
matter : Rapid prototyping with data on disk

Kylie A. Bemis

April 24, 2017

Contents

1 Introduction 1

2 Installation 1

3 Basic use and data manipulation 1

4 Linear regression for on-disk datasets 5

5 Principal components analysis for on-disk datasets 7

6 Design and implementation 8
6.1 S4 classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

6.1.1 atoms: contiguous sectors of data on disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
6.1.2 matter: vectors and matrices stored on disk . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

6.2 C++ classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
6.2.1 Atoms: contiguous sectors of data on disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.2.2 Matter: vectors and matrices stored on disk . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.2.3 MatterAccessor: iterate over virtual disk objects . . . . . . . . . . . . . . . . . . . . . . . 10

7 Session info 10

1 Introduction

matter is designed for rapid prototyping of new statistical methods when working with larger-than-memory datasets
on disk. Unlike related packages bigmemory [1] and ff [2], which also work with file-backed larger-than-memory
datasets, matter aims to offer strict control over memory and maximum flexibility with on-disk data structures, so it
can be easily adapted to domain-specific file formats, including user-customized file formats.

2 Installation

matter can be installed from Bioconductor using the following commands in R.

> source("https://bioconductor.org/biocLite.R")

> biocLite("matter")

3 Basic use and data manipulation

matter matrices and vectors can be initialized similarly to ordinary R matrices. When no file is given, a new temporary
file is created in the default temporary file directory, which will be cleaned up later by either R or the operating system.

1



matter : Rapid prototyping with data on disk 2

Here, we initialize a matter matrix with 10 rows and 5 columns. The resulting object is a subclass of the matter

class, and stores file metadata that gives the location of the data on disk. In many cases, it can be treated as an
ordinary R matrix.

> x <- matter_mat(data=1:50, nrow=10, ncol=5)

> x

An object of class 'matter_matc'

<10 row, 5 column> on-disk binary matrix

sources: 1

datamode: numeric

5.8 KB in-memory

400 bytes on-disk

> x[]

[,1] [,2] [,3] [,4] [,5]

[1,] 1 11 21 31 41

[2,] 2 12 22 32 42

[3,] 3 13 23 33 43

[4,] 4 14 24 34 44

[5,] 5 15 25 35 45

[6,] 6 16 26 36 46

[7,] 7 17 27 37 47

[8,] 8 18 28 38 48

[9,] 9 19 29 39 49

[10,] 10 20 30 40 50

As seen above, this is a small toy example in which the in-memory metadata actually takes up more space than the
size of the data stored on disk. For much larger datasets, the in-memory metadata will be a small fraction of the
total size of the dataset on disk.

matter ’s matrices and vectors can be indexed into like ordinary R matrices and vectors.

> x[1:4,]

[,1] [,2] [,3] [,4] [,5]

[1,] 1 11 21 31 41

[2,] 2 12 22 32 42

[3,] 3 13 23 33 43

[4,] 4 14 24 34 44

> x[,3:4]

[,1] [,2]

[1,] 21 31

[2,] 22 32

[3,] 23 33

[4,] 24 34

[5,] 25 35

[6,] 26 36

[7,] 27 37

[8,] 28 38

[9,] 29 39

[10,] 30 40

We can assign names to matter_vec vectors and row and column names to matter_mat matrices.

> rownames(x) <- 1:10

> colnames(x) <- letters[1:5]

> x[]

a b c d e

1 1 11 21 31 41

2 2 12 22 32 42



matter : Rapid prototyping with data on disk 3

3 3 13 23 33 43

4 4 14 24 34 44

5 5 15 25 35 45

6 6 16 26 36 46

7 7 17 27 37 47

8 8 18 28 38 48

9 9 19 29 39 49

10 10 20 30 40 50

matter provides methods for calculating summary statistics for its vectors and matrices, including some methods that
do not exist in base R, such as colVars, which uses a memory-efficient running variance calculation that is accurate
for large floating-point datasets [3].

> colSums(x)

a b c d e

55 155 255 355 455

> colSums(x[])

a b c d e

55 155 255 355 455

> colVars(x)

a b c d e

9.166667 9.166667 9.166667 9.166667 9.166667

> apply(x, 2, var)

a b c d e

9.166667 9.166667 9.166667 9.166667 9.166667

One of the major advantages of the flexibility of matter is being able to treat data from multiple files as a single
dataset. This is particularly useful if analysing data from a domain where each sample in an experiment generates
large files, such as high-resolution, high-throughput mass spectrometry imaging.

