Contents

1 Overview

DelayedMatrixStats ports the matrixStats API to work with DelayedMatrix objects from the DelayedArray package. It provides high-performing functions operating on rows and columns of DelayedMatrix objects, including all subclasses such as RleArray (from the DelayedArray package) and HDF5Array (from the HDF5Array) as well as supporting all types of seeds, such as matrix (from the base package) and Matrix (from the Matrix package).

2 How can DelayedMatrixStats help me?

The DelayedArray package allows developers to store array-like data using in-memory or on-disk representations (e.g., in HDF5 files) and provides a common and familiar array-like interface for interacting with these data.

The DelayedMatrixStats package is designed to make life easier for Bioconductor developers wanting to use DelayedArray by providing a rich set of column-wise and row-wise summary functions.

We briefly demonstrate and explain these two features using a simple example. We’ll simulate some (unrealistic) RNA-seq read counts data from 10,000 genes and 20 samples and store it on disk as a HDF5Array:

library(DelayedArray)

x <- do.call(cbind, lapply(1:20, function(j) {
  rpois(n = 10000, lambda = sample(20:40, 10000, replace = TRUE))
}))
colnames(x) <- paste0("S", 1:20)
x <- realize(x, "HDF5Array")
x
#> <10000 x 20> DelayedMatrix object of type "integer":
#>           S1  S2  S3  S4 ... S17 S18 S19 S20
#>     [1,]  30  23  27  39   .  42  52  19  31
#>     [2,]  29  23  31  19   .  24  33  49  41
#>     [3,]  24  40  18  28   .  23  25  23  27
#>     [4,]  20  28  35  14   .  24  42  36  30
#>     [5,]  40  27  24  27   .  29  25  38  30
#>      ...   .   .   .   .   .   .   .   .   .
#>  [9996,]  37  23  19  19   .  21  31  28  23
#>  [9997,]  26  24  33  43   .  26  38  16  24
#>  [9998,]  22  32  21  41   .  45  36  26  46
#>  [9999,]  21  34  27  37   .  45  39  32  29
#> [10000,]  33  18  43  38   .  13  38  21  49

Suppose you wish to compute the standard deviation of the read counts for each gene.

You might think to use apply() like in the following:

system.time(row_sds <- apply(x, 1, sd))
#>    user  system elapsed 
#> 279.142   4.086 284.388
head(row_sds)
#> [1] 9.651152 7.913180 9.090770 7.547045 8.315331 9.292895

This works, but takes quite a while.

Or perhaps you already know that the matrixStats package provides a rowSds() function:

matrixStats::rowSds(x)
#> Error in rowVars(x, rows = rows, cols = cols, na.rm = na.rm, center = center, : Argument 'x' must be a matrix or a vector.

Unfortunately (and perhaps unsurprisingly) this doesn’t work. matrixStats is designed for use on in-memory matrix objects. Well, why don’t we just first realize our data in-memory and then use matrixStats

system.time(row_sds <- matrixStats::rowSds(as.matrix(x)))
#>    user  system elapsed 
#>   0.014   0.001   0.014
head(row_sds)
#> [1] 9.651152 7.913180 9.090770 7.547045 8.315331 9.292895

This works and is many times faster than the apply()-based approach! However, it rather defeats the purpose of using a HDF5Array for storing the data since we have to bring all the data into memory at once to compute the result.

Instead, we can use DelayedMatrixStats::rowSds(), which has the speed benefits of matrixStats::rowSds()1 but without having to load the entire data into memory at once2:

library(DelayedMatrixStats)

system.time(row_sds <- rowSds(x))
#>    user  system elapsed 
#>   0.059   0.001   0.058
head(row_sds)
#> [1] 9.651152 7.913180 9.090770 7.547045 8.315331 9.292895

Finally, by using DelayedMatrixStats we can use the same code, (colMedians(x)) regardless of whether the input is an ordinary matrix or a DelayedMatrix. This is useful for packages wishing to support both types of objects, e.g., packages wanting to retain backward compatibility or during a transition period from matrix-based to DelayeMatrix-based objects.

