In this vignette, we want to estimate the weight~covariate function on the RNASeq and eQTL datasets, without using the k-fold strategy. The below plots are mainly useful for presentations.
library("IHW")
library("dplyr")
library("ggplot2")
library("grid")
library("tidyr")
library("cowplot")
library("IHWpaper")
red_col <- scales::hue_pal(h = c(0, 360) + 15, c = 100, l = 65, h.start = 0,direction = 1)(1)
Load Bottomly dataset, apply DESeq2, then IHW with 1 fold.
bottomly <- analyze_dataset("bottomly")
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 4 genes
## -- DESeq argument 'minReplicatesForReplace' = 7
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
ihw_res <- ihw(bottomly$pvalue, bottomly$baseMean, 0.1,
nfolds=1, nbins=13,
nfolds_internal=4L, nsplits_internal=5L)
## Using only 1 fold! Only use this if you want to learn the weights, but NEVER for testing!
Do the plotting:
breaks <- IHW:::stratification_breaks(ihw_res)
break_min = min(bottomly$baseMean)
breaks_left <- c(break_min,breaks[-length(breaks)])
step_df <- data.frame(weight=weights(ihw_res,levels_only=TRUE),
stratum = 1:nlevels(groups_factor(ihw_res))) %>%
mutate(baseMean_left = breaks_left[stratum],
baseMean_right = breaks[stratum],
baseMean_ratio = baseMean_right/baseMean_left ,
baseMean_left = baseMean_left * baseMean_ratio^.2,
baseMean_right = baseMean_right *baseMean_ratio^(-.2))
stratum_fun <- function(df){
stratum <- df$stratum
weight <- df$weight
stratum_left <- stratum[stratum != length(stratum)]
weight_left <- weight[stratum_left]
baseMean_left <- df$baseMean_right[stratum_left]
stratum_right <- stratum[stratum != 1]
weight_right <- weight[stratum_right]
baseMean_right <- df$baseMean_left[stratum_right]
data.frame(stratum_left= stratum_left, weight_left= weight_left,
stratum_right = stratum_right, weight_right = weight_right,
baseMean_left = baseMean_left, baseMean_right = baseMean_right)
}
connect_df <- step_df %>%
do(stratum_fun(.)) %>%
mutate(dashed = factor(ifelse(abs(weight_left - weight_right) > 10^(-4) , TRUE, FALSE),
levels=c(FALSE,TRUE)))
panel_b <- ggplot(step_df,
aes(x=baseMean_left,
xend=baseMean_right,
y=weight, yend=weight)) +
geom_segment(size=0.8, color=red_col)+
geom_segment(data= connect_df, aes(x=baseMean_left, xend=baseMean_right,
y=weight_left, yend=weight_right,
linetype=dashed),
size=0.8, color=red_col)+
scale_x_log10(breaks=c(1,10,100,1000,10000))+
xlab("Mean of normalized counts")+
theme(legend.position=c(0.8,0.4)) +
theme(plot.margin = unit(c(1, 1, 2, 1), "lines")) +
guides(linetype=FALSE) +
theme(axis.title = element_text(face="bold") )
panel_b
ggsave(panel_b, filename="bottomly_1fold_weight_function.pdf", width=7, height=5)
Next we load the data for the hQTL example. Here we load the data-frame with the snps, genes and pvalue information. Note that because of memory concerns (the full data-frame is 3 GB) it contains only the p-values below 0.005. However, before doing this reduction we counted the number of hypotheses m_groups
in each stratum (strata as defined in group column). Thus we can apply IHW
to the reduced dataset, see also the advanced section of the IHW vignette (“Advanced usage: Working with incomplete p-value lists”).
hqtl_filt <- system.file("extdata/real_data",
"hqtl_pvalue_filtered.Rds", package = "IHWpaper")
hqtl_filt <- readRDS(hqtl_filt)
m_groups <- attr(hqtl_filt, "m_groups")
ihw_qtl_res <- ihw(hqtl_filt$pvalue, as.factor(hqtl_filt$group), 0.1,
m_groups = m_groups, nfolds=1L, lambda=Inf)
## Using only 1 fold! Only use this if you want to learn the weights, but NEVER for testing!
breaks <- attr(hqtl_filt, "breaks")
breaks <- breaks[-1]
break_min <- 5000
breaks_left <- c(break_min,breaks[-length(breaks)])
step_df_qtl <- data.frame(weight=weights(ihw_qtl_res,levels_only=TRUE),
stratum = 1:nlevels(groups_factor(ihw_qtl_res))) %>%
mutate(break_left = breaks_left[stratum],
break_right = breaks[stratum],
break_ratio = break_right/break_left ,
break_left =break_left * break_ratio^.2,
break_right = break_right *break_ratio^(-.2))
stratum_fun <- function(df){
stratum <- df$stratum
weight <- df$weight
stratum_left <- stratum[stratum != length(stratum)]
weight_left <- weight[stratum_left]
break_left <- df$break_right[stratum_left]
stratum_right <- stratum[stratum != 1]
weight_right <- weight[stratum_right]
break_right <- df$break_left[stratum_right]
data.frame(stratum_left= stratum_left, weight_left= weight_left,
stratum_right = stratum_right, weight_right = weight_right,
break_left = break_left, break_right = break_right)
}
connecting_df_qtl <- step_df_qtl %>%
do(stratum_fun(.)) %>%
mutate(dashed = factor(ifelse(abs(weight_left - weight_right) > 5,
TRUE, FALSE),
levels=c(FALSE,TRUE)))
panel_f <- ggplot(step_df_qtl, aes(x=break_left, xend=break_right,y=weight, yend=weight)) +
geom_segment(size=0.8, color=red_col)+
geom_segment(data= connecting_df_qtl, aes(x=break_left, xend=break_right,
y=weight_left, yend=weight_right,
linetype=dashed),
size=0.8, color=red_col) +
scale_x_log10(breaks=c(10^4, 10^5,10^6,10^7)) +
xlab("Genomic distance (bp)")+
theme(legend.position=c(0.8,0.4)) +
theme(plot.margin = unit(c(1, 1, 2, 1), "lines"))+
guides(linetype=FALSE) +
theme(axis.title = element_text(face="bold") )
panel_f
ggsave(panel_f, filename="hqtl_1fold_weight_function.pdf", width=7, height=5)