Below, we create a second matrix, and show its data is stored in a separate file. We then combine the matrices, and
the result can be treated as a single matrix, despite originating from multiple files. Combinging the matrices does
not create new data or change the existing data on disk.

> y <- matter_mat(data=51:100, nrow=10, ncol=5)

> paths(x)

[1] "/tmp/RtmpPuM9bA/file39361f0c2147.bin"

> paths(y)

[1] "/tmp/RtmpPuM9bA/file3936543f414f.bin"

> z <- cbind(x, y)

> z

An object of class 'matter_matc'

<10 row, 10 column> on-disk binary matrix

sources: 2

datamode: numeric

10.9 KB in-memory

800 bytes on-disk

> z[]

a b c d e

1 1 11 21 31 41 51 61 71 81 91

2 2 12 22 32 42 52 62 72 82 92

3 3 13 23 33 43 53 63 73 83 93

4 4 14 24 34 44 54 64 74 84 94

5 5 15 25 35 45 55 65 75 85 95



matter : Rapid prototyping with data on disk 4

6 6 16 26 36 46 56 66 76 86 96

7 7 17 27 37 47 57 67 77 87 97

8 8 18 28 38 48 58 68 78 88 98

9 9 19 29 39 49 59 69 79 89 99

10 10 20 30 40 50 60 70 80 90 100

Note that matrices in matter are either stored in a column-major or a row-major format. The default is to use the
column-major format, as R does. Column-major matrices are optimized for fast column-access, and assume that
each column is stored contiguously or mostly-contiguously on disk. Conversely, row-major matrices are optimized for
fast row-access, and make the same assumption for rows.

Since matter does support both column-major and row-major formats, transposing a matrix is a trivial operation in
matter that only needs to change the matrix metadata, and doesn’t touch the data on disk.

> t(x)

An object of class 'matter_matr'

<5 row, 10 column> on-disk binary matrix

sources: 1

datamode: numeric

6 KB in-memory

400 bytes on-disk

> rbind(t(x), t(y))

An object of class 'matter_matr'

<10 row, 10 column> on-disk binary matrix

sources: 2

datamode: numeric

10.9 KB in-memory

800 bytes on-disk

Note that this is equivalent to t(cbind(x, y)).

Below, we inspect the metadata associated with the different columns of x using the adata method.

> adata(x)

group_id source_id datamode offset extent index_offset index_extent

1 1 1 double 0 10 0 10

2 2 1 double 80 10 0 10

3 3 1 double 160 10 0 10

4 4 1 double 240 10 0 10

5 5 1 double 320 10 0 10

Note that each column has a byte offset and an extent (i.e., length) associated with it.

Now we show how to create a matter_mat matrix for an pre-existing file. We will point the new matrix to the
bottom half of x.

> xsub <- matter_mat(offset=c(40, 120, 200, 280, 360),

+ extent=rep(5,5), paths=paths(x))

> x[6:10,]

a b c d e

6 6 16 26 36 46

7 7 17 27 37 47

8 8 18 28 38 48

9 9 19 29 39 49

10 10 20 30 40 50

> xsub[]

[,1] [,2] [,3] [,4] [,5]

[1,] 6 16 26 36 46

[2,] 7 17 27 37 47



matter : Rapid prototyping with data on disk 5

[3,] 8 18 28 38 48

[4,] 9 19 29 39 49

[5,] 10 20 30 40 50

It is possible to build matter objects from nearly any possible combination of files and locations within files. It is
even possible to build up a matrix from vectors, which we do below.

> x2 <- matter_vec(offset=80, extent=10, paths=paths(x))

> y3 <- matter_vec(offset=160, extent=10, paths=paths(y))

> cbind(x2, y3)[]

[,1] [,2]

[1,] 11 71

[2,] 12 72

[3,] 13 73

[4,] 14 74

[5,] 15 75

[6,] 16 76

[7,] 17 77

[8,] 18 78

[9,] 19 79

[10,] 20 80

> cbind(x[,2], y[,3])

[,1] [,2]

1 11 71

2 12 72

3 13 73

4 14 74

5 15 75

6 16 76

7 17 77

8 18 78

9 19 79

10 20 80

This is a quick and easy way to build a dataset from many files where each column of the dataset is stored in a
separate file. Even if the resulting matrix would fit into memory, using matter can be a tidy, efficient way of reading
complex binary data from multiple files into R.

