Sequence difference plot
Here we use the data published in Potato Research
1 as an example.
fas <- list.files(system.file("examples","GVariation", package="seqcombo"),
pattern="fas", full.names=TRUE)
fas
## [1] "/tmp/RtmpEhstEg/Rinst2886b054afd/seqcombo/examples/GVariation/A.Mont.fas"
## [2] "/tmp/RtmpEhstEg/Rinst2886b054afd/seqcombo/examples/GVariation/B.Oz.fas"
## [3] "/tmp/RtmpEhstEg/Rinst2886b054afd/seqcombo/examples/GVariation/C.Wilga5.fas"
The input fasta file should contains two aligned sequences. User need to specify which sequence (1 or 2, 1 by default) as reference. The seqdiff
function will parse the fasta file and calculate the nucleotide differences by comparing the non-reference one to reference.
x1 <- seqdiff(fas[1], reference=1)
x1
## sequence differences of Mont and CF_YL21
## 1181 sites differ:
## A C G T
## 286 315 301 279
We can visualize the differences by plot
method:
plot(x1)
We can parse several files and visualize them simultaneously.
x <- lapply(fas, seqdiff)
plts <- lapply(x, plot)
plot_grid(plotlist=plts, ncol=1, labels=LETTERS[1:3])
Sequence similarity plot
fas <- system.file("examples/GVariation/sample_alignment.fa", package="seqcombo")
simplot(fas, 'CF_YL21')
Session info
Here is the output of sessionInfo()
on the system on which this document was compiled:
## R version 3.4.2 (2017-09-28)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 16.04.3 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.6-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.6-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] igraph_1.1.2 ggplot2_2.2.1 emojifont_0.5.0 tibble_1.3.4
## [5] seqcombo_1.0.0
##
## loaded via a namespace (and not attached):
## [1] Rcpp_0.12.13 compiler_3.4.2 plyr_1.8.4
## [4] XVector_0.18.0 bindr_0.1 sysfonts_0.7.1
## [7] prettydoc_0.2.0 tools_3.4.2 zlibbioc_1.24.0
## [10] digest_0.6.12 evaluate_0.10.1 gtable_0.2.0
## [13] pkgconfig_2.0.1 rlang_0.1.2 rvcheck_0.0.9
## [16] yaml_2.1.14 parallel_3.4.2 proto_1.0.0
## [19] bindrcpp_0.2 showtextdb_2.0 stringr_1.2.0
## [22] dplyr_0.7.4 knitr_1.17 Biostrings_2.46.0
## [25] S4Vectors_0.16.0 IRanges_2.12.0 stats4_3.4.2
## [28] rprojroot_1.2 grid_3.4.2 cowplot_0.8.0
## [31] glue_1.2.0 R6_2.2.2 rmarkdown_1.6
## [34] magrittr_1.5 backports_1.1.1 scales_0.5.0
## [37] htmltools_0.3.6 BiocGenerics_0.24.0 showtext_0.5
## [40] assertthat_0.2.0 colorspace_1.3-2 labeling_0.3
## [43] stringi_1.1.5 lazyeval_0.2.1 munsell_0.4.3
References
1. Chang, F. et al. Complete Genome Analysis of a PVYN-Wi Recombinant Isolate from Solanum tuberosum in China. Potato Research 58, 377–389 (2015).