
Triplex: User Guide

Matej Lexa, Tomáš Mart́ınek, Jǐŕı Hon

October 30, 2017

Contents

1 Introduction 1

2 Detection 2

3 Visualization 6

4 Exporting Results 9

5 A real world example 11

6 P-value calculation 18

1 Introduction

The R triplex package is essentially an R interface to the underlying C implemen-
tation of a dynamic-programming search strategy of the same name published
in [1]. The main functionality of the original program is to detect positions of
subsequences in a much larger sequence, where these subsequences are likely to
fold into an intramolecular triplex (H-DNA). The evaluation is based on the
number of canonical nucleotide triplets that can form from nucleotides in such
subsequence . In creating this incarnation in R, we extended the basic function-
ality, to also include the calculation of likely base-pairing in the triple helices.
This allowed us to extend the functionality of the package towards visualization
showing the exact base-pairing in 2D or 3D as published earlier [2].

The rest of this vignette is organized as follows: The basic usage of the pack-
age for triplex detection is described in section 2. Two methods for visualization
of detected triplexes in 2D and 3D are shown in section 3. Section 4 describes
techniques for the conversion of search results into other types of objects such as
GRanges or DNAStringSet, that can be further exported into GFF3 or FASTA
files. The vignette is concluded with section 5 showing triplex package usage on
a real genomic sequence from BSGenome.

1



2 Detection

As usual, before first package use, it is necessary to load the triplex library using
the following command:

> library(triplex)

Identification of potential intramolecular triplex-forming sequences in DNA
is performed using the triplex.search function. This function has one required
parameter representing the studied DNA sequence in the form of a DNAString
object and several modifying options with predefined values (see triplex.search
help page).

Based on triplex position (forward or reverse strand) and its third strand
orientation, up to 8 types of triplexes are distinguished by the triplex.search
function. All these triplex types are depicted on figure 1. By default, the
function detects all 8 types, however this behaviour can be changed by setting
type parameter to arbitrary value or a subset of values in the range 0 to 7.

PARALLEL
FIRST STRAND

PARALLEL
SECOND STRAND

ANTIPARALLEL
SECOND STRAND

ANTIPARALLEL
FIRST STRAND

3'

5'

3'

5'

3'

5'

5'

3'

3'

5'

5'

3'

5'

3'

5'

3'

5'

3'

3'

5'

5'

3'

3'

5'

Y

X

X'

X

X'

Y'

X

X'

Y

Y'

X

X'

X

Y

Y'

Y

Y'

X'

Y

Y'

X

X'

Y

Y'

TYPE 0 TYPE 1

TYPE 2 TYPE 3

TYPE 4

TYPE 6 TYPE 7

TYPE 5

Figure 1: Triplex types

Example 1: Basic triplex detection

As a simple example, let’s find all types of intramolecular triplexes in the
DNA sequence TTGGGGAAAGCAATGCCAGGCAGGGGGTTCCTTTCGT-
TACGGTCCGTCCC:

> seq <- DNAString("TTGGGGAAAGCAATGCCAGGCAGGGGGTTCCTTTCGTTACGGTCCGTCCC")

> triplex.search(seq)

Searching for triplex type 0...

Searching for triplex type 1...

Searching for triplex type 2...

Searching for triplex type 3...

Searching for triplex type 4...

Searching for triplex type 5...

Searching for triplex type 6...

2



Searching for triplex type 7...

Triplex views on a 50-letter DNAString subject

subject: TTGGGGAAAGCAATGCCAGGCAGGGGGTTCCTTTCGTTACGGTCCGTCCC

triplexes:

start width score pvalue ins type s

[1] 3 25 15 2.9e-03 0 3 - [CCCCCTGCCTGGCATTGCTTTCCCC]

Detected triplexes are returned in the form of a TriplexViews class, which
represents the basic container for storing a set of views on the same input se-
quence similarly to XStringView object (in fact TriplexViews only extends the
XStringView class with the number of displayed columns). Each triplex view
is defined by start locations, width, score, P-value, number of insertions, type,
strand, loop start position and loop end position.

Please note, that the strand orientation depends on triplex type only. The
triplex.search function assumes that input DNA sequence represents the forward
strand.

Example 2: Selection of a specific triplex type

Let’s reduce the searching procedure to triplex type 1 only, using the following
command. Please note, that the output list contains potential triplexes of type
1 only.

