
1tengfei.yin@sbgenomics.com

ggbio: visualization toolkits for genomic data

Tengfei Yin1

March 8, 2018

http://bioconductor.org/packages/ggbio

Contents

1 Getting started. 4

1.1 Citation. 4

1.2 Introduction . 4

2 Case study: building your first tracks. 5

2.1 Add an ideogram track . 5

2.2 Add a gene model track . 6

2.2.1 Introduction . 6

2.2.2 Make gene model from OrganismDb object 6

2.2.3 Make gene model from TxDb object 7

2.2.4 Make gene model from EnsDb object 7

2.2.5 Make gene model from GRangesList object 7

2.3 Add a reference track . 8

2.3.1 Semantic zoom . 8

2.4 Add an alignment track . 9

2.5 Add a variants track . 10

2.6 Building your tracks . 10

3 Simple navigation . 11

4 Overview plots. 12

4.1 how to make circular plots . 12

4.1.1 Introduction . 12

4.1.2 Buidling circular plot layer by layer. 12

2

ggbio:visualization toolkits for genomic data

4.1.3 Complex arragnment of plots 14

4.2 How to make grandlinear plots 15

4.2.1 Introduction . 15

4.2.2 Corrdinate genome . 16

4.2.3 Convenient plotGrandLinear function 16

4.2.4 How to highlight some points? 16

4.3 How to make stacked karyogram overview plots 17

4.3.1 Introduction . 17

4.3.2 Create karyogram temlate . 17

4.3.3 Add data on karyogram layout. 17

4.3.4 Add more data using layout_karyogram function 19

4.3.5 More flexible layout of karyogram 19

5 Link ranges to your data . 21

6 Miscellaneous . 22

6.1 Themes . 22

6.1.1 Plot theme . 22

6.1.2 Track theme . 23

7 Session Information . 24

3

Chapter 1

Getting started

1.1 Citation

citation("ggbio")

1.2 Introduction

ggbio is a Bioconductor package building on top of ggplot2(), leveraging the rich objects
defined by Bioconductor and its statistical and computational power, it provides a flexible
genomic visualization framework, extends the grammar of graphics into genomic data, try to
delivers high quality, highly customizable graphics to the users.
What it features

• autoplot function provides ready-to-use template for Bioconductor objects and differ-
ent types of data.

• flexible low level components to use grammar of graphics to build you graphics layer
by layer.

• layout transformation, so you could generate circular plot, grandlinear plot, stacked
overview more easily.

• flexible tracks function to bind any ggplot2(), ggbio based plots.

4

http://bioconductor.org/packages/ggbio
http://bioconductor.org/packages/ggplot2
http://bioconductor.org/packages/ggplot2
http://bioconductor.org/packages/ggbio

Chapter 2

Case study: building your first
tracks

In this chapter, you will learn
• how to add ideogram track.
• How to add gene model track.
• how to add track for bam files to visualize coverage and mismatch summary.
• how to add track for vcf file to visualize the variants.

2.1 Add an ideogram track

Ideogram provides functionality to construct ideogram, check the manual for more flexible
methods. We build genome hg19, hg18, mm10, mm9 inside, so you don’t have download it
on the fly. When embed with tracks, ideogram show zoomed region highlights automatically.
xlim has special function here, is too changed highlighted zoomed region on the ideogram.
library(ggbio)

p.ideo <- Ideogram(genome = "hg19")

p.ideo

library(GenomicRanges)

special highlights instead of zoomin!

p.ideo + xlim(GRanges("chr2", IRanges(1e8, 1e8+10000000)))

5

ggbio:visualization toolkits for genomic data

2.2 Add a gene model track

2.2.1 Introduction

Gene model track is one of the most frequently used track in genome browser, it is composed
of genetic features CDS, UTR, introns, exons and non-genetic region. In ggbio we support
three methods to make gene model track:

• OrganismDb object: recommended, support gene symbols and other combination of
columns as label.

• TxDb object: don’t support gene symbol labeling.
• GRangesList object: flexible, if you don’t have annotation package available for the

first two methods, you could prepare a data set parsed from gtf file, you can simply use
it and plot it as gene model track.

• EnsDb object: supports gene symbol labeling, filtering etc.

