The treeio
package is an infrastructure that enables evolutionary evidences that inferred by commonly used software packages in the field to be used in R
. For instance, dN/dS values or ancestral sequences inferred by CODEML1, clade support values (posterior) inferred by BEAST2 and short read placement by EPA3 and pplacer4. These evolutionary evidences can be further analyzed in R
and used to annotate phylogenetic tree using ggtree
.
Supported File Formats
Most of the software in this field (including R
packages) focus on Newick
and Nexus
file formats, while there are file formats from different evolution analysis software that contain supporting evidences within the file that are useful for further summary, analysis and annotation of the tree.
The treeio
package define several parser functions and S4
classes to store statistical evidences inferred by commonly used software packages. It supports several file formats, including:
- Newick (via
ape
) - Nexus (via
ape
) - New Hampshire eXtended format (NHX)
- Jplace
- Phylip
and software output from:
Parser functions
The treeio
package implement several parser functions, including:
read.beast
for parsing output of BEASEread.codeml
for parsing output of CODEML (rst
andmlc
files)read.codeml_mlc
for parsingmlc
file (output ofCODEML
)read.hyphy
for parsing output of HYPHYread.jplace
for parsingjplace
file including output from EPA and pplacerread.nhx
for parsingNHX
file including output from PHYLODOG and RevBayesread.paml_rst
for parsingrst
file (output ofBASEML
andCODEML
)read.r8s
for parsing output of r8sread.raxml
for parsing output of RAxML
S4 classes
Correspondingly, ggtree
defines several S4
classes to store evolutionary evidences inferred by these software packages, including:
apeBootstrap
for bootstrap analysis ofape::boot.phylo()
10, output ofapeBoot()
defined inggtree
beast
for storing output ofread.beast()
codeml
for storing output ofread.codeml()
codeml_mlc
for storing output ofread.codeml_mlc()
hyphy
for storing output ofread.hyphy()
jplace
for storing output ofread.jplace()
nhx
for storing output ofread.nhx()
paml_rst
forrst
file obtained by PAML, includingBASEML
andCODEML
.phangorn
for storing ancestral sequences inferred byR
packagephangorn
11, output ofphyPML()
defined inggtree
r8s
for storing output ofread.r8s()
raxml
for storing output ofread.raxml()
The jplace
class is also designed to store user specified annotation data.
In treeio
, tree objects can be merged and evidences inferred from different phylogenetic analyses can be combined or compared and visualized.
For each class, we defined get.fields
method to get the annotation features that available in the object that can be used to annotate a phylogenetic tree directly in ggtree
. A get.tree
method can be used to convert tree object to phylo
(or multiPhylo
for r8s
) object that are widely supported by other R
packages.
Detail descriptions of slots
defined in each class are documented in class man pages. Users can use class?className
(e.g. class?beast
) to access man page of a class.
Getting Tree Data into R
Parsing BEAST output
file <- system.file("extdata/BEAST", "beast_mcc.tree", package="treeio")
beast <- read.beast(file)
beast
## 'beast' S4 object that stored information of
## '/tmp/RtmpOdjwYR/Rinst3b5562b1bc67/treeio/extdata/BEAST/beast_mcc.tree'.
##
## ...@ tree:
## Phylogenetic tree with 15 tips and 14 internal nodes.
##
## Tip labels:
## A_1995, B_1996, C_1995, D_1987, E_1996, F_1997, ...
##
## Rooted; includes branch lengths.
##
## with the following features available:
## 'height', 'height_0.95_HPD', 'height_median', 'height_range', 'length',
## 'length_0.95_HPD', 'length_median', 'length_range', 'posterior', 'rate',
## 'rate_0.95_HPD', 'rate_median', 'rate_range'.
Since %
is not a valid character in names
, all the feature names that contain x%
will convert to 0.x
. For example, length_95%_HPD
will be changed to length_0.95_HPD
.
The get.fields
method return all available features that can be used for annotation.