> triplex.search(seq, type=1)

Searching for triplex type 1...

Triplex views on a 50-letter DNAString subject

subject: TTGGGGAAAGCAATGCCAGGCAGGGGGTTCCTTTCGTTACGGTCCGTCCC

triplexes: NONE

The basic requirements for shape or length of detected triplexes can be de-
fined using four parameters: min len, max len, min loop and max loop. While
min len and max len specify the length of triplex stems composed of individ-
ual triplets, min loop and max loop parameters define the range of lengths for
unpaired loops at the top of detected triplexes. A graphical representation of
these parameters is shown in figure 2. Please note that these parameters also
impacts the overall computation time. For longer triplexes, larger space has to
be explored and thus more computation time is consumed.

Example 3: Definition of triplex shape

Let’s modify the previous example by specifying minimal and maximal triplex
lengths. Please, execute the following command and note that only one of the
two triplexes detected before satisfies these conditions.

> triplex.search(seq, min_len=10, max_len=20)

Searching for triplex type 0...

Searching for triplex type 1...

Searching for triplex type 2...

Searching for triplex type 3...

3



C

G

T

C

G

C

T

A

T

T

A

T

C

G

C

C

G

C

C A

T G

G

A

3'

5'

3'

[min_len, max_len]
[min_loop, max_loop]

Figure 2: Triplex scheme

Searching for triplex type 4...

Searching for triplex type 5...

Searching for triplex type 6...

Searching for triplex type 7...

Triplex views on a 50-letter DNAString subject

subject: TTGGGGAAAGCAATGCCAGGCAGGGGGTTCCTTTCGTTACGGTCCGTCCC

triplexes:

start width score pvalue ins type s

[1] 3 25 15 2.9e-03 0 3 - [CCCCCTGCCTGGCATTGCTTTCCCC]

The quality of each triplex is defined by its score value. A higher score value
represents a higher-quality triplex. This quality is decreased by several types of
imperfections at the level of triplets, such as character (nucleotide) mismatch, in-
sertion, deletion, isomorphic group change etc. Penalization constants for these
imperfections can be set up using the following parameters: mis pen, ins pen,
iso pen, iso bonus and dtwist pen. Detailed information about the scoring func-
tion and penalization parameters can be found in [1]. It is highly recommended
to see [1] prior to changing any penalization parameter.

Example 4: Scoring function modification

Let’s modify the previous example by reducing the penalization for isomorphic
group change from value 5 to 2. Please execute the following command and
note that calculated score values have changed.

> triplex.search(seq, iso_pen=2)

Searching for triplex type 0...

Searching for triplex type 1...

Searching for triplex type 2...

Searching for triplex type 3...

Searching for triplex type 4...

Searching for triplex type 5...

Searching for triplex type 6...

Searching for triplex type 7...

Triplex views on a 50-letter DNAString subject

4



subject: TTGGGGAAAGCAATGCCAGGCAGGGGGTTCCTTTCGTTACGGTCCGTCCC

triplexes:

start width score pvalue ins type s

[1] 3 25 16 1.3e-03 0 3 - [CCCCCTGCCTGGCATTGCTTTCCCC]

The triplex.search function can result in a large list containing tens of thou-
sands of potential triplexes. The size of these results can be reduced using
two filtration mechanisms: (1) by specifying the minimal acceptable score value
using min score parameter or (2) by specifying maximum acceptable P-value
of results using p value parameter. The P-value represents the probability of
occurrence of detected triplexes in a random sequence. Calculation of P-value
depends on two extreme value distribution parameters lambda and mi. It is
highly recommended to see [1] prior changing the lambda or mi parameters.

Example 5: Filtration of results

Let’s modify the previous example to show only triplexes with score values 14
or higher. Please execute the following command and note that only one of the
two previously detected triplexes satisfies this condition.

> triplex.search(seq, min_score=14)

Searching for triplex type 0...

Searching for triplex type 1...

Searching for triplex type 2...

Searching for triplex type 3...

Searching for triplex type 4...

Searching for triplex type 5...

Searching for triplex type 6...

Searching for triplex type 7...