2.2.2 Make gene model from OrganismDb object

OrganismDb object has a simpler API to retrieve data from different annotation resources,
so we could label our transcripts in different ways
library(ggbio)

library(Homo.sapiens)

class(Homo.sapiens)

##

data(genesymbol, package = "biovizBase")

wh <- genesymbol[c("BRCA1", "NBR1")]

wh <- range(wh, ignore.strand = TRUE)

p.txdb <- autoplot(Homo.sapiens, which = wh)

p.txdb

autoplot(Homo.sapiens, which = wh, label.color = "black", color = "brown",

fill = "brown")

To change the intron geometry, use gap.geom to control it, check out geom_alignment for
more control parameters.
autoplot(Homo.sapiens, which = wh, gap.geom = "chevron")

To collapse all features, use stat ’reduce’
autoplot(Homo.sapiens, which = wh, stat = "reduce")

Label could be turned off by setting it to FALSE, you could also use expression to make a
flexible label combination from column names.

6

http://bioconductor.org/packages/ggbio

ggbio:visualization toolkits for genomic data

columns(Homo.sapiens)

autoplot(Homo.sapiens, which = wh, columns = c("TXNAME", "GO"), names.expr = "TXNAME::GO")

2.2.3 Make gene model from TxDb object

TxDb doesn’t contain any gene symbol information, so we use tx_id as default for label.
library(TxDb.Hsapiens.UCSC.hg19.knownGene)

txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene

autoplot(txdb, which = wh)

2.2.4 Make gene model from EnsDb object

An alternative source for gene models are the EnsDb objects from the ensembldb package
that provide gene annotations provided from Ensembl. The ensembldb package provides a
rich filtering system that allows to easily fetch specific information (genes/transcripts) from
an EnsDb. The EnsDb objects provide gene symbol annotations in the column gene_name.
Alternatively, we could use tx_id to label transcripts.
In the example below we plot the gene model of the gene PHKG2. We use a GenenameFilter
to specify which gene we want to plot.
library(EnsDb.Hsapiens.v75)

ensdb <- EnsDb.Hsapiens.v75

autoplot(ensdb, GenenameFilter("PHKG2"))

We can pass any filter class defined in the AnnotationFilter package with argument which.
Alternatively we can combine filter classes using an AnnotationFilterList or we can pass a
filter expression in form of a formula. Below we pass such a filter expression to the function.
autoplot(ensdb, ~ symbol == "PHKG2", names.expr="gene_name")

We could also specify a genomic region and fetch all transcripts overlapping that region (also
partially, i.e. with a part of an intron or an exon).
We specify "*" as strand, thus we query for genes encoded on both strands

gr <- GRanges(seqnames = 16, IRanges(30768000, 30770000), strand = "*")

autoplot(ensdb, GRangesFilter(gr), names.expr = "gene_name")

Also, we can spefify directly the gene ids and plot all transcripts of these genes (not only
those overlapping with the region)
autoplot(ensdb, GeneIdFilter(c("ENSG00000196118", "ENSG00000156873")))

2.2.5 Make gene model from GRangesList object

Sometimes your gene model is not available as none of OrganismDb or TxDb object, it’s may
be stored in a table, you could simple parse it into a GRangeList object.

7

http://bioconductor.org/packages/ensembldb
http://bioconductor.org/packages/ensembldb
http://bioconductor.org/packages/AnnotationFilter

ggbio:visualization toolkits for genomic data

• each group indicate one transcripts
• names of group are shown as labels
• this object must has a column contains following key word: cds, exon, intron, and it’s

not case senstitive. use type to map this column. By default, we will try to parse ’type’
column.

Let’s make a sample GRangesList object which contains all information, and fake some labels.

library(biovizBase)

gr.txdb <- crunch(txdb, which = wh)

change column to 'model'

colnames(values(gr.txdb))[4] <- "model"

grl <- split(gr.txdb, gr.txdb$tx_id)

fake some randome names

names(grl) <- sample(LETTERS, size = length(grl), replace = TRUE)

grl

We get our example data ready, it meets all requirements, to make it a gene model track
it’s pretty simple to use autoplot, but don’t forget mapping because we changed our column
names, asssume you store you model key words in column ’model’.
autoplot(grl, aes(type = model))

ggplot() + geom_alignment(grl, type = "model")

2.3 Add a reference track

To add a reference track, we need to load a BSgenome object from the annotation package.
You can choose to plot the sequence as text, rect, segment.

