TCGAbiolinks has provided a few functions to download and prepare data from GDC for analysis. This section starts by explaning the different downloads methods and the SummarizedExperiment object, which is the default data structure used in TCGAbiolinks, followed by some examples.
There are two methods to download GDC data using TCGAbiolinks:
files.per.chunk
argument which will split the files into small chunks, for example, if chunks.per.download is equal to 10 we will download only 10 files inside each tar.gz.A SummarizedExperiment object has three main matrices that can be accessed using the SummarizedExperiment package):
colData(data)
: stores sample information. TCGAbiolinks will add indexed clinical data and subtype information from marker TCGA papers.assay(data)
: stores molecular datarowRanges(data)
: stores metadata about the features, including their genomic rangesWhen using the funciton GDCprepare
there is an argument called SummarizedExperiment
which defines the output type a Summarized Experiment (default option) or a data frame. To create a summarized Experiment object we annotate the data with genomic positions with last patch release version of the genome available. For legacy data (data aligned to hg19) TCGAbiolinks is using GRCh37.p13 and for harmonized data (data aligned to hg38) now it is using GRCh38.p7 (May 2017).
Unfortunately, some of the updates changes/remove gene symbols, change coordinates, etc. Which might introduce some loss of data. For example, if the gene was removed we cannot map it anymore and that information will be lost in the SummarizedExperiment
.
If you set SummarizedExperiment
to FALSE
, you will get the data unmofied just as they are in the files and ad your own annotation.
Also, there are no updated for DNA methylation data. But the last metadata available can be found here: http://zwdzwd.github.io/InfiniumAnnotation
In this example we will download gene expression data from legacy database (data aligned against genome of reference hg19) using GDC api method and we will show object data and metadata.
query <- GDCquery(project = "TCGA-GBM",
data.category = "Gene expression",
data.type = "Gene expression quantification",
platform = "Illumina HiSeq",
file.type = "normalized_results",
experimental.strategy = "RNA-Seq",
barcode = c("TCGA-14-0736-02A-01R-2005-01", "TCGA-06-0211-02A-02R-2005-01"),
legacy = TRUE)
GDCdownload(query, method = "api", files.per.chunk = 10)
data <- GDCprepare(query)
# Gene expression aligned against hg19.
datatable(as.data.frame(colData(data)),
options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),
rownames = FALSE)
# Only first 100 to make render faster
datatable(assay(data)[1:100,],
options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),
rownames = TRUE)
rowRanges(data)
## GRanges object with 100 ranges and 3 metadata columns:
## seqnames ranges strand | gene_id
## <Rle> <IRanges> <Rle> | <character>
## A1BG chr19 [58856544, 58864865] - | A1BG
## A2M chr12 [ 9220260, 9268825] - | A2M
## NAT1 chr8 [18027986, 18081198] + | NAT1
## NAT2 chr8 [18248755, 18258728] + | NAT2
## RP11-986E7.7 chr14 [95058395, 95090983] + | RP11-986E7.7
## ... ... ... ... . ...
## ADORA1 chr1 [203059782, 203136533] + | ADORA1
## ADORA2A chr22 [ 24813847, 24838328] + | ADORA2A
## ADORA2B chr17 [ 15848231, 15879060] + | ADORA2B
## ADORA3 chr1 [112025970, 112106584] - | ADORA3
## ADPRH chr3 [119298115, 119308792] + | ADPRH
## entrezgene ensembl_gene_id
## <numeric> <character>
## A1BG 1 ENSG00000121410
## A2M 2 ENSG00000175899
## NAT1 9 ENSG00000171428
## NAT2 10 ENSG00000156006
## RP11-986E7.7 12 ENSG00000273259
## ... ... ...
## ADORA1 134 ENSG00000163485
## ADORA2A 135 ENSG00000128271
## ADORA2B 136 ENSG00000170425
## ADORA3 140 ENSG00000121933
## ADPRH 141 ENSG00000144843
## -------
## seqinfo: 24 sequences from an unspecified genome; no seqlengths
In this example we will download gene expression quantification from harmonized database (data aligned against genome of reference hg38). Also, it shows the object data and metadata.
# Gene expression aligned against hg38
query <- GDCquery(project = "TCGA-GBM",
data.category = "Transcriptome Profiling",
data.type = "Gene Expression Quantification",
workflow.type = "HTSeq - FPKM-UQ",
barcode = c("TCGA-14-0736-02A-01R-2005-01", "TCGA-06-0211-02A-02R-2005-01"))
GDCdownload(query)
data <- GDCprepare(query)
datatable(as.data.frame(colData(data)),
options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),
rownames = FALSE)
datatable(assay(data)[1:100,],
options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),
rownames = TRUE)
rowRanges(data)
## GRanges object with 100 ranges and 3 metadata columns:
## seqnames ranges strand | ensembl_gene_id
## <Rle> <IRanges> <Rle> | <character>
## ENSG00000000003 chrX [100627109, 100639991] - | ENSG00000000003
## ENSG00000000005 chrX [100584802, 100599885] + | ENSG00000000005
## ENSG00000000419 chr20 [ 50934867, 50958555] - | ENSG00000000419
## ENSG00000000457 chr1 [169849631, 169894267] - | ENSG00000000457
## ENSG00000000460 chr1 [169662007, 169854080] + | ENSG00000000460
## ... ... ... ... . ...
## ENSG00000005421 chr7 [95297676, 95324707] - | ENSG00000005421
## ENSG00000005436 chr2 [75652000, 75710989] - | ENSG00000005436
## ENSG00000005448 chr2 [74421678, 74425755] + | ENSG00000005448
## ENSG00000005469 chr7 [87345681, 87399795] + | ENSG00000005469
## ENSG00000005471 chr7 [87401697, 87480435] - | ENSG00000005471
## external_gene_name original_ensembl_gene_id
## <character> <character>
## ENSG00000000003 TSPAN6 ENSG00000000003.13
## ENSG00000000005 TNMD ENSG00000000005.5
## ENSG00000000419 DPM1 ENSG00000000419.11
## ENSG00000000457 SCYL3 ENSG00000000457.12
## ENSG00000000460 C1orf112 ENSG00000000460.15
## ... ... ...
## ENSG00000005421 PON1 ENSG00000005421.7
## ENSG00000005436 GCFC2 ENSG00000005436.12
## ENSG00000005448 WDR54 ENSG00000005448.15
## ENSG00000005469 CROT ENSG00000005469.10
## ENSG00000005471 ABCB4 ENSG00000005471.14
## -------
## seqinfo: 24 sequences from an unspecified genome; no seqlengths