TCGAquery_subtype: Working with molecular subtypes data.

The Cancer Genome Atlas (TCGA) Research Network has reported integrated genome-wide studies of various diseases. We have added some of the subtypes defined by these report in our package:

TCGA dataset Link Paper Journal
ACC doi:10.1016/j.ccell.2016.04.002 Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma. Cancer cell 2016
BRCA https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3465532/ Comprehensive molecular portraits of human breast tumors Nature 2013
BLCA http://www.cell.com/cell/fulltext/S0092-8674(17)31056-5 Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer Cell 2017
CHOL http://www.sciencedirect.com/science/article/pii/S2211124717302140?via%3Dihub Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles Cell Reports 2017
COAD http://www.nature.com/nature/journal/v487/n7407/abs/nature11252.html Comprehensive molecular characterization of human colon and rectal cancer Nature 2012
ESCA https://www.nature.com/articles/nature20805 Integrated genomic characterization of oesophageal carcinoma Nature 2017
GBM http://dx.doi.org/10.1016/j.cell.2015.12.028 Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma Cell 2016
HNSC http://www.nature.com/nature/journal/v517/n7536/abs/nature14129.html Comprehensive genomic characterization of head and neck squamous cell carcinomas Nature 2015
KICH http://www.sciencedirect.com/science/article/pii/S1535610814003043 The Somatic Genomic Landscape of Chromophobe Renal Cell Carcinoma Cancer cell 2014
KIRC http://www.nature.com/nature/journal/v499/n7456/abs/nature12222.html Comprehensive molecular characterization of clear cell renal cell carcinoma Nature 2013
KIRP http://www.nejm.org/doi/full/10.1056/NEJMoa1505917 Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma NEJM 2016
LGG http://dx.doi.org/10.1016/j.cell.2015.12.028 Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma Cell 2016
LUAD http://www.nature.com/nature/journal/v511/n7511/abs/nature13385.html Comprehensive molecular profiling of lung adenocarcinoma Nature 2014
LUSC http://www.nature.com/nature/journal/v489/n7417/abs/nature11404.html Comprehensive genomic characterization of squamous cell lung cancers Nature 2012
PCPG http://dx.doi.org/10.1016/j.ccell.2017.01.001 Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma Cancer cell 2017
PRAD http://www.sciencedirect.com/science/article/pii/S0092867415013392 The Molecular Taxonomy of Primary Prostate Cancer Cell 2015
READ http://www.nature.com/nature/journal/v487/n7407/abs/nature11252.html Comprehensive molecular characterization of human colon and rectal cancer Nature 2012
SARC http://www.cell.com/cell/fulltext/S0092-8674(17)31203-5 Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas Cell 2017
SKCM http://www.sciencedirect.com/science/article/pii/S0092867415006340 Genomic Classification of Cutaneous Melanoma Cell 2015
STAD http://www.nature.com/nature/journal/v511/n7511/abs/nature13385.html Comprehensive molecular characterization of gastric adenocarcinoma Nature 2013
THCA http://www.sciencedirect.com/science/article/pii/S0092867414012380 Integrated Genomic Characterization of Papillary Thyroid Carcinoma Cell 2014
UCEC http://www.nature.com/nature/journal/v497/n7447/abs/nature12113.html Integrated genomic characterization of endometrial carcinoma Nature 2013
UCS http://www.cell.com/cancer-cell/fulltext/S1535-6108(17)30053-3 Integrated Molecular Characterization of Uterine Carcinosarcoma Cancer Cell 2017

These subtypes will be automatically added in the summarizedExperiment object through GDCprepare. But you can also use the TCGAquery_subtype function to retrive this information.

lgg.gbm.subtype <- TCGAquery_subtype(tumor = "lgg")

A subset of the LGG subytpe is shown below:

Session Information


sessionInfo()
## R version 3.4.3 (2017-11-30)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 16.04.3 LTS
## 
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.6-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.6-bioc/R/lib/libRlapack.so
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=C              
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## attached base packages:
##  [1] grid      parallel  stats4    stats     graphics  grDevices utils    
##  [8] datasets  methods   base     
## 
## other attached packages:
##  [1] TCGAbiolinks_2.6.10        maftools_1.4.10           
##  [3] bigmemory_4.5.33           bindrcpp_0.2              
##  [5] png_0.1-7                  DT_0.2                    
##  [7] dplyr_0.7.4                SummarizedExperiment_1.8.1
##  [9] DelayedArray_0.4.1         matrixStats_0.52.2        
## [11] Biobase_2.38.0             GenomicRanges_1.30.1      
## [13] GenomeInfoDb_1.14.0        IRanges_2.12.0            
## [15] S4Vectors_0.16.0           BiocGenerics_0.24.0       
## 
## loaded via a namespace (and not attached):
##   [1] changepoint_2.2.2           backports_1.1.2            
##   [3] circlize_0.4.3              aroma.light_3.8.0          
##   [5] NMF_0.20.6                  plyr_1.8.4                 
##   [7] selectr_0.3-1               ConsensusClusterPlus_1.42.0
##   [9] lazyeval_0.2.1              splines_3.4.3              
##  [11] BiocParallel_1.12.0         gridBase_0.4-7             
##  [13] ggplot2_2.2.1               sva_3.26.0                 
##  [15] digest_0.6.13               foreach_1.4.4              
##  [17] htmltools_0.3.6             magrittr_1.5               
##  [19] memoise_1.1.0               BSgenome_1.46.0            
##  [21] cluster_2.0.6               doParallel_1.0.11          
##  [23] limma_3.34.5                ComplexHeatmap_1.17.1      
##  [25] Biostrings_2.46.0           readr_1.1.1                
##  [27] annotate_1.56.1             wordcloud_2.5              
##  [29] R.utils_2.6.0               prettyunits_1.0.2          
##  [31] colorspace_1.3-2            blob_1.1.0                 
##  [33] rvest_0.3.2                 ggrepel_0.7.0              
##  [35] bigmemory.sri_0.1.3         RCurl_1.95-4.10            
##  [37] jsonlite_1.5                roxygen2_6.0.1             
##  [39] genefilter_1.60.0           bindr_0.1                  
##  [41] VariantAnnotation_1.24.5    survival_2.41-3            
##  [43] zoo_1.8-1                   iterators_1.0.9            
##  [45] glue_1.2.0                  survminer_0.4.1            
##  [47] registry_0.5                gtable_0.2.0               
##  [49] zlibbioc_1.24.0             XVector_0.18.0             
##  [51] GetoptLong_0.1.6            shape_1.4.3                
##  [53] scales_0.5.0                DESeq_1.30.0               
##  [55] rngtools_1.2.4              DBI_0.7                    
##  [57] edgeR_3.20.6                ggthemes_3.4.0             
##  [59] Rcpp_0.12.14                xtable_1.8-2               
##  [61] progress_1.1.2              cmprsk_2.2-7               
##  [63] mclust_5.4                  foreign_0.8-69             
##  [65] bit_1.1-12                  matlab_1.0.2               
##  [67] km.ci_0.5-2                 htmlwidgets_0.9            
##  [69] httr_1.3.1                  RColorBrewer_1.1-2         
##  [71] pkgconfig_2.0.1             XML_3.98-1.9               
##  [73] R.methodsS3_1.7.1           locfit_1.5-9.1             
##  [75] labeling_0.3                rlang_0.1.6                
##  [77] reshape2_1.4.3              AnnotationDbi_1.40.0       
##  [79] munsell_0.4.3               tools_3.4.3                
##  [81] downloader_0.4              RSQLite_2.0                
##  [83] devtools_1.13.4             broom_0.4.3                
##  [85] evaluate_0.10.1             stringr_1.2.0              
##  [87] yaml_2.1.16                 knitr_1.18                 
##  [89] bit64_0.9-7                 survMisc_0.5.4             
##  [91] purrr_0.2.4                 EDASeq_2.12.0              
##  [93] nlme_3.1-131                slam_0.1-42                
##  [95] R.oo_1.21.0                 xml2_1.1.1                 
##  [97] biomaRt_2.34.1              BiocStyle_2.6.1            
##  [99] compiler_3.4.3              curl_3.1                   
## [101] testthat_2.0.0              tibble_1.4.1               
## [103] geneplotter_1.56.0          stringi_1.1.6              
## [105] highr_0.6                   GenomicFeatures_1.30.0     
## [107] lattice_0.20-35             Matrix_1.2-12              
## [109] commonmark_1.4              psych_1.7.8                
## [111] KMsurv_0.1-5                pillar_1.0.1               
## [113] GlobalOptions_0.0.12        cowplot_0.9.2              
## [115] data.table_1.10.4-3         bitops_1.0-6               
## [117] rtracklayer_1.38.2          R6_2.2.2                   
## [119] latticeExtra_0.6-28         hwriter_1.3.2              
## [121] RMySQL_0.10.13              ShortRead_1.36.0           
## [123] gridExtra_2.3               codetools_0.2-15           
## [125] assertthat_0.2.0            pkgmaker_0.22              
## [127] rprojroot_1.3-2             rjson_0.2.15               
## [129] withr_2.1.1                 GenomicAlignments_1.14.1   
## [131] Rsamtools_1.30.0            mnormt_1.5-5               
## [133] GenomeInfoDbData_1.0.0      mgcv_1.8-22                
## [135] hms_0.4.0                   tidyr_0.7.2                
## [137] rmarkdown_1.8               ggpubr_0.1.6