3 Supported methods

The initial release of DelayedMatrixStats supports the complete column-wise and row-wise API matrixStats API3. Please see the matrixStats vignette (available online) for a summary these methods. The following table documents the API coverage and availability of ‘seed-aware’ methods in the current version of DelayedMatrixStats, where:

Method Block processing base::matrix optimized Matrix::Matrix optimized DelayedArray::RleArray (SolidRleArraySeed) optimized DelayedArray::RleArray (ChunkedRleArraySeed) optimized HDF5Array::HDF5Matrix optimized base::data.frame optimized S4Vectors::DataFrame optimized
colAlls()
colAnyMissings()
colAnyNAs()
colAnys()
colAvgsPerRowSet()
colCollapse()
colCounts()
colCummaxs()
colCummins()
colCumprods()
colCumsums()
colDiffs()
colIQRDiffs()
colIQRs()
colLogSumExps()
colMadDiffs()
colMads()
colMaxs() ☑️
colMeans2()
colMedians()
colMins() ☑️
colOrderStats()
colProds()
colQuantiles()
colRanges() ☑️
colRanks()
colSdDiffs()
colSds()
colSums2()
colTabulates()
colVarDiffs()
colVars()
colWeightedMads()
colWeightedMeans()
colWeightedMedians()
colWeightedSds()
colWeightedVars()
rowAlls()
rowAnyMissings()
rowAnyNAs()
rowAnys()
rowAvgsPerColSet()
rowCollapse()
rowCounts()
rowCummaxs()
rowCummins()
rowCumprods()
rowCumsums()
rowDiffs()
rowIQRDiffs()
rowIQRs()
rowLogSumExps()
rowMadDiffs()
rowMads()
rowMaxs() ☑️
rowMeans2()
rowMedians()
rowMins() ☑️
rowOrderStats()
rowProds()
rowQuantiles()
rowRanges() ☑️
rowRanks()
rowSdDiffs()
rowSds()
rowSums2()
rowTabulates()
rowVarDiffs()
rowVars()
rowWeightedMads()
rowWeightedMeans()
rowWeightedMedians()
rowWeightedSds()
rowWeightedVars()

4 ‘Seed-aware’ methods

As well as offering a familiar API, DelayedMatrixStats provides ‘seed-aware’ methods that are optimized for specific types of DelayedMatrix objects.

To illustrate this idea, we will compare two ways of computing the column sums of a DelayedMatrix object:

  1. The ‘block-processing’ strategy. This was developed in the DelayedArray package and is available for all methods in the DelayedMatrixStats through the force_block_processing argument
  2. The ‘seed-aware’ strategy. This is implemented in the DelayedMatrixStats and is optimized for both speed and memory but only for DelayedMatrix objects with certain types of seed.

We will demonstrate this by computing the column sums matrices with 20,000 rows and 600 columns where the data have different structure and are stored in DelayedMatrix objects with different types of seed:

We use the microbenchmark package to measure running time and the profmem package to measure the total memory allocations of each method.

In each case, the ‘seed-aware’ method is many times faster and allocates substantially lower total memory.

library(DelayedMatrixStats)
library(Matrix)
library(microbenchmark)
library(profmem)

set.seed(666)

# -----------------------------------------------------------------------------
# Dense with values in (0, 1)
# Fast, memory-efficient column sums of DelayedMatrix with ordinary matrix seed
#

# Generate some data
dense_matrix <- matrix(runif(20000 * 600), 
                       nrow = 20000,
                       ncol = 600)