2.3.1 Semantic zoom

Here we introduce semantic zoom in ggbio, for some plots like reference sequence, we use
pre-defined zoom level threshold to automatically assign geom to the track, unless the geom
is explicitly specified. In the example below, when your region is too wide we show text ’zoom
in to see text’, when you zoom into different level, it shows you different details. zoom is a
function we will introduce more in chapter 3 when we introduce more about navigation.
You can pass a zoom in factor into zoom function, if it’s over 1 it’s zooming out, if it’s smaller
than 1 it’s zooming in.
library(BSgenome.Hsapiens.UCSC.hg19)

bg <- BSgenome.Hsapiens.UCSC.hg19

p.bg <- autoplot(bg, which = wh)

no geom

p.bg

segment

p.bg + zoom(1/100)

rectangle

8

http://bioconductor.org/packages/ggbio

ggbio:visualization toolkits for genomic data

p.bg + zoom(1/1000)

text

p.bg + zoom(1/2500)

To override a zemantic zoom threshold, you simply provide a geom explicitly.
library(BSgenome.Hsapiens.UCSC.hg19)

bg <- BSgenome.Hsapiens.UCSC.hg19

force to use geom 'segment' at this level

autoplot(bg, which = resize(wh, width = width(wh)/2000), geom = "segment")

2.4 Add an alignment track

ggbio supports visuaization of alignemnts file stored in bam, autoplot method accepts
• bam file path (indexed)
• BamFile object
• GappedAlignemnt object

It’s simple to just pass a file path to autoplot function, you can stream a chunk of region
by providing ’which’ parameter. Otherwise please use method ’estiamte’ to show overall
estiamted coverage.
fl.bam <- system.file("extdata", "wg-brca1.sorted.bam", package = "biovizBase")

wh <- keepSeqlevels(wh, "chr17")

autoplot(fl.bam, which = wh)

geom ’gapped pair’ will show you alignments.
fl.bam <- system.file("extdata", "wg-brca1.sorted.bam", package = "biovizBase")

wh <- keepSeqlevels(wh, "chr17")

autoplot(fl.bam, which = resize(wh, width = width(wh)/10), geom = "gapped.pair")

To show mismatch proportion, you have to provide reference sequence, the mismatched
proportion is color coded in the bar chart.
library(BSgenome.Hsapiens.UCSC.hg19)

bg <- BSgenome.Hsapiens.UCSC.hg19

p.mis <- autoplot(fl.bam, bsgenome = bg, which = wh, stat = "mismatch")

p.mis

To view overall estimated coverage distribution, please use method ’estiamte’. ’which’ pa-
rameter also accept characters. And there is a hidden value called ’..coverage..’ to let you do
simple transformation in aes().
autoplot(fl.bam, method = "estimate")

autoplot(fl.bam, method = "estimate", which = paste0("chr", 17:18), aes(y = log(..coverage..)))

9

http://bioconductor.org/packages/ggbio

ggbio:visualization toolkits for genomic data

2.5 Add a variants track

This track is supported by semantic zoom.
To view your variants file, you could

• Import it using package VariantAnntoation as VCF object, then use autoplot

• Convert it into VRanges object and use autoplot.
• Simply provide vcf file path in autoplot().

library(VariantAnnotation)

fl.vcf <- system.file("extdata", "17-1409-CEU-brca1.vcf.bgz", package="biovizBase")

vcf <- readVcf(fl.vcf, "hg19")

vr <- as(vcf[, 1:3], "VRanges")

vr <- renameSeqlevels(vr, value = c("17" = "chr17"))

small region contains data

gr17 <- GRanges("chr17", IRanges(41234400, 41234530))

p.vr <- autoplot(vr, which = wh)

none geom

p.vr

rect geom

p.vr + xlim(gr17)

text geom

p.vr + xlim(gr17) + zoom()

You can simply overide geom
autoplot(vr, which = wh, geom = "rect", arrow = FALSE)

2.6 Building your tracks

tks <- tracks(p.ideo, mismatch = p.mis, dbSNP = p.vr, ref = p.bs, gene = p.txdb)

tks <- tracks(fl.bam, fl.vcf, bs, Homo.sapiens) ## default ideo = FALSE, turned on

tks <- tracks(fl.bam, fl.vcf, bs, Homo.sapiens, ideo = TRUE)

tks + xlim(gr17)

gr17 <- GRanges("chr17", IRanges(41234415, 41234569))

tks <- tracks(p.ideo, mismatch = p.mis, dbSNP = p.vr, ref = p.bg, gene = p.txdb,

heights = c(2, 3, 3, 1, 4)) + xlim(gr17) + theme_tracks_sunset()

tks

10

http://bioconductor.org/packages/VariantAnntoation

Chapter 3

Simple navigation

We try to provide a simple navigation API for your plot, so you could zoom in and zoom out,
or go through view chunks one by one.

• zoom: put a factor inside and you can zoom in or zoom out
• nextView: switch to next view
• prevView: switch to previous view

Navigation function also works for tracks plot too.
zoom in

tks + zoom()

Try following command yourself.
zoom in with scale

p.txdb + zoom(1/8)

zoom out

p.txdb + zoom(2)

next view page

p.txdb + nextView()

previous view page

p.txdb + prevView()

Don’t forget xlim accept GRanges object (single row), so you could simply prepare a GRanges
to store the region of interests and go through them one by one.