Triplex views on a 50-letter DNAString subject

subject: TTGGGGAAAGCAATGCCAGGCAGGGGGTTCCTTTCGTTACGGTCCGTCCC

triplexes:

start width score pvalue ins type s

[1] 3 25 15 2.9e-03 0 3 - [CCCCCTGCCTGGCATTGCTTTCCCC]

5



3 Visualization

Besides triplex detection, the triplex package offers also visualization of detected
results. Three major methods of visualization are supported:

1. Triplex alignment (text): Selected triplex is shown in basic text format
representing the alignment of all of its strands. The output consists of
four sequences: plus and minus sequences representing 5’ to 3’ and 3’ to
5’ DNA strands of the detected triplex; anti/para-plus/minus sequence
representing the third triplex strand aligned to plus or minus strand in
antiparallel or parallel fashion; and finally loop sequence representing the
unpaired loop. Please, note that all eight triplex types shown in figure 1
can be represented using four types of alignments, because each align-
ment can correspond to triplex detected either on forward or reverse DNA
strand.

2. 2D diagram (graphical): Selected triplex is shown in a 2D diagram display-
ing the individual triplets (based on Watson-Crick and Hoogsteen base
paring) and the loop composed of unpaired nucleotides.

3. 3D model (graphical): Selected triplex is shown in 3D. At first, a model
is calculated and then the result is displayed using the RGL package,
which allows you to manipulate the triplex 3D model (zoom in, zoom out,
rotation, etc.).

Example 6: Triplex visualization

Let’s suppose, we would like to display an alignment (in text format), a 2D
diagram and a 3D model of the best detected triplex from the previous examples.
At first, it is suitable to store the results of calling the triplex.search function
into an auxiliary variable.

> t <- triplex.search(seq)

Searching for triplex type 0...

Searching for triplex type 1...

Searching for triplex type 2...

Searching for triplex type 3...

Searching for triplex type 4...

Searching for triplex type 5...

Searching for triplex type 6...

Searching for triplex type 7...

> t

Triplex views on a 50-letter DNAString subject

subject: TTGGGGAAAGCAATGCCAGGCAGGGGGTTCCTTTCGTTACGGTCCGTCCC

triplexes:

start width score pvalue ins type s

[1] 3 25 15 2.9e-03 0 3 - [CCCCCTGCCTGGCATTGCTTTCCCC]

6



Then, call triplex.alignment function on the first item of the list. Please
note that similarly to other DNA multiple sequence alignments the output of
the triplex.alignment method is stored as DNAStringSet object. Also note that
the loop sequence is always the last one and unaligned to the previous three
sequences.

> triplex.alignment(t[1])

A DNAStringSet instance of length 4

width seq names

[1] 10 CCCCCTGCCT minus

[2] 10 GGGGGACGGA plus

[3] 10 CCCCTTTCGT para-minus

[4] 5 GGCAT loop

Then, call triplex.diagram function on the same item of the list. Please
note that at first the triplex alignment is calculated and printed into R console
and then the graphical output is displayed in a separate window. R provides
methods to redirect the output to other suitable devices, such as files (see png(),
for example).

> triplex.diagram(t[1])

A DNAStringSet instance of length 4

width seq names

[1] 10 CCCCCTGCCT minus

[2] 10 GGGGGACGGA plus

[3] 10 CCCCTTTCGT para-minus

[4] 5 GGCAT loop

5'

3'

3'

● ● ● ● ● ● ● ● ● ●
●

●

●

●
●

●●●●●●●●●●

●●●●●●●●●●

C C C C C T G C C T
G

G

C

A
T

TGCTTTCCCC

AGGCAGGGGG

Figure 3: 2D diagram of a detected triplex

7



Finally, let’s display the 3D structure of the same triplex using triplex.3D
function. Please note that the result will be displayed in separate graphical
window using the RGL library. The 3D model is based on optimizing angles
and distances present in the molecule to be as close as possible to tabulated
values (see [2] for more information).

> triplex.3D(t[1])

A DNAStringSet instance of length 4

width seq names

[1] 10 CCCCCTGCCT minus

[2] 10 GGGGGACGGA plus

[3] 10 CCCCTTTCGT para-minus

[4] 5 GGCAT loop

Figure 4: 3D scheme of detected triplex

8



4 Exporting Results

As mentioned above, the results of detection are stored in the TriplexView ob-
ject. Because the TriplexView class is only an extension of the XStringViews
class, all operations applied to the XStringViews object can also be applied to
the TriplexView object as well.