# Benchmark
dm_matrix <- DelayedArray(dense_matrix)
class(seed(dm_matrix))
#> [1] "matrix"
dm_matrix
#> <20000 x 600> DelayedMatrix object of type "double":
#>                [,1]       [,2]       [,3] ...     [,599]     [,600]
#>     [1,]  0.7743685  0.6601787  0.4098798   . 0.89118118 0.05776471
#>     [2,]  0.1972242  0.8436035  0.9198450   . 0.31799523 0.63099417
#>     [3,]  0.9780138  0.2017589  0.4696158   . 0.31783791 0.02830454
#>     [4,]  0.2013274  0.8797239  0.6474768   . 0.55217184 0.09678816
#>     [5,]  0.3612444  0.8158778  0.5928599   . 0.08530977 0.39224147
#>      ...          .          .          .   .          .          .
#> [19996,] 0.19490291 0.07763570 0.56391725   . 0.09703424 0.62659353
#> [19997,] 0.61182993 0.01910121 0.04046034   . 0.59708388 0.88389731
#> [19998,] 0.12932744 0.21155070 0.19344085   . 0.51682032 0.13378223
#> [19999,] 0.18985573 0.41716539 0.35110782   . 0.62939661 0.94601427
#> [20000,] 0.87889047 0.25308041 0.54666920   . 0.81630322 0.73272217
microbenchmark(
  block_processing = colSums2(dm_matrix, force_block_processing = TRUE),
  seed_aware = colSums2(dm_matrix),
  times = 10)
#> Unit: milliseconds
#>              expr       min        lq      mean    median        uq
#>  block_processing 521.59638 566.89626 694.08450 585.10045 731.77588
#>        seed_aware  17.28617  18.32022  21.16132  19.28173  21.16668
#>         max neval cld
#>  1230.73383    10   b
#>    37.87136    10  a
total(profmem(colSums2(dm_matrix, force_block_processing = TRUE)))
#> [1] 101549160
total(profmem(colSums2(dm_matrix)))
#> [1] 167336

# -----------------------------------------------------------------------------
# Sparse (60% zero) with values in (0, 1)
# Fast, memory-efficient column sums of DelayedMatrix with ordinary matrix seed
#

# Generate some data
sparse_matrix <- dense_matrix
zero_idx <- sample(length(sparse_matrix), 0.6 * length(sparse_matrix))
sparse_matrix[zero_idx] <- 0

# Benchmark
dm_dgCMatrix <- DelayedArray(Matrix(sparse_matrix, sparse = TRUE))
class(seed(dm_dgCMatrix))
#> [1] "dgCMatrix"
#> attr(,"package")
#> [1] "Matrix"
dm_dgCMatrix
#> <20000 x 600> DelayedMatrix object of type "double":
#>               [,1]      [,2]      [,3] ...     [,599]     [,600]
#>     [1,] 0.7743685 0.0000000 0.4098798   .  0.8911812  0.0000000
#>     [2,] 0.0000000 0.0000000 0.9198450   .  0.3179952  0.6309942
#>     [3,] 0.9780138 0.0000000 0.4696158   .  0.0000000  0.0000000
#>     [4,] 0.0000000 0.8797239 0.0000000   .  0.0000000  0.0000000
#>     [5,] 0.0000000 0.0000000 0.5928599   .  0.0000000  0.3922415
#>      ...         .         .         .   .          .          .
#> [19996,] 0.1949029 0.0000000 0.5639173   . 0.09703424 0.62659353
#> [19997,] 0.6118299 0.0000000 0.0000000   . 0.00000000 0.88389731
#> [19998,] 0.0000000 0.0000000 0.1934408   . 0.51682032 0.00000000
#> [19999,] 0.0000000 0.0000000 0.0000000   . 0.62939661 0.94601427
#> [20000,] 0.8788905 0.0000000 0.0000000   . 0.81630322 0.00000000
microbenchmark(
  block_processing = colSums2(dm_dgCMatrix, force_block_processing = TRUE),
  seed_aware = colSums2(dm_dgCMatrix),
  times = 10)
#> Unit: milliseconds
#>              expr       min         lq       mean     median         uq
#>  block_processing 983.34878 1014.04572 1068.50164 1064.35676 1081.31065
#>        seed_aware  18.48014   19.53225   21.46004   22.09761   22.50062
#>         max neval cld
#>  1289.37751    10   b
#>    23.55999    10  a
total(profmem(colSums2(dm_dgCMatrix, force_block_processing = TRUE)))
#> [1] 253386024
total(profmem(colSums2(dm_dgCMatrix)))
#> [1] 8496

# -----------------------------------------------------------------------------
# Dense with values in {0, 100} featuring runs of identical values
# Fast, memory-efficient column sums of DelayedMatrix with Rle-based seed
#

