TCGAquery_subtype
: Working with molecular subtypes data.The Cancer Genome Atlas (TCGA) Research Network has reported integrated genome-wide studies of various diseases. We have added some of the subtypes defined by these report in our package:
TCGA dataset | Link | Paper | Journal |
---|---|---|---|
ACC | doi:10.1016/j.ccell.2016.04.002 | Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma. | Cancer cell 2016 |
BRCA | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3465532/ | Comprehensive molecular portraits of human breast tumors | Nature 2013 |
BLCA | http://www.cell.com/cell/fulltext/S0092-8674(17)31056-5 | Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer Cell 2017 | |
CHOL | http://www.sciencedirect.com/science/article/pii/S2211124717302140?via%3Dihub | Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles | Cell Reports 2017 |
COAD | http://www.nature.com/nature/journal/v487/n7407/abs/nature11252.html | Comprehensive molecular characterization of human colon and rectal cancer | Nature 2012 |
ESCA | https://www.nature.com/articles/nature20805 | Integrated genomic characterization of oesophageal carcinoma | Nature 2017 |
GBM | http://dx.doi.org/10.1016/j.cell.2015.12.028 | Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma | Cell 2016 |
HNSC | http://www.nature.com/nature/journal/v517/n7536/abs/nature14129.html | Comprehensive genomic characterization of head and neck squamous cell carcinomas | Nature 2015 |
KICH | http://www.sciencedirect.com/science/article/pii/S1535610814003043 | The Somatic Genomic Landscape of Chromophobe Renal Cell Carcinoma | Cancer cell 2014 |
KIRC | http://www.nature.com/nature/journal/v499/n7456/abs/nature12222.html | Comprehensive molecular characterization of clear cell renal cell carcinoma | Nature 2013 |
KIRP | http://www.nejm.org/doi/full/10.1056/NEJMoa1505917 | Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma | NEJM 2016 |
LGG | http://dx.doi.org/10.1016/j.cell.2015.12.028 | Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma | Cell 2016 |
LUAD | http://www.nature.com/nature/journal/v511/n7511/abs/nature13385.html | Comprehensive molecular profiling of lung adenocarcinoma | Nature 2014 |
LUSC | http://www.nature.com/nature/journal/v489/n7417/abs/nature11404.html | Comprehensive genomic characterization of squamous cell lung cancers | Nature 2012 |
PCPG | http://dx.doi.org/10.1016/j.ccell.2017.01.001 | Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma | Cancer cell 2017 |
PRAD | http://www.sciencedirect.com/science/article/pii/S0092867415013392 | The Molecular Taxonomy of Primary Prostate Cancer | Cell 2015 |
READ | http://www.nature.com/nature/journal/v487/n7407/abs/nature11252.html | Comprehensive molecular characterization of human colon and rectal cancer | Nature 2012 |
SARC | http://www.cell.com/cell/fulltext/S0092-8674(17)31203-5 | Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas | Cell 2017 |
SKCM | http://www.sciencedirect.com/science/article/pii/S0092867415006340 | Genomic Classification of Cutaneous Melanoma | Cell 2015 |
STAD | http://www.nature.com/nature/journal/v511/n7511/abs/nature13385.html | Comprehensive molecular characterization of gastric adenocarcinoma | Nature 2013 |
THCA | http://www.sciencedirect.com/science/article/pii/S0092867414012380 | Integrated Genomic Characterization of Papillary Thyroid Carcinoma | Cell 2014 |
UCEC | http://www.nature.com/nature/journal/v497/n7447/abs/nature12113.html | Integrated genomic characterization of endometrial carcinoma | Nature 2013 |
UCS | http://www.cell.com/cancer-cell/fulltext/S1535-6108(17)30053-3 | Integrated Molecular Characterization of Uterine Carcinosarcoma Cancer | Cell 2017 |
These subtypes will be automatically added in the summarizedExperiment object through GDCprepare. But you can also use the TCGAquery_subtype
function to retrive this information.