11

1http://www.nature.com/ng/journal/v43/n10/full/ng.936.html

Chapter 4

Overview plots

Overview is a good way to show all events at the same time, give overall summary statiics
for the whole genome.
In this chapter, we will introcue three different layouts that are used a lots in genomic data
visualization.

4.1 how to make circular plots

4.1.1 Introduction

Circular view is a special layout in ggbio , this idea has been implemented in many different
software, for example, the Circos project. However, we keep the grammar of graphics for
users, so mapping varialbes to aesthetics is very easy, ggbio leverage the data structure
defiend in Bioconductor to make this process as simple as possible.

4.1.2 Buidling circular plot layer by layer

Ok, let’s start to process some raw data to the format we want. The data used in this study
is from this a paper1. In this tutorial, We are going to

1. Visualize somatic mutation as segment.
2. Visualize inter,intro-chromosome rearrangement as links.
3. Visualize mutation score as point tracks with grid-background.
4. Add scale and ticks and labels.
5. To arrange multiple plots and legend. create multiple sample comparison.

All the raw data processed and stored in GRanges ready for use, you can simply load the
sample data from biovizBase

data("CRC", package = "biovizBase")

12

http://bioconductor.org/packages/ggbio
http://bioconductor.org/packages/ggbio
http://bioconductor.org/packages/biovizBase

ggbio:visualization toolkits for genomic data

layout_circle is depreicated, because you have to set up radius and trackWidth manually
with this function for creating circular plot.
We now present the new circle function, it accepts Granges object, and users don’t have
to specify radius, track width, you just add them one by one, it will be automatically created
from innter circle to outside, unless you specify trackWidth and radius manually. To change
default radius and trackWidth for all tracks, you simply put them in ggbio function.

• rule of thumb seqlengths, seqlevels and chromosomes names should be exactly the
same.

• to use circle, you have to use ggbio constructor at the beginning instead of ggplot.
You can use autoplot to create single track easily like
head(hg19sub)

autoplot(hg19sub, layout = "circle", fill = "gray70")

Hoever, the low level circle function leave you more flexibility to build circular plot one by
one. Let’s start to add tracks one by one.
Let’s use the same data to create ideogram, label and scale track, it layouts the circle by the
order you created from inside to outside.
p <- ggbio() + circle(hg19sub, geom = "ideo", fill = "gray70") +

circle(hg19sub, geom = "scale", size = 2) +

circle(hg19sub, geom = "text", aes(label = seqnames), vjust = 0, size = 3)

p

To simply override the setting, you can do it globally in ggbio function or individually circle

function by specifying parametters trackWidth and radius, you can also specify the global
settin for buffer in between in ggbio like example below.
p <- ggbio(trackWidth = 10, buffer = 0, radius = 10) + circle(hg19sub, geom = "ideo", fill = "gray70") +

circle(hg19sub, geom = "scale", size = 2) +

circle(hg19sub, geom = "text", aes(label = seqnames), vjust = 0, size = 3)

p

Then we add a "rectangle" track to show somatic mutation, this will looks like vertical
segments.
head(mut.gr)

p <- ggbio() + circle(mut.gr, geom = "rect", color = "steelblue") +

circle(hg19sub, geom = "ideo", fill = "gray70") +

circle(hg19sub, geom = "scale", size = 2) +

circle(hg19sub, geom = "text", aes(label = seqnames), vjust = 0, size = 3)

p

Next, we need to add some "links" to show the rearrangement, of course, links can be used to
map any kind of association between two or more different locations to indicate relationships
like copies or fusions. To create a suitable structure to plot, please use another GRanges to
represent the end of the links, and stored as elementMetadata for the "start point" GRanges.
Here we named it as "to.gr" and will be used later.