Additionaly, TriplexView class contains a conversion function to create GRanges
objects. Thus, all detected triplexes can be transformed into elements of a
GRanges object and saved as a GFF3 file, for example.

Example 7: GRanges conversion

In this example, the output of the triplex.search function will be stored in a
GRanges object and further exported as a GFF3 file. At first, let’s do the
conversion using the following command:

> gr <- as(t, "GRanges")

> gr

GRanges object with 1 range and 6 metadata columns:

seqnames ranges strand | score tritype pvalue lstart

<Rle> <IRanges> <Rle> | <integer> <integer> <character> <integer>

[1] chr1 [3, 27] - | 15 3 2.9e-03 13

lend indels

<integer> <integer>

[1] 17 0

-------

seqinfo: 1 sequence from an unspecified genome

Please note that the chromosome name is set to chr1 by default, but it can
be changed to any other value. Items such as score, triplex type, P-value, loop
start position, loop end position and number of indels can be added as optional
attributes. In the next step the resulting GRanges object is exported as a GFF3
file.

> library(rtracklayer)

> export(gr,"test.gff", version="3")

Please note, that it is necessary to load the rtracklayer library before running
the export command. The contents of the resulting GFF3 file are:

##gff-version 3

##source-version rtracklayer 1.38.0

##date 2017-10-30

chr1 rtracklayer sequence_feature 3 27 15 - .

tritype=3;pvalue=2.9e-03;lstart=13;lend=17;indels=0

Another possibility of utilizing the results of detection is to transform the
TriplexView object into a DNAStringSet object, which represents another com-
monly used class of the Biostrings package. Triplexes stored inside DNAS-
tringSet can be exported into a FASTA file, for example.

9



Example 8: DNAStringSet conversion

In this example, the output of the triplex.search function will be stored into a
DNAStringSet object and further exported as a FASTA file. At first, let’s do
the conversion using the following command:

> dss <- as(t, "DNAStringSet")

> dss

A DNAStringSet instance of length 1

width seq names

[1] 25 CCCCCTGCCTGGCATTGCTTTCCCC start=3;end=27;sc...

In the next step, the DNAStringSet object is exported as a FASTA file.

> writeXStringSet(dss, file="test.fa", format="fasta")

The contents of the resulting FASTA file are:

>start=3;end=27;score=15;pvalue=2.9e-03;ins=0;type=3;strand=-

CCCCCTGCCTGGCATTGCTTTCCCC

Please, note that all attributes of detection such as start position, end posi-
tion, score value, P-value, number of indels, triplex type and strand are stored as
a name parameter (inside the DNAStringSet), and thus, they are also shown in
the description line of the FASTA format (the line with the initial ’>’ symbol).

10



5 A real world example

In the following example, we load a real genomic sequence from one of the
BSGenome packages, identify potential triplexes with length over 8 triplets of
nucleotides and less than 15% mismatches (score >17 with the currently used
scoring matrices), create three different visualizations of the best triplexes. We
export the identified positions into a genome annotation track (via a GFF3 file)
and FASTA file. Finally, we plot some statistics about the potential triplex
distribution and nucleotide composition.

1. Load necessary libraries and genomes.

> library(triplex)

> library(BSgenome.Celegans.UCSC.ce10)

2. Search for potential triplex positions and display the results. Please note
that the sequence is limited to the first 100k bases for time reasons.

> t <- triplex.search(Celegans[["chrX"]][1:100000],min_score=17,min_len=8)

Searching for triplex type 0...

Searching for triplex type 1...

Searching for triplex type 2...

Searching for triplex type 3...

Searching for triplex type 4...

Searching for triplex type 5...

Searching for triplex type 6...

Searching for triplex type 7...

