switchde
is an R
package for detecting switch-like differential expression along single-cell RNA-seq trajectories. It assumes genes follow a sigmoidal pattern of gene expression and tests for differential expression using a likelihood ratio test. It also returns maximum likelihood estimates (MLE) for the sigmoid parameters, which allows filtering of genes for up or down regulation as well as where along the trajectory the regulation occurs.
The parametric form of gene expression assumed is a sigmoid:
example_sigmoid()
Governed by three parameters:
switchde
can be installed from both Bioconductor and Github.
Example installation from Bioconductor:
source("https://bioconductor.org/biocLite.R")
biocLite("switchde")
Example installation from Github:
devtools::install_github("kieranrcampbell/switchde")
Several inputs will cause issues in maximum likelihood and expecatation maximisation algorithms typically leading to error messages such as ‘finite gradient required’. To avoid these, strict pre-filtering of genes is advised such as retaining genes with a certain mean expression and expressed in a certain proportion of cells. For example, if the matrix X
represents logged expression data, we can retain only genes with mean expression greater than 1 and expressed in 20% of cells via
X_filtered <- X[rowMeans(X) > 0.1 & rowMeans(X > 0) > 0.2,]
By default, switchde
also sets any expression less than 0.01 to 0. This can be controlled via the lower_threshold
parameter.
We provide a brief example on some synthetic single-cell data bundled with the package. synth_gex
contains a 12-by-100 expression matrix of 12 genes, and ex_pseudotime
contains a pseudotime vector of length 100. We can start by plotting the expression:
data(synth_gex)
data(ex_pseudotime)
gex_cleaned <- as_data_frame(t(synth_gex)) %>%
mutate(Pseudotime = ex_pseudotime) %>%
gather(Gene, Expression, -Pseudotime)
ggplot(gex_cleaned, aes(x = Pseudotime, y = Expression)) +
facet_wrap(~ Gene) + geom_point(shape = 21, fill = 'grey', color = 'black') +
theme_bw() + stat_smooth(color = 'darkred', se = FALSE)
## `geom_smooth()` using method = 'loess'
Model fitting and differential expression testing is provided by a call to the switchde
function:
sde <- switchde(synth_gex, ex_pseudotime)
## Input gene-by-cell matrix: 12 genes and 100 cells
This can equivalently be called using an SCESet
from the package scater
:
sce <- newSCESet(synth_gex)
## Warning in newSCESet(synth_gex): 'logExprsOffset' should be set manually
## for non-count data
## Warning in newSCESet(synth_gex): 'lowerDetectionLimit' should be set
## manually for log-expression values
sde <- switchde(sce, ex_pseudotime)
This returns a data.frame
with 6 columns:
gene
The gene name, taken from either featureNames(sce)
or rowNames(X)
pval
The p-value associated with differential expressionqval
The Benjamini-Hochberg corrected q-value associated with differential expressionmu0
The MLE estimate of \(\mu_0\)k
The MLE estimate of \(k\)t0
The MLE estimate of \(t_0\)We can use the function arrange
from dplyr
to order this by q-value:
arrange(sde, qval)
## # A tibble: 12 × 6
## gene pval qval mu0 k t0
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Gene8 6.511826e-21 7.814191e-20 5.320604 -9.217995 0.1675885
## 2 Gene2 1.030532e-12 6.183192e-12 3.445171 6.792040 0.7013710
## 3 Gene9 3.389230e-12 1.355692e-11 5.525775 -5.048873 0.3183684
## 4 Gene1 9.478795e-12 2.843639e-11 3.864267 7.506369 0.5669419
## 5 Gene5 1.544662e-11 3.707188e-11 3.514618 10.348479 0.4752514
## 6 Gene4 4.831243e-10 9.662485e-10 12.843280 -3.224137 -0.2114432
## 7 Gene3 2.196190e-08 3.764897e-08 4.202233 -4.998180 0.5578453
## 8 Gene10 4.473107e-08 6.709660e-08 3.176998 8.471475 0.3797383
## 9 Gene7 4.273169e-06 5.697559e-06 3.778711 7.417856 0.3024221
## 10 Gene12 3.362652e-04 4.035183e-04 4.858423 -4.047125 0.7791013
## 11 Gene11 1.024067e-03 1.117164e-03 2.689331 -7.272166 0.8318200
## 12 Gene6 1.913351e-02 1.913351e-02 1.758552 -8.871320 0.8700276
We may then wish to plot the expression of a particular gene and the MLE model. This is acheived using the switchplot
function, which takes three arguments:
x
Vector of expression valuespseudotime
Pseudotime vector of the same length as x
pars
The (mu_0
, k
, t0
) parameter tupleWe can easily extract the parameters using the extract_pars
function and pass this to switchplot
, which plots the maximum likelihood sigmoidal mean:
gene <- sde$gene[which.min(sde$qval)]
pars <- extract_pars(sde, gene)
print(pars)
## mu0 k t0
## 5.3206036 -9.2179954 0.1675885
switchplot(synth_gex[gene, ], ex_pseudotime, pars)
Note that switchplot
returns a ggplot
which can be further customised (e.g. using theme_xxx()
, etc).