13

ggbio:visualization toolkits for genomic data

head(crc.gr)

Here in this example, we use "intrachromosomal" to label rearrangement within the same
chromosomes and use "interchromosomal" to label rearrangement in different chromosomes.
Get subset of links data for only one sample "CRC1"
gr.crc1 <- crc.gr[values(crc.gr)$individual == "CRC-1"]

Ok, add a "point" track with grid background for rearrangement data and map ‘y‘ to variable
"score", map ‘size‘ to variable "tumreads", rescale the size to a proper size range.
manually specify radius

p <- p + circle(gr.crc1, geom = "point", aes(y = score, size = tumreads),

color = "red", grid = TRUE, radius = 30) + scale_size(range = c(1, 2.5))

p

Finally, let’s add links and map color to rearrangement types. Remember you need to specify
‘linked.to‘ parameter to the column that contain end point of the data.
specify radius manually

p <- p + circle(gr.crc1, geom = "link", linked.to = "to.gr", aes(color = rearrangements),

radius = 23)

p

All those code could be simply constructed by following code
p <- ggbio() +

circle(gr.crc1, geom = "link", linked.to = "to.gr", aes(color = rearrangements)) +

circle(gr.crc1, geom = "point", aes(y = score, size = tumreads),

color = "red", grid = TRUE) + scale_size(range = c(1, 2.5)) +

circle(mut.gr, geom = "rect", color = "steelblue") +

circle(hg19sub, geom = "ideo", fill = "gray70") +

circle(hg19sub, geom = "scale", size = 2) +

circle(hg19sub, geom = "text", aes(label = seqnames), vjust = 0, size = 3)

p

4.1.3 Complex arragnment of plots

In this step, we are going to make multiple sample comparison, this may require some knowl-
edge about package grid and gridExtra. We will introduce a more easy way to combine your
graphics later after this.
We just want 9 single circular plots put together in one page, since we cannot keep too many
tracks, we only keep ideogram and links. Here is one sample.
grl <- split(crc.gr, values(crc.gr)$individual)

need "unit", load grid

library(grid)

crc.lst <- lapply(grl, function(gr.cur){

print(unique(as.character(values(gr.cur)$individual)))

cols <- RColorBrewer::brewer.pal(3, "Set2")[2:1]

14

ggbio:visualization toolkits for genomic data

names(cols) <- c("interchromosomal", "intrachromosomal")

p <- ggbio() + circle(gr.cur, geom = "link", linked.to = "to.gr",

aes(color = rearrangements)) +

circle(hg19sub, geom = "ideo",

color = "gray70", fill = "gray70") +

scale_color_manual(values = cols) +

labs(title = (unique(values(gr.cur)$individual))) +

theme(plot.margin = unit(rep(0, 4), "lines"))

})

We wrap the function in grid level to a more user-friendly high level function, called arrange

GrobByParsingLegend. You can pass your ggplot2 graphics to this function , specify the
legend you want to keep on the right, you can also specify the column/row numbers. Here
we assume all plots we have passed follows the same color scale and have the same legend,
so we only have to keep one legend on the right.
arrangeGrobByParsingLegend(crc.lst, widths = c(4, 1), legend.idx = 1, ncol = 3)

4.2 How to make grandlinear plots

4.2.1 Introduction

Let’s use a subset of PLINK output (https://github.com/stephenturner/qqman/blob/master/
plink.assoc.txt.gz) as our example test data.
snp <- read.table(system.file("extdata", "plink.assoc.sub.txt", package = "biovizBase"),

header = TRUE)

require(biovizBase)

gr.snp <- transformDfToGr(snp, seqnames = "CHR", start = "BP", width = 1)

head(gr.snp)

change the seqname order

require(GenomicRanges)

gr.snp <- keepSeqlevels(gr.snp, as.character(1:22))

seqlengths(gr.snp)

need to assign seqlengths

data(ideoCyto, package = "biovizBase")

seqlengths(gr.snp) <- as.numeric(seqlengths(ideoCyto$hg18)[1:22])

remove missing

gr.snp <- gr.snp[!is.na(gr.snp$P)]

transform pvalue

values(gr.snp)$pvalue <- -log10(values(gr.snp)$P)

head(gr.snp)

done

The data is ready, we need to pay attention
• if seqlengths is missing, we use data range, so the chromosome length is not accurate
• use seqlevel to control order of chromosome

15

https://github.com/stephenturner/qqman/blob/master/plink.assoc.txt.gz
https://github.com/stephenturner/qqman/blob/master/plink.assoc.txt.gz

ggbio:visualization toolkits for genomic data

4.2.2 Corrdinate genome

In autoplot, argument coord is just used to transform the data, after that, you can use it as
common GRanges, all other geom/stat works for it.
autoplot(gr.snp, geom = "point", coord = "genome", aes(y = pvalue))

However, we recommend you to use more powerful function plotGrandLinear to generate
manhattan plot introduced in next section.

4.2.3 Convenient plotGrandLinear function

For Manhattan plot, we have a function called plotGrandLinear. aes(y =) is required to
indicate the y value, e.g. p-value.
Color mapping is automatically figured out by ggbio following the rules

• if color present in aes(), like aes(color = seqnames), it will assume it’s mapping to
data column called ’seqnames’.