4 Linear regression for on-disk datasets

matter is designed to provide a statistical computing environment for larger-than-memory datasets on disk. To
facilitate this, matter provides a method for fitting of linear models for matter matrices through the biglm package
[4]. matter provides a wrapper for biglm’s bigglm function that works with matter_mat matrices, which we
demonstrate below.

First, we simulate some data appropriate for linear regression.

> set.seed(81216)

> n <- 15e6

> p <- 9

> b <- runif(p)

> names(b) <- paste0("x", 1:p)

> data <- matter_mat(nrow=n, ncol=p + 1)

> colnames(data) <- c(names(b), "y")

> data[,p + 1] <- rnorm(n)

> for ( i in 1:p ) {

+ xi <- rnorm(n)



matter : Rapid prototyping with data on disk 6

+ data[,i] <- xi

+ data[,p + 1] <- data[,p + 1] + xi * b[i]

+ }

> data

An object of class 'matter_matc'

<15000000 row, 10 column> on-disk binary matrix

sources: 1

datamode: numeric

12.5 KB in-memory

1.2 GB on-disk

> head(data)

x1 x2 x3 x4 x5 x6

[1,] -0.45330471 0.5995144 -0.1392395 0.36748584 1.4000923 0.5555708

[2,] -1.60355974 0.5862366 -0.5421275 -0.36101120 -0.4930582 0.7549443

[3,] 0.22920974 0.5138377 -1.7860077 1.53126322 0.3557548 -0.6093811

[4,] -1.38862865 0.1411892 0.3166607 -0.08396404 0.9629351 0.3443397

[5,] -0.36473656 0.4315282 1.1860328 -1.13518455 0.5386445 1.1426125

[6,] -0.07204838 0.2744724 -0.6730541 0.03472469 0.2138691 0.5923886

x7 x8 x9 y

[1,] -2.4031764 -0.57037899 -0.4356390 0.2280728

[2,] -0.1348020 0.05384544 -0.5209713 0.3358334

[3,] 1.0381120 0.72976777 0.9689488 3.8910764

[4,] -1.5310565 -0.44875206 -1.1320185 -0.8646491

[5,] 0.2239818 1.40000992 -0.9843404 1.8709778

[6,] 0.4852140 -0.29082018 1.0831832 1.5140973

This creates a 1.2 GB dataset on disk, but less than 20 KB of metadata is stored in memory.

Now we calculate some statistical summaries using matter ’s apply method for matter_mat matrices.

> apply(data, 2, mean)

x1 x2 x3 x4 x5

2.962621e-04 -2.596339e-04 -2.729651e-04 3.014581e-05 -5.893552e-05

x6 x7 x8 x9 y

-2.835383e-04 -1.309537e-04 -9.810476e-05 -1.404680e-04 -3.225581e-04

> apply(data, 2, var)

x1 x2 x3 x4 x5 x6 x7

1.0003094 0.9996336 0.9990518 1.0003654 0.9999593 0.9995961 0.9999286

x8 x9 y

1.0001395 0.9996875 4.4527319

We could also have used colMeans and colVars.

Now we fit the linear model to the data using the bigglm method for matter_mat matrices. Note that it requires a
formula, and (unfortunately) it does not allow y ~ ., so all variables must be stated explicitly.

> fm <- as.formula(paste0("y ~ ", paste(names(b), collapse=" + ")))

> bigglm.out <- bigglm(fm, data=data, chunksize=10000)

> summary(bigglm.out)

Large data regression model: bigglm(formula, getNextDataChunk, ...)