We can also model zero inflation in the data with a dropout probability proportional to the latent gene expression magnitude. To enable this set zero_inflation = TRUE
. While this model is more appropriate for single-cell RNA-seq data, it requires use of the EM algorithm so takes typically 20x longer.
zde <- switchde(synth_gex, ex_pseudotime, zero_inflated = TRUE)
## Input gene-by-cell matrix: 12 genes and 100 cells
As before it returns a data_frame
, this time with an additional parameter \(\lambda\) corresponding to the dropout probability (see manuscript):
arrange(zde, qval)
## # A tibble: 12 × 8
## gene pval qval mu0 k t0
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Gene8 5.625294e-21 6.750353e-20 5.317191 -9.207447 0.1679975
## 2 Gene2 6.213000e-13 3.727800e-12 3.459876 6.781590 0.7018734
## 3 Gene9 2.316019e-12 9.264078e-12 5.516667 -5.062499 0.3202179
## 4 Gene1 3.656618e-12 1.096985e-11 3.892672 7.442629 0.5676791
## 5 Gene5 1.005704e-11 2.413690e-11 3.522190 10.359586 0.4749875
## 6 Gene4 1.553175e-10 3.106349e-10 12.585511 -3.239785 -0.1981837
## 7 Gene3 1.453212e-08 2.491220e-08 4.225005 -4.976907 0.5567603
## 8 Gene10 2.261518e-08 3.392277e-08 3.190127 8.430649 0.3768249
## 9 Gene7 3.833282e-06 5.111042e-06 3.784151 7.402635 0.3026021
## 10 Gene12 2.961844e-04 3.554212e-04 4.903057 -3.965264 0.7756024
## 11 Gene11 9.377884e-04 1.023042e-03 2.699964 -7.178971 0.8324670
## 12 Gene6 1.430175e-02 1.430175e-02 1.778996 -8.672376 0.8692932
## # ... with 2 more variables: lambda <dbl>, EM_converged <lgl>
We can plot the gene with the largest dropout effect and compare it to the non-zero-inflated model:
gene <- zde$gene[which.min(zde$lambda)]
pars <- extract_pars(sde, gene)
zpars <- extract_pars(zde, gene)
switchplot(synth_gex[gene, ], ex_pseudotime, pars)
switchplot(synth_gex[gene, ], ex_pseudotime, zpars)
For zero-inflation the expectation-maximisation algorithm is used which will converge up to a user-supplied change in the log-likelihood after a given number of iterations. These are controlled by the parameters maxiter
and log_lik_tol
in the call to switchde
. Most genes will converge after very few iterations, but some - particularly those with many zeros where a well defined ‘step’ can be fit - may take much longer. The default parameters are designed as a trade-off between accuracy and speed.
If any genes do not converge using the default parameters, the user is warned and should expect the EM_converged
column of the output. In this case, three options are available:
EM_converged == FALSE
with either increasing maxiter
or increased log_lik_tol
Most pseudotime algorithms will infer something similar to principal component 1 or 2 of the data. Therefore, by definition, many genes will vary across pseudotime leading to a large proportion passing a strict FDR adjusted significance threshold. Genes designated as significant should therefore be treated with appropriate skepticism and ideally experimentally validated.
We further suggest some use cases that might be of interest to researchers:
dplyr
calls such as filter(sde, qval < 0.01, abs(k) > quantile(abs(k), 0.95))
pst_quantiles <- quantile(pst, c(0, 0.25))
filter(sde, qval < 0.01, t0 > pst_quantiles[1], t0 < pst_quantiles[2])
sessionInfo()
## R version 3.4.0 (2017-04-21)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 16.04.2 LTS
##
## Matrix products: default
## BLAS: /home/biocbuild/bbs-3.5-bioc/R/lib/libRblas.so
## LAPACK: /home/biocbuild/bbs-3.5-bioc/R/lib/libRlapack.so
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] parallel stats graphics grDevices utils datasets methods
## [8] base
##
## other attached packages:
## [1] switchde_1.2.0 tidyr_0.6.1 dplyr_0.5.0
## [4] scater_1.4.0 ggplot2_2.2.1 Biobase_2.36.0
## [7] BiocGenerics_0.22.0 BiocStyle_2.4.0
##
## loaded via a namespace (and not attached):
## [1] tximport_1.4.0 beeswarm_0.2.3 locfit_1.5-9.1
## [4] reshape2_1.4.2 lattice_0.20-35 rhdf5_2.20.0
## [7] colorspace_1.3-2 htmltools_0.3.5 stats4_3.4.0
## [10] viridisLite_0.2.0 yaml_2.1.14 XML_3.98-1.6
## [13] DBI_0.6-1 matrixStats_0.52.2 plyr_1.8.4
## [16] zlibbioc_1.22.0 stringr_1.2.0 munsell_0.4.3
## [19] gtable_0.2.0 codetools_0.2-15 evaluate_0.10
## [22] memoise_1.1.0 labeling_0.3 knitr_1.15.1
## [25] IRanges_2.10.0 biomaRt_2.32.0 httpuv_1.3.3
## [28] vipor_0.4.5 AnnotationDbi_1.38.0 Rcpp_0.12.10
## [31] xtable_1.8-2 edgeR_3.18.0 scales_0.4.1
## [34] backports_1.0.5 limma_3.32.0 S4Vectors_0.14.0
## [37] mime_0.5 gridExtra_2.2.1 rjson_0.2.15
## [40] digest_0.6.12 stringi_1.1.5 shiny_1.0.2
## [43] grid_3.4.0 rprojroot_1.2 tools_3.4.0
## [46] bitops_1.0-6 magrittr_1.5 lazyeval_0.2.0
## [49] RCurl_1.95-4.8 tibble_1.3.0 RSQLite_1.1-2
## [52] Matrix_1.2-9 data.table_1.10.4 ggbeeswarm_0.5.3
## [55] shinydashboard_0.5.3 assertthat_0.2.0 rmarkdown_1.4
## [58] viridis_0.4.0 R6_2.2.0 compiler_3.4.0