• if color is not wrapped in aes(), then this function will recylcle them to all chromo-
somes.

• if color is single character representing color, then just use one arbitrary color.
Let’s test some examples for controling colors.
plotGrandLinear(gr.snp, aes(y = pvalue), color = c("#7fc97f", "#fdc086"))

Let’s add a cutoff line
plotGrandLinear(gr.snp, aes(y = pvalue), color = c("#7fc97f", "#fdc086"),

cutoff = 3, cutoff.color = "blue", cutoff.size = 0.2)

Sometimes you use color to mapping other varibles so you may need a different to separate
chromosomes.
plotGrandLinear(gr.snp, aes(y = pvalue, color = OR), spaceline = TRUE, legend = TRUE)

4.2.4 How to highlight some points?

You can provide a highlight GRanges, and each row highlights a set of overlaped snps, and
labeled by rownames or certain columns, there is more control in the function as parameters,
with prefix highlight.*, so you could control color, label size and color, etc.
gro <- GRanges(c("1", "11"), IRanges(c(100, 2e6), width = 5e7))

names(gro) <- c("group1", "group2")

plotGrandLinear(gr.snp, aes(y = pvalue), highlight.gr = gro)

16

http://bioconductor.org/packages/ggbio

ggbio:visualization toolkits for genomic data

2http://en.wikipedia.org/wiki/Karyotype

4.3 How to make stacked karyogram overview plots

4.3.1 Introduction

A karyotype is the number and appearance of chromosomes in the nucleus of a eukaryotic
cell2. It’s one kind of overview when we want to show distribution of certain events on the
genome, for example, binding sites for certain protein, even compare them across samples as
example shows in this section.
GRanges and Seqinfo objects are an ideal container for storing data needed for karyogram
plot. Here is the strategy we used for generating ideogram templates.

• Althouth seqlengths is not required, it’s highly recommended for plotting karyogram.
If a GRanges object contains seqlengths, we know exactly how long each chromosome
is, and will use this information to plot genome space, particularly we plot all levels
included in it, NOT JUST data space.

• If a GRanges has no seqlengths, we will issue a warning and try to estimate the
chromosome lengths from data included. This is NOT accurate most time, so please
pay attention to what you are going to visualize and make sure set seqlengths before
hand.

4.3.2 Create karyogram temlate

Let’s first introduce how to use autoplot to generate karyogram graphic.
The most easy one is to just plot Seqinfo by using autoplot, if your GRanges object has
seqinfo with seqlengths information. Then you add data layer later.
data(ideoCyto, package = "biovizBase")

autoplot(seqinfo(ideoCyto$hg19), layout = "karyogram")

To show cytoband, your data need to have cytoband information, we stored some data for
you, including hg19, hg18, mm10, mm9.
turn on cytoband if it exists

biovizBase::isIdeogram(ideoCyto$hg19)

autoplot(ideoCyto$hg19, layout = "karyogram", cytoband = TRUE)

To change order or only show a subset of the karyogram, you have to manipulate seqlevels,
please check out manual for keepSeqlevels, seqlevels in GenomicRanges package for more
information. Or you could read the example below.

4.3.3 Add data on karyogram layout

If you have single data set stored as GRanges to show on a karyogram layout, autoplot

function is enough for you to plot the data on it.

17

http://bioconductor.org/packages/GenomicRanges

ggbio:visualization toolkits for genomic data

We use a default data in package biovizBase, which is a subset of RNA editing set in human.
The data involved in this GRanges is sparse, so we cannot simply use it to make karyogram
template, otherwise, the estimated chromosome lengths will be very rough and inaccurate.
So what we need to do first is to add seglength information to this object.

data(darned_hg19_subset500, package = "biovizBase")

dn <- darned_hg19_subset500

library(GenomicRanges)

seqlengths(dn)

add seqlengths

we have seqlegnths information in another data set

seqlengths(dn) <- seqlengths(ideoCyto$hg19)[names(seqlengths(dn))]

then we change order

dn <- keepSeqlevels(dn, paste0("chr", c(1:22, "X")))

seqlengths(dn)

autoplot(dn, layout = "karyogram")

Then we take one step further, the power of ggplot2 or ggbio is the flexible multivariate data
mapping ability in graphics, make data exploration much more convenient. In the following
example, we are trying to map a categorical variable ’exReg’ to color, this variable is included
in the data, and have three levels, ’3’ indicate 3’ utr, ’5’ means 5’ utr and ’C’ means coding
region. We have some missing values indicated as NA, in default, it’s going to be shown
in gray color, and keep in mind, since the basic geom(geometric object) is rectangle, and
genome space is very large, so change both color/fill color of the rectangle to specify both
border and filled color is necessary to get the data shown as different color, otherwise if the
region is too small, border color is going to override the fill color.
since default is geom rectangle, even though it's looks like segment

we still use both fill/color to map colors

autoplot(dn, layout = "karyogram", aes(color = exReg, fill = exReg))