lgg.gbm.subtype <- TCGAquery_subtype(tumor = "lgg")
A subset of the LGG subytpe is shown below:
sessionInfo()
## R version 3.4.3 (2017-11-30)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 16.04.3 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.6-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.6-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] grid parallel stats4 stats graphics grDevices utils
## [8] datasets methods base
##
## other attached packages:
## [1] TCGAbiolinks_2.6.10 maftools_1.4.10
## [3] bigmemory_4.5.33 bindrcpp_0.2
## [5] png_0.1-7 DT_0.2
## [7] dplyr_0.7.4 SummarizedExperiment_1.8.1
## [9] DelayedArray_0.4.1 matrixStats_0.52.2
## [11] Biobase_2.38.0 GenomicRanges_1.30.1
## [13] GenomeInfoDb_1.14.0 IRanges_2.12.0
## [15] S4Vectors_0.16.0 BiocGenerics_0.24.0
##
## loaded via a namespace (and not attached):
## [1] changepoint_2.2.2 backports_1.1.2
## [3] circlize_0.4.3 aroma.light_3.8.0
## [5] NMF_0.20.6 plyr_1.8.4
## [7] selectr_0.3-1 ConsensusClusterPlus_1.42.0
## [9] lazyeval_0.2.1 splines_3.4.3
## [11] BiocParallel_1.12.0 gridBase_0.4-7
## [13] ggplot2_2.2.1 sva_3.26.0
## [15] digest_0.6.13 foreach_1.4.4
## [17] htmltools_0.3.6 magrittr_1.5
## [19] memoise_1.1.0 BSgenome_1.46.0
## [21] cluster_2.0.6 doParallel_1.0.11
## [23] limma_3.34.5 ComplexHeatmap_1.17.1
## [25] Biostrings_2.46.0 readr_1.1.1
## [27] annotate_1.56.1 wordcloud_2.5
## [29] R.utils_2.6.0 prettyunits_1.0.2
## [31] colorspace_1.3-2 blob_1.1.0
## [33] rvest_0.3.2 ggrepel_0.7.0
## [35] bigmemory.sri_0.1.3 RCurl_1.95-4.10
## [37] jsonlite_1.5 roxygen2_6.0.1
## [39] genefilter_1.60.0 bindr_0.1
## [41] VariantAnnotation_1.24.5 survival_2.41-3
## [43] zoo_1.8-1 iterators_1.0.9
## [45] glue_1.2.0 survminer_0.4.1
## [47] registry_0.5 gtable_0.2.0
## [49] zlibbioc_1.24.0 XVector_0.18.0
## [51] GetoptLong_0.1.6 shape_1.4.3
## [53] scales_0.5.0 DESeq_1.30.0
## [55] rngtools_1.2.4 DBI_0.7
## [57] edgeR_3.20.6 ggthemes_3.4.0
## [59] Rcpp_0.12.14 xtable_1.8-2
## [61] progress_1.1.2 cmprsk_2.2-7
## [63] mclust_5.4 foreign_0.8-69
## [65] bit_1.1-12 matlab_1.0.2
## [67] km.ci_0.5-2 htmlwidgets_0.9
## [69] httr_1.3.1 RColorBrewer_1.1-2
## [71] pkgconfig_2.0.1 XML_3.98-1.9
## [73] R.methodsS3_1.7.1 locfit_1.5-9.1
## [75] labeling_0.3 rlang_0.1.6
## [77] reshape2_1.4.3 AnnotationDbi_1.40.0
## [79] munsell_0.4.3 tools_3.4.3
## [81] downloader_0.4 RSQLite_2.0
## [83] devtools_1.13.4 broom_0.4.3
## [85] evaluate_0.10.1 stringr_1.2.0
## [87] yaml_2.1.16 knitr_1.18
## [89] bit64_0.9-7 survMisc_0.5.4
## [91] purrr_0.2.4 EDASeq_2.12.0
## [93] nlme_3.1-131 slam_0.1-42
## [95] R.oo_1.21.0 xml2_1.1.1
## [97] biomaRt_2.34.1 BiocStyle_2.6.1
## [99] compiler_3.4.3 curl_3.1
## [101] testthat_2.0.0 tibble_1.4.1
## [103] geneplotter_1.56.0 stringi_1.1.6
## [105] highr_0.6 GenomicFeatures_1.30.0
## [107] lattice_0.20-35 Matrix_1.2-12
## [109] commonmark_1.4 psych_1.7.8
## [111] KMsurv_0.1-5 pillar_1.0.1
## [113] GlobalOptions_0.0.12 cowplot_0.9.2
## [115] data.table_1.10.4-3 bitops_1.0-6
## [117] rtracklayer_1.38.2 R6_2.2.2
## [119] latticeExtra_0.6-28 hwriter_1.3.2
## [121] RMySQL_0.10.13 ShortRead_1.36.0
## [123] gridExtra_2.3 codetools_0.2-15
## [125] assertthat_0.2.0 pkgmaker_0.22
## [127] rprojroot_1.3-2 rjson_0.2.15
## [129] withr_2.1.1 GenomicAlignments_1.14.1
## [131] Rsamtools_1.30.0 mnormt_1.5-5
## [133] GenomeInfoDbData_1.0.0 mgcv_1.8-22
## [135] hms_0.4.0 tidyr_0.7.2
## [137] rmarkdown_1.8 ggpubr_0.1.6