbl>, `CD10(Gd156)Di` <dbl>,
## #   `Lambda(Gd157)Di` <dbl>, `CD24(Dy161)Di` <dbl>, `TdT(Dy163)Di` <dbl>,
## #   `Rag1(Dy164)Di` <dbl>, `PreBCR(Ho165)Di` <dbl>, `CD43(Er167)Di` <dbl>,
## #   `CD38(Er168)Di` <dbl>, `CD40(Er170)Di` <dbl>, `CD33(Yb173)Di` <dbl>,
## #   `HLA-DR(Yb174)Di` <dbl>, Time <dbl>, Cell_length <dbl>,
## #   `cPARP(La139)Di` <dbl>, `pPLCg2(Pr141)Di` <dbl>,
## #   `pSrc(Nd144)Di` <dbl>, `pSTAT5(Nd150)Di` <dbl>, `Ki67(Sm152)Di` <dbl>,
## #   `pErk12(Gd155)Di` <dbl>, `pSTAT3(Gd158)Di` <dbl>,
## #   `pAKT(Tb159)Di` <dbl>, `pBLNK(Gd160)Di` <dbl>, `pSyk(Dy162)Di` <dbl>,
## #   `tIkBa(Er166)Di` <dbl>, `pP38(Tm169)Di` <dbl>, `pBTK(Yb171)Di` <dbl>,
## #   `pS6(Yb172)Di` <dbl>, `pCrkL(Lu175)Di` <dbl>, `pCREB(Yb176)Di` <dbl>,
## #   `DNA1(Ir191)Di` <dbl>, `DNA2(Ir193)Di` <dbl>,
## #   `Viability1(Pt195)Di` <dbl>, `Viability2(Pt196)Di` <dbl>,
## #   wanderlust <dbl>, condition <chr>
# Finds the KNN density estimation for each cell, ordered by column, in the 
# original data matrix
wand.knn.density <- GetKnnDe(nn.matrix = wand.nn)
str(wand.knn.density)
##  num [1:1000] 0.218 0.232 0.241 0.26 0.255 ...