Or you can set the missing value to particular color yo u want (NA values is not shown on
the legend).
since default is geom rectangle, even though it's looks like segment

we still use both fill/color to map colors

autoplot(dn, layout = "karyogram", aes(color = exReg, fill = exReg), alpha = 0.5) +

scale_color_discrete(na.value = "brown")

Well, sometimes we have too many values, we want to separate them by groups and show
them at diffent height, below is a hack for that purpose and in next section, we will introduce
a more flexible and general way to add data layer by layer.
Template chromosome y limits is [0, 10], that’s why this hack works

let's remove the NA value

dn.nona <- dn[!is.na(dn$exReg)]

compute levels based on categories

dn.nona$levels <- as.numeric(factor(dn.nona$exReg))

do a trcik show them at different height

p.ylim <- autoplot(dn.nona, layout = "karyogram", aes(color = exReg, fill = exReg,

ymin = (levels - 1) * 10/3,

ymax = levels * 10 /3))

18

http://bioconductor.org/packages/ggplot2
http://bioconductor.org/packages/ggbio

ggbio:visualization toolkits for genomic data

4.3.4 Add more data using layout_karyogram function

In this section, a lower level function layout_karyogram is going to be introduced. This is
convenient API for constructing karyogram plot and adding more data layer by layer. Function
ggplot is just to create blank object to add layer on.
You need to pay attention to

• when you add plots layer by layer, seqnames of different data must be the same to
make sure the data are mapped to the same chromosome. For example, if you name
chromosome following schema like chr1 and use just number 1 to name other data,
they will be treated as different chromosomes.

• cannot use the same aesthetics mapping multiple time for different data. For example,
if you have used aes(color =), for one data, you cannot use aes(color =) anymore
for mapping variables from other add-on data, this is currently not allowed in ggplot2 ,
even though you expect multiple color legend shows up, this is going to confuse people
which is which. HOWEVER, color or fill without aes() wrap around, is allowed for
any track, it’s set single arbitrary color.

• Default rectangle y range is [0, 10], so when you add on more data layer by layer on
existing graphics, you can use ylim to control how to normalize your data and plot it
relative to chromosome space. For example, with default, chromosome space is plotted
between y [0, 10], if you use ylim = c(10 , 20), you will stack data right above each
chromosomes and with equal width. For geom like ’point’, which you need to specify
’y’ value in aes(), we will add 5% margin on top and at bottom of that track.

Many times we overlay different datas sets, so let’s break down the previous samples into 4
groups and treat them as different data and build them layer by layer, assign the color by
hand. You could use ylim to control where they are ploted.
prepare the data

dn3 <- dn.nona[dn.nona$exReg == '3']

dn5 <- dn.nona[dn.nona$exReg == '5']

dnC <- dn.nona[dn.nona$exReg == 'C']

dn.na <- dn[is.na(dn$exReg)]

now we have 4 different data sets

autoplot(seqinfo(dn3), layout = "karyogram") +

layout_karyogram(data = dn3, geom = "rect", ylim = c(0, 10/3), color = "#7fc97f") +

layout_karyogram(data = dn5, geom = "rect", ylim = c(10/3, 10/3*2), color = "#beaed4") +

layout_karyogram(data = dnC, geom = "rect", ylim = c(10/3*2, 10), color = "#fdc086") +

layout_karyogram(data = dn.na, geom = "rect", ylim = c(10, 10/3*4), color = "brown")

What’s more, you could even chagne the geom for those data
dn$pvalue <- runif(length(dn)) * 10

p <- autoplot(seqinfo(dn)) + layout_karyogram(dn, aes(x = start, y = pvalue),

geom = "point", color = "#fdc086")

p

4.3.5 More flexible layout of karyogram

19

http://bioconductor.org/packages/ggplot2

ggbio:visualization toolkits for genomic data

p.ylim + facet_wrap(~seqnames)