> t

Triplex views on a 100000-letter DNAString subject

subject: CTAAGCCTAAGCCTAAGCCTAAGCCTAAGCCTAA...AATTTTTTTTTAGGAAAAAGTTCCTTTTTTTCCT

triplexes:

start width score pvalue ins type s

[1] 3164 29 21 3.6e-02 0 3 - [TTTTTTTTCAGCAAAAATTGTTTTTTTTT]

[2] 17451 29 21 3.6e-02 0 0 + [TTTTTTTTCAGCAAAAATTGTTTTTTTTT]

[3] 43641 37 28 3.9e-03 0 4 - [CAAAAAAAAAAAGAGAA...AAAAACACTTTAAAAA]

[4] 47204 37 21 3.6e-02 0 2 - [ATTTTCCGCCGATTTTT...TTTTTGTGTTGTTTTT]

[5] 67548 33 23 6.8e-03 0 1 + [GCTTCCTCTTCTCCTCCTCTCGCTTCTCCTCCC]

[6] 67760 28 22 1.6e-02 0 1 + [TTCTCCTTTTCCTCATCCTCTTCCTCCT]

[7] 76610 39 25 3.1e-02 0 4 - [AAAAAAAAAAACGAAAA...TTATGACAAAAACAAA]

[8] 95356 41 25 3.1e-02 0 4 - [AAAAACAAAAAAAAAAA...TTTTTAAAAAACAAAA]

[9] 95646 36 25 3.1e-02 0 6 + [AAAAAAAAAAAAGAAAACAGAAGAAAAAATATTAAA]

[10] 95649 26 21 3.6e-02 0 3 - [TTTTTTCTTCTGTTTTCTTTTTTTTT]

[11] 97733 35 26 1.6e-02 0 5 - [AAAAAAAAAAAAATTTTTTAAATAATTTTTTTTTT]

[12] 97755 36 26 1.6e-02 0 4 - [AAAAAATATTTTTAGAAATTTTCAAAAAAAAAAAAA]

[13] 97796 32 21 3.6e-02 0 1 + [TTTTTTTTTTTCAAATTTCCCTTCTTTTTTCC]

[14] 99503 45 32 2.5e-04 0 5 - [AATAAAAAAACCTTATA...AAAAAAAAAAAAAAAA]

[15] 99531 44 32 2.5e-04 0 4 - [AAAAAAAAAAAAAAAAA...AATTTATAACAAACTT]

11



3. Sort the results by score and display 2D a 3D diagram of the best-scored
triplex.

> ts <- t[order(score(t),decreasing=TRUE)]

> ts

Triplex views on a 100000-letter DNAString subject

subject: CTAAGCCTAAGCCTAAGCCTAAGCCTAAGCCTAA...AATTTTTTTTTAGGAAAAAGTTCCTTTTTTTCCT

triplexes:

start width score pvalue ins type s

[1] 99503 45 32 2.5e-04 0 5 - [AATAAAAAAACCTTATA...AAAAAAAAAAAAAAAA]

[2] 99531 44 32 2.5e-04 0 4 - [AAAAAAAAAAAAAAAAA...AATTTATAACAAACTT]

[3] 43641 37 28 3.9e-03 0 4 - [CAAAAAAAAAAAGAGAA...AAAAACACTTTAAAAA]

[4] 97733 35 26 1.6e-02 0 5 - [AAAAAAAAAAAAATTTTTTAAATAATTTTTTTTTT]

[5] 97755 36 26 1.6e-02 0 4 - [AAAAAATATTTTTAGAAATTTTCAAAAAAAAAAAAA]

[6] 76610 39 25 3.1e-02 0 4 - [AAAAAAAAAAACGAAAA...TTATGACAAAAACAAA]

[7] 95356 41 25 3.1e-02 0 4 - [AAAAACAAAAAAAAAAA...TTTTTAAAAAACAAAA]

[8] 95646 36 25 3.1e-02 0 6 + [AAAAAAAAAAAAGAAAACAGAAGAAAAAATATTAAA]

[9] 67548 33 23 6.8e-03 0 1 + [GCTTCCTCTTCTCCTCCTCTCGCTTCTCCTCCC]

[10] 67760 28 22 1.6e-02 0 1 + [TTCTCCTTTTCCTCATCCTCTTCCTCCT]

[11] 3164 29 21 3.6e-02 0 3 - [TTTTTTTTCAGCAAAAATTGTTTTTTTTT]

[12] 17451 29 21 3.6e-02 0 0 + [TTTTTTTTCAGCAAAAATTGTTTTTTTTT]

[13] 47204 37 21 3.6e-02 0 2 - [ATTTTCCGCCGATTTTT...TTTTTGTGTTGTTTTT]

[14] 95649 26 21 3.6e-02 0 3 - [TTTTTTCTTCTGTTTTCTTTTTTTTT]

[15] 97796 32 21 3.6e-02 0 1 + [TTTTTTTTTTTCAAATTTCCCTTCTTTTTTCC]