## [1] "height" "height_0.95_HPD" "height_median"
## [4] "height_range" "length" "length_0.95_HPD"
## [7] "length_median" "length_range" "posterior"
## [10] "rate" "rate_0.95_HPD" "rate_median"
## [13] "rate_range"
Parsing PAML output
rst
file
The read.paml_rst
function can parse rst
file from BASEML
and CODEML
. The only difference is the space in the sequences. For BASEML
, each ten bases are separated by one space, while for CODEML
, each three bases (triplet) are separated by one space.
brstfile <- system.file("extdata/PAML_Baseml", "rst", package="treeio")
brst <- read.paml_rst(brstfile)
brst
## 'paml_rst' S4 object that stored information of
## '/tmp/RtmpOdjwYR/Rinst3b5562b1bc67/treeio/extdata/PAML_Baseml/rst'.
##
## ...@ tree:
## Phylogenetic tree with 15 tips and 13 internal nodes.
##
## Tip labels:
## A, B, C, D, E, F, ...
## Node labels:
## 16, 17, 18, 19, 20, 21, ...
##
## Unrooted; includes branch lengths.
##
## with the following features available:
## 'marginal_subs', 'joint_subs', 'marginal_AA_subs', 'joint_AA_subs'.
Similarly, we can parse the rst
file from CODEML
and visualize the tree with amino acid substitution.
crstfile <- system.file("extdata/PAML_Codeml", "rst", package="treeio")
crst <- read.paml_rst(crstfile)
crst
## 'paml_rst' S4 object that stored information of
## '/tmp/RtmpOdjwYR/Rinst3b5562b1bc67/treeio/extdata/PAML_Codeml/rst'.
##
## ...@ tree:
## Phylogenetic tree with 15 tips and 13 internal nodes.
##
## Tip labels:
## A, B, C, D, E, F, ...
## Node labels:
## 16, 17, 18, 19, 20, 21, ...
##
## Unrooted; includes branch lengths.
##
## with the following features available:
## 'marginal_subs', 'joint_subs', 'marginal_AA_subs', 'joint_AA_subs'.
We can find that these two figures have different evolution distances and subsitutions inferred by BASEML
and CODEML
are slightly different.
CODEML
mlc file
The mlc
file output by CODEML
contains dN/dS
estimation.
mlcfile <- system.file("extdata/PAML_Codeml", "mlc", package="treeio")
mlc <- read.codeml_mlc(mlcfile)
mlc
## 'codeml_mlc' S4 object that stored information of
## '/tmp/RtmpOdjwYR/Rinst3b5562b1bc67/treeio/extdata/PAML_Codeml/mlc'.
##
## ...@ tree:
## Phylogenetic tree with 15 tips and 13 internal nodes.
##
## Tip labels:
## A, B, C, D, E, F, ...
## Node labels:
## 16, 17, 18, 19, 20, 21, ...
##
## Unrooted; includes branch lengths.
##
## with the following features available:
## 't', 'N', 'S', 'dN_vs_dS', 'dN', 'dS', 'N_x_dN', 'S_x_dS'.
Please aware that /
and *
are not valid characters in names
, they were changed to _vs_
and _x_
respectively.
So dN_vs_dS
is dN/dS
, N_x_dN
is N*dN
, and S_x_dS
is S*dS
.
CODEML
output: rst and mlc files
We annotate the tree with information presented in rst
and mlc
file separately as demonstrated in previous sessions.
We can also use both of them which is highly recommended.