20

Chapter 5

Link ranges to your data

Plot GRanges object structure and linked to a even spaced paralell coordinates plot which
represting the data in elementeMetadata.
library(TxDb.Hsapiens.UCSC.hg19.knownGene)

library(ggbio)

data(genesymbol, package = "biovizBase")

txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene

model <- exonsBy(txdb, by = "tx")

model17 <- subsetByOverlaps(model, genesymbol["RBM17"])

exons <- exons(txdb)

exon17 <- subsetByOverlaps(exons, genesymbol["RBM17"])

reduce to make sure there is no overlap

just for example

exon.new <- reduce(exon17)

suppose

values(exon.new)$sample1 <- rnorm(length(exon.new), 10, 3)

values(exon.new)$sample2 <- rnorm(length(exon.new), 10, 10)

values(exon.new)$score <- rnorm(length(exon.new))

values(exon.new)$significant <- sample(c(TRUE,FALSE), size = length(exon.new),replace = TRUE)

data ready

exon.new

Make the plots, you can pass a list of annotation tracks too.
p17 <- autoplot(txdb, genesymbol["RBM17"])

plotRangesLinkedToData(exon.new, stat.y = c("sample1", "sample2"), annotation = list(p17))

For more information, check the manual.

21

Chapter 6

Miscellaneous

Every plot object produced by ggplot2 is essentially a ggplot2 object, so you could use all
the tricks you know with ggplot2 on ggbio plots too, including scales, colors, themes, etc.

6.1 Themes

In ggbio, we developed some more themes to make things easier.

6.1.1 Plot theme

Plot level themes are like any other themes defined in ggplot2 , simply apply it to a plot.
p.txdb

p.txdb + theme_alignment()

p.txdb + theme_clear()

p.txdb + theme_null()

When you have multiple chromosomes encoded in seqnames, you could use theme_genome
to make a ’fake’ linear view of genome coordinates quickly by applying this theme, because
it’s not equal to chromosome lengths, it’s simply
library(GenomicRanges)

set.seed(1)

N <- 100

gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"),

size = N, replace = TRUE),

IRanges(start = sample(1:300, size = N, replace = TRUE),

width = sample(70:75, size = N,replace = TRUE)),

strand = sample(c("+", "-"), size = N, replace = TRUE),

value = rnorm(N, 10, 3), score = rnorm(N, 100, 30),

sample = sample(c("Normal", "Tumor"),

size = N, replace = TRUE),

pair = sample(letters, size = N,

replace = TRUE))

22

http://bioconductor.org/packages/ggplot2
http://bioconductor.org/packages/ggplot2
http://bioconductor.org/packages/ggplot2
http://bioconductor.org/packages/ggbio
http://bioconductor.org/packages/ggbio
http://bioconductor.org/packages/ggplot2

ggbio:visualization toolkits for genomic data

seqlengths(gr) <- c(400, 1000, 500)

autoplot(gr)

autoplot(gr) + theme_genome()

6.1.2 Track theme

Track level themes are more complex, it controls whole looking of the tracks, it’s essentially
a theme object with some attributes controlling the tracks appearance.
See how we make a template, you could customize in the same way
theme_tracks_sunset

The attributes you could control is basically passed to tracks() constructor, including

label.bg.color character
label.bg.fill character

label.text.color character
label.text.cex numeric
label.text.angle numeric
track.plot.color character_OR_NULL
track.bg.color character_OR_NULL
label.width unit

Table 6.1: tracks attributes

23

Chapter 7

Session Information

sessionInfo()

24

	1 Getting started
	1.1 Citation
	1.2 Introduction

	2 Case study: building your first tracks
	2.1 Add an ideogram track
	2.2 Add a gene model track
	2.2.1 Introduction
	2.2.2 Make gene model from OrganismDb object
	2.2.3 Make gene model from TxDb object
	2.2.4 Make gene model from EnsDb object
	2.2.5 Make gene model from GRangesList object

	2.3 Add a reference track
	2.3.1 Semantic zoom

	2.4 Add an alignment track
	2.5 Add a variants track
	2.6 Building your tracks

	3 Simple navigation
	4 Overview plots
	4.1 how to make circular plots
	4.1.1 Introduction
	4.1.2 Buidling circular plot layer by layer
	4.1.3 Complex arragnment of plots

	4.2 How to make grandlinear plots
	4.2.1 Introduction
	4.2.2 Corrdinate genome
	4.2.3 Convenient [functioncolor]plotGrandLinear function
	4.2.4 How to highlight some points?

	4.3 How to make stacked karyogram overview plots
	4.3.1 Introduction
	4.3.2 Create karyogram temlate
	4.3.3 Add data on karyogram layout
	4.3.4 Add more data using layout_karyogram function
	4.3.5 More flexible layout of karyogram

	5 Link ranges to your data
	6 Miscellaneous
	6.1 Themes
	6.1.1 Plot theme
	6.1.2 Track theme

	7 Session Information