12



> triplex.diagram(ts[1])

A DNAStringSet instance of length 4

width seq names

[1] 18 ATATTCCAAAAAAATAAC anti-minus

[2] 18 AAAAAAAAAAAAAAAAAT minus

[3] 18 TTTTTTTTTTTTTTTTTA plus

[4] 9 TTTTTTTGG loop

3'

5'

3'

●●●●●●●●●●●●●●●●●●
●●●

●
●
●

●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

A A A A A A A A A A A A A A A A A T
T T T

T
T

T
TGG

CAATAAAAAAACCTTATA

ATTTTTTTTTTTTTTTTT

Figure 5: 2D diagram of detected triplex

13



> triplex.3D(ts[1])

A DNAStringSet instance of length 4

width seq names

[1] 18 ATATTCCAAAAAAATAAC anti-minus

[2] 18 AAAAAAAAAAAAAAAAAT minus

[3] 18 TTTTTTTTTTTTTTTTTA plus

[4] 9 TTTTTTTGG loop

Figure 6: 3D scheme of detected triplex

14



4. Export all triplexes into a GFF3 format file.

> library(rtracklayer)

> export(as(t, "GRanges"),"test.gff", version="3")

The contents of the GFF3 file are as follows (the first 10 records only):

##gff-version 3

##source-version rtracklayer 1.38.0

##date 2017-10-30

chr1 rtracklayer sequence_feature 3164 3192 21 - .

tritype=3;pvalue=3.6e-02;lstart=3177;lend=3179;indels=0

chr1 rtracklayer sequence_feature 17451 17479 21 + .

tritype=0;pvalue=3.6e-02;lstart=17464;lend=17466;indels=0

chr1 rtracklayer sequence_feature 43641 43677 28 - .

tritype=4;pvalue=3.9e-03;lstart=43658;lend=43660;indels=0

chr1 rtracklayer sequence_feature 47204 47240 21 - .

tritype=2;pvalue=3.6e-02;lstart=47221;lend=47223;indels=0

chr1 rtracklayer sequence_feature 67548 67580 23 + .

tritype=1;pvalue=6.8e-03;lstart=67562;lend=67566;indels=0

chr1 rtracklayer sequence_feature 67760 67787 22 + .

tritype=1;pvalue=1.6e-02;lstart=67772;lend=67775;indels=0

chr1 rtracklayer sequence_feature 76610 76648 25 - .

tritype=4;pvalue=3.1e-02;lstart=76628;lend=76630;indels=0

5. Export all triplexes into a FASTA format file.

> writeXStringSet(as(t, "DNAStringSet"), file="test.fa", format="fasta")

The contents of the FASTA file are as follows (the first 10 records only):

>start=3164;end=3192;score=21;pvalue=3.6e-02;ins=0;type=3;strand=-

TTTTTTTTCAGCAAAAATTGTTTTTTTTT

>start=17451;end=17479;score=21;pvalue=3.6e-02;ins=0;type=0;strand=+

TTTTTTTTCAGCAAAAATTGTTTTTTTTT

>start=43641;end=43677;score=28;pvalue=3.9e-03;ins=0;type=4;strand=-

AAAAACACTTTAAAAAAAACCAAAAAAAAAAAGAGAA

>start=47204;end=47240;score=21;pvalue=3.6e-02;ins=0;type=2;strand=-

TTTTTGTGTTGTTTTTAGCAATTTTCCGCCGATTTTT

>start=67548;end=67580;score=23;pvalue=6.8e-03;ins=0;type=1;strand=+

GCTTCCTCTTCTCCTCCTCTCGCTTCTCCTCCC

>start=67760;end=67787;score=22;pvalue=1.6e-02;ins=0;type=1;strand=+

TTCTCCTTTTCCTCATCCTCTTCCTCCT

>start=76610;end=76648;score=25;pvalue=3.1e-02;ins=0;type=4;strand=-

TTATGACAAAAACAAAAATTAAAAAAAAAAAAACGAAAA

>start=95356;end=95396;score=25;pvalue=3.1e-02;ins=0;type=4;strand=-

TTTTTAAAAAACAAAAAAAATTTCAAAAACAAAAAAAAAAA

>start=95646;end=95681;score=25;pvalue=3.1e-02;ins=0;type=6;strand=+

AAAAAAAAAAAAGAAAACAGAAGAAAAAATATTAAA

>start=95649;end=95674;score=21;pvalue=3.6e-02;ins=0;type=3;strand=-

TTTTTTCTTCTGTTTTCTTTTTTTTT

15



6. Show histogram for score distribution of detected triplexes.

> hist(score(t), breaks=20)