## 'codeml' S4 object that stored information of
## '/tmp/RtmpOdjwYR/Rinst3b5562b1bc67/treeio/extdata/PAML_Codeml/rst' and
## '/tmp/RtmpOdjwYR/Rinst3b5562b1bc67/treeio/extdata/PAML_Codeml/mlc'.
##
## ...@ tree:
## Phylogenetic tree with 15 tips and 13 internal nodes.
##
## Tip labels:
## A, B, C, D, E, F, ...
## Node labels:
## 16, 17, 18, 19, 20, 21, ...
##
## Unrooted; includes branch lengths.
##
## with the following features available:
## 'marginal_subs', 'joint_subs', 'marginal_AA_subs', 'joint_AA_subs', 't',
## 'N', 'S', 'dN_vs_dS', 'dN', 'dS', 'N_x_dN', 'S_x_dS'.
All the features in both files are available for annotation. For example, we can annotate dN/dS
with the tree in rstfile
and amino acid substitutions with the tree in mlcfile
.
Parsing HYPHY output
nwk <- system.file("extdata/HYPHY", "labelledtree.tree", package="treeio")
ancseq <- system.file("extdata/HYPHY", "ancseq.nex", package="treeio")
tipfas <- system.file("extdata", "pa.fas", package="treeio")
hy <- read.hyphy(nwk, ancseq, tipfas)
hy
## 'hyphy' S4 object that stored information of
## '/tmp/RtmpOdjwYR/Rinst3b5562b1bc67/treeio/extdata/HYPHY/labelledtree.tree',
## '/tmp/RtmpOdjwYR/Rinst3b5562b1bc67/treeio/extdata/HYPHY/ancseq.nex' and
## '/tmp/RtmpOdjwYR/Rinst3b5562b1bc67/treeio/extdata/pa.fas'.
##
## ...@ tree:
## Phylogenetic tree with 15 tips and 13 internal nodes.
##
## Tip labels:
## K, N, D, L, J, G, ...
## Node labels:
## Node1, Node2, Node3, Node4, Node5, Node12, ...
##
## Unrooted; includes branch lengths.
##
## with the following features available:
## 'subs', 'AA_subs'.
Parsing r8s output
r8s output contains 3 trees, namely TREE
, RATO
and PHYLO
for time tree, rate tree and absolute substitution tree respectively.
## 'r8s' S4 object that stored information of
## '/tmp/RtmpOdjwYR/Rinst3b5562b1bc67/treeio/extdata/r8s/H3_r8s_output.log'.
##
## ...@ trees:
##
## with the following features available:
## 'TREE', 'RATO', 'PHYLO'.
Parsing output of RAxML bootstraping analysis
raxml_file <- system.file("extdata/RAxML", "RAxML_bipartitionsBranchLabels.H3", package="treeio")
raxml <- read.raxml(raxml_file)
raxml
## 'treedata' S4 object that stored information of
## '/tmp/RtmpOdjwYR/Rinst3b5562b1bc67/treeio/extdata/RAxML/RAxML_bipartitionsBranchLabels.H3'.
##
## ...@ tree:
## Phylogenetic tree with 64 tips and 62 internal nodes.
##
## Tip labels:
## A_Hokkaido_M1_2014_H3N2_2014, A_Czech_Republic_1_2014_H3N2_2014, FJ532080_A_California_09_2008_H3N2_2008, EU199359_A_Pennsylvania_05_2007_H3N2_2007, EU857080_A_Hong_Kong_CUHK69904_2006_H3N2_2006, EU857082_A_Hong_Kong_CUHK7047_2005_H3N2_2005, ...
##
## Unrooted; includes branch lengths.
##
## with the following features available:
## 'bootstrap'.
Parsing NHX tree
NHX (New Hampshire eXtended) format is commonly used in phylogenetics software (e.g. PHYLDOG6, RevBayes9, etc.)