# Generate some data
runs <- rep(sample(100, 500000, replace = TRUE), rpois(500000, 100))
runs <- runs[seq_len(20000 * 600)]
runs_matrix <- matrix(runs, 
                      nrow = 20000,
                      ncol = 600)

# Benchmark
dm_rle <- RleArray(Rle(runs),
                   dim = c(20000, 600))
class(seed(dm_rle))
#> [1] "SolidRleArraySeed"
#> attr(,"package")
#> [1] "DelayedArray"
dm_rle
#> <20000 x 600> RleMatrix object of type "integer":
#>            [,1]   [,2]   [,3]   [,4] ... [,597] [,598] [,599] [,600]
#>     [1,]     72     75     47     89   .     46     45     91     99
#>     [2,]     72     75     47     89   .     46     45     91     99
#>     [3,]     72     75     47     89   .     46     45     91     99
#>     [4,]     72     75     47     89   .     46     45     91     99
#>     [5,]     72     75     47     89   .     46     45     91     99
#>      ...      .      .      .      .   .      .      .      .      .
#> [19996,]     75     47     89     86   .     45     60     99     50
#> [19997,]     75     47     89     86   .     45     60     99     50
#> [19998,]     75     47     89     86   .     45     60     99     50
#> [19999,]     75     47     89     86   .     45     60     99     50
#> [20000,]     75     47     89     86   .     45     91     99     50
microbenchmark(
  block_processing = colSums2(dm_rle, force_block_processing = TRUE),
  seed_aware = colSums2(dm_rle),
  times = 10)
#> Unit: milliseconds
#>              expr         min          lq        mean      median
#>  block_processing 1748.123312 1770.927226 2018.107822 1839.947756
#>        seed_aware    5.367025    5.635943    9.304133    6.809895
#>           uq        max neval cld
#>  1878.777428 2951.49365    10   b
#>     8.091163   32.24814    10  a
total(profmem(colSums2(dm_rle, force_block_processing = TRUE)))
#> [1] 196546208
total(profmem(colSums2(dm_rle)))
#> [1] 41608

The development of ‘seed-aware’ methods is ongoing work (see the Roadmap), and for now only a few methods and seed-types have a ‘seed-aware’ method.

An extensive set of benchmarks is under development at http://peterhickey.org/BenchmarkingDelayedMatrixStats/.

5 Delayed operations

A key feature of a DelayedArray is the ability to register ‘delayed operations’. For example, let’s compute sin(dm_matrix):

system.time(sin_dm_matrix <- sin(dm_matrix))
#>    user  system elapsed 
#>   0.008   0.000   0.008

This instantaneous because the operation is not actually performed, rather it is registered and only performed when the object is realized. All methods in DelayedMatrixStats will correctly realise these delayed operations before computing the final result. For example, let’s compute
colSums2(sin_dm_matrix) and compare check we get the correct answer:

all.equal(colSums2(sin_dm_matrix), colSums(sin(as.matrix(dm_matrix))))
#> [1] TRUE

6 Roadmap

The initial version of DelayedMatrixStats provides complete coverage of the matrixStats column-wise and row-wise API4, allowing package developers to use these functions with DelayedMatrix objects as well as with ordinary matrix objects. This should simplify package development and assist authors to support to their software for large datasets stored in disk-backed data structures such as HDF5Array. Such large datasets are increasingly common with the rise of single-cell genomics.

Future releases of DelayedMatrixStats will improve the performance of these methods, specifically by developing additional ‘seed-aware’ methods. The plan is to prioritise commonly used methods (e.g.,
colMeans2()/rowMeans2(), colSums2()/rowSums2(), etc.) and the development of ‘seed-aware’ methods for the HDF5Matrix class. To do so, we will leverage the beachmat package. Proof-of-concept code has shown that this can greatly increase the performance when analysing such disk-backed data.

Importantly, all package developers using methods from DelayedMatrixStats will immediately gain from performance improvements to these low-level routines. By using DelayedMatrixStats, package developers will be able to focus on higher level programming tasks and address important scientific questions and technological challenges in high-throughput biology.