Histogram of score(t)

score(t)

F
re

qu
en

cy

22 24 26 28 30 32

0
1

2
3

4
5

7. Show triplex distribution along the chromosome or other analysed se-
quence.

> plot(coverage(ts[0:length(t)]), type="s", col="grey75")

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

0.
0

0.
5

1.
0

1.
5

2.
0

Index

co
ve

ra
ge

(t
s[

0:
le

ng
th

(t
)]

)

16



8. Show triplex distribution along the chromosome using GenomeGraphs

> library(GenomeGraphs)

> mart <- useMart("ensembl", dataset = "celegans_gene_ensembl")

> # Set up basic GenomeGraphs annotation tracks

> ideog <- makeIdeogram(chromosome = "X")

> genomeAxis <- makeGenomeAxis()

> genesplus <- makeGeneRegion(start = 0, end = 62000, strand = "+",

+ chromosome = "X", biomart = mart)

> genesminus <- makeGeneRegion(start = 0, end = 62000, strand = "-",

+ chromosome = "X", biomart = mart)

> # Set up triplex annotation tracks

> tall <- as(t,"GRanges")

> ta <- makeAnnotationTrack(

+ start = start(tall[which(end(tall)<62000)]),

+ end = end(tall[which(end(tall)<62000)]),

+ feature = "gene_model",

+ dp = DisplayPars(gene_model = "grey")

+ )

> ta1 <- makeAnnotationTrack(

+ start = start(tall[which(end(tall)<62000 & score(tall)>20)]),

+ end = end(tall[which(end(tall)<62000 & score(tall)>20)]),

+ feature = "gene_model",

+ dp = DisplayPars(gene_model = "darkblue")

+ )

> # Plot the entire thing

> gdPlot(list(fwd = genesplus, GENES = genomeAxis, rev = genesminus,

+ weak = ta, strong = ta1, chrX = ideog), minBase = 0,

+ maxBase = 62000, labelRot = 0)

fwd

GENES

rev

weak

strong

chrX

0

10000

20000

30000

40000

50000

60000

17



6 P-value calculation

While calculating the scores of individual triplexes is straightforward with given
scoring matrices and penalty scores, calculating reasonable P-values of these
scores is a challenging task.

The P-values describe the probability of obtaining the reported scores by
chance. To estimate it, we use a randomized genomic sequence. Because of the
strikingly different nucleotide and H-DNA content of prokaryotic and eukaryotic
sequences, we use E.coli genome and a segment of human chromosome 5 as
models. The calculation of P-value follows the approach of [3]. We used the
ExtremeValueFitHistogram() function from hmmer-2.4 to fit the values of λ and
µ in the equation:

P-value(x) = 1 − e−nP (S≥x) (1)

where

P (S ≥ x) = 1 − e−e−λ(x−µ) (2)

The problematic part here is the determination of n. Because we search a
single long sequence, but usually report multiple hits, the value of n can only
be estimated. It must take into account the internal filtering of hits by triplex
and the filtering property of the DP algorithm itself. We counted all the hits
returned when fitting the EVD to a genome of size 4.8Mbp, to find an apparent
value of n:

n(4.8Mbp) = 170000 (3)

This leads to a reported hit every 30bp, or a ratio of n to sequence length:

rn =
170000

4800000
= 0.035 (4)

References

[1] Lexa, M., Mart́ınek, T., Burgetová, I., Kopec̆ek, D., Brázdová, M.: A dy-
namic programming algorithm for identification of triplex-forming sequences,
In: Bioinformatics, Vol. 27, No. 18, 2011, Oxford, GB, p. 2510-2517, ISSN
1367-4803.

[2] Rajdl, K. Funkce pro manipulaci a vizualizaci molekulárńıch dat v prostřed́ı
R [online].

[3] Eddy, S. R. Maximum likelihood fitting of extreme value dis-
tributions. 1997. Unpublished technical notes. Available at
http://www.genetics.wustl.edu/eddy/publications/

18