## 'treedata' S4 object that stored information of
## '/tmp/RtmpOdjwYR/Rinst3b5562b1bc67/treeio/extdata/NHX/ADH.nhx'.
##
## ...@ tree:
## Phylogenetic tree with 8 tips and 4 internal nodes.
##
## Tip labels:
## ADH2, ADH1, ADHY, ADHX, ADH4, ADH3, ...
##
## Rooted; includes branch lengths.
##
## with the following features available:
## 'S', 'D', 'B'.
Parsing Phylip tree
Phylip format contains taxa sequences with Newick tree text.
phyfile <- system.file("extdata", "sample.phy", package="treeio")
phylip <- read.phylip(phyfile)
phylip
## 'phylip' S4 object that stored information of
## '/tmp/RtmpOdjwYR/Rinst3b5562b1bc67/treeio/extdata/sample.phy'.
##
## ...@ tree:
## Phylogenetic tree with 15 tips and 13 internal nodes.
##
## Tip labels:
## K, N, D, L, J, G, ...
##
## Unrooted; no branch lengths.
##
## with sequence alignment available (15 sequences of length 2148)
Parsing EPA and pplacer output
EPA3 and PPLACER4 have common output file format, jplace
, which can be parsed by read.jplace()
function.
## 'jplace' S4 object that stored information of
## '/tmp/RtmpOdjwYR/Rinst3b5562b1bc67/treeio/extdata/sample.jplace'.
##
## ...@ tree:
## Phylogenetic tree with 13 tips and 12 internal nodes.
##
## Tip labels:
## A, B, C, D, E, F, ...
##
## Rooted; includes branch lengths.
##
## with the following features available:
## 'edge_num', 'likelihood', 'like_weight_ratio', 'distal_length',
## 'pendant_length'.
In ggtree
, we provide get.placements
method to access the placement.
## name edge_num likelihood like_weight_ratio distal_length pendant_length
## 1 AA 24 -61371.30 0.333344 3e-06 0.003887
## 2 BB 1 -61312.21 0.333335 1e-06 0.000003
## 3 CC 8 -61312.23 0.200011 1e-06 0.000003
## name edge_num likelihood like_weight_ratio distal_length pendant_length
## 1 AA 24 -61371.30 0.333344 0.000003 0.003887
## 2 BB 1 -61312.21 0.333335 0.000001 0.000003
## 3 BB 2 -61322.21 0.333322 0.000003 0.000003
## 4 BB 550 -61352.21 0.333322 0.000961 0.000003
## 5 CC 8 -61312.23 0.200011 0.000001 0.000003
## 6 CC 9 -61322.23 0.200000 0.000003 0.000003
## 7 CC 10 -61342.23 0.199992 0.000003 0.000003
This is only a tiny sample file. In reality, EPA and PPLACER may place thousands of short reads on a reference tree.
We may, for example, count the number of placement and annotate this information in the tree.
References
1. Yang, Z. PAML 4: Phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution 24, 1586–1591 (2007).
2. Bouckaert, R. et al. BEAST 2: A software platform for bayesian evolutionary analysis. PLoS Comput Biol 10, e1003537 (2014).
3. Berger, S. A., Krompass, D. & Stamatakis, A. Performance, accuracy, and web server for evolutionary placement of short sequence reads under maximum likelihood. Systematic Biology 60, 291–302 (2011).
4. Matsen, F. A., Kodner, R. B. & Armbrust, E. V. Pplacer: Linear time maximum-likelihood and bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinformatics 11, 538 (2010).
5. Pond, S. L. K., Frost, S. D. W. & Muse, S. V. HyPhy: Hypothesis testing using phylogenies. Bioinformatics 21, 676–679 (2005).
6. Boussau, B. et al. Genome-scale coestimation of species and gene trees. Genome Res. 23, 323–330 (2013).
7. Marazzi, B. et al. Locating evolutionary precursors on a phylogenetic tree. Evolution 66, 3918–3930 (2012).
8. Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics btu033 (2014). doi:10.1093/bioinformatics/btu033
9. Höhna, S. et al. Probabilistic graphical model representation in phylogenetics. Syst Biol 63, 753–771 (2014).
10. Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and evolution in r language. Bioinformatics 20, 289–290 (2004).
11. Schliep, K. P. Phangorn: Phylogenetic analysis in r. Bioinformatics 27, 592–593 (2011).