Sample size = 1.5e+07

Coef (95% CI) SE p

(Intercept) 0.0004 -0.0001 0.0009 3e-04 0.1001

x1 0.1689 0.1684 0.1695 3e-04 0.0000

x2 0.9572 0.9566 0.9577 3e-04 0.0000

x3 0.3801 0.3796 0.3806 3e-04 0.0000

x4 0.6042 0.6037 0.6048 3e-04 0.0000



matter : Rapid prototyping with data on disk 7

x5 0.5198 0.5193 0.5203 3e-04 0.0000

x6 0.6926 0.6921 0.6931 3e-04 0.0000

x7 0.8374 0.8369 0.8380 3e-04 0.0000

x8 0.4616 0.4610 0.4621 3e-04 0.0000

x9 0.5782 0.5777 0.5788 3e-04 0.0000

> cbind(coef(bigglm.out)[-1], b)

b

x1 0.1689408 0.1689486

x2 0.9571547 0.9574388

x3 0.3800765 0.3802078

x4 0.6042379 0.6043915

x5 0.5198087 0.5194832

x6 0.6926179 0.6927430

x7 0.8374374 0.8373628

x8 0.4615518 0.4617963

x9 0.5782414 0.5775168

On a 2012 retina MacBook Pro with 2.6 GHz Intel CPU, 16 GB RAM, and 500 GB SSD, fitting the linear model
takes 41 seconds and uses an additional 257 MB of memory overhead. The max amount of memory used while fitting
the model was only 499 MB, for the 1.2 GB dataset. This memory usage can be controlled further by using the
chunksize argument in bigglm or by specifying a different chunksize for the matter object.

5 Principal components analysis for on-disk datasets

Because matter provides basic linear algebra for on-disk matter_mat matrices with in-memory R matrices, it opens
up the possibility for the use of many iterative statistical methods which can operate on only small portions of the
data at a time.

For example, matter_mat matrices are compatible with the irlba package, which performs efficient, bounded-memory
singular value decomposition (SVD) of matrices, and which can therefore be used for efficient principal components
analysis (PCA) of large datasets [5].

For convenience, matter provides a prcomp method for performing PCA on matter_mat matrices using the irlba

method from the irlba package, as demonstrated below.

First, we simulate some data appropriate for principal components analysis.

> set.seed(81216)

> n <- 15e5

> p <- 100

> data <- matter_mat(nrow=n, ncol=p)

> for ( i in 1:10 )

+ data[,i] <- (1:n)/n + rnorm(n)

> for ( i in 11:20 )

+ data[,i] <- (n:1)/n + rnorm(n)

> for ( i in 21:p )

+ data[,i] <- rnorm(n)

> data

An object of class 'matter_matc'

<1500000 row, 100 column> on-disk binary matrix

sources: 1

datamode: numeric

11.9 KB in-memory

1.2 GB on-disk

This again creates a 1.2 GB dataset on disk, but only 160 KB of metadata is stored in memory. More metadata is
stored compared to the previous example, because the matrix has more columns, and it is stored as a column-major
matter_matc matrix with independent metadata for each column.



matter : Rapid prototyping with data on disk 8

Note that, in the simulated data, only the first twenty variables show systematic variation, with the first ten variables
varying distinctly from the next ten variables.

First we calculate the variance for each column.

> var.out <- colVars(data)

> plot(var.out, type='h', ylab="Variance")

This takes only 7 seconds and uses less than 30 KB of additional memory. The maximum amount of memory used
while calculating the variance for all columns of the 1.2 GB dataset is only 27 MB.

Note that the irlba function has an optional argument mult which allows specification of a custom matrix mul-
tiplication method, for use with packages such as bigmemory and ff. This is especially useful since it allows a
transpose=TRUE argument, so that the identity t(t(B) %*% A) can be used in place of t(A) %*% B) when trans-
position is an expensive operation. However, this is not necessary for matter, since transposition is a trivial operation
for matter_mat matrices.

Implicit scaling and centering is supported in matter, so the data can be scaled and centered without changing the
data on disk or the additional overhead of storing a scaled version of the data.

Unlike the default prcomp method for ordinary R matrices, this version supports an argument n for specifying the
number of principal components to calculate.

> prcomp.out <- prcomp(data, n=2, center=FALSE, scale.=FALSE)

On a 2012 retina MacBook Pro with 2.6 GHz Intel CPU, 16 GB RAM, and 500 GB SSD, calculating the first two
principal components takes roughly 2-4 minutes and uses an additional 337 MB of memory overhead. The max
amount of memory used during the computation was only 484 MB, for the 1.2 GB dataset.

Now we plot the first two principal components.

> plot(prcomp.out$rotation[,1], type='h', ylab="PC 1")

> plot(prcomp.out$rotation[,2], type='h', ylab="PC 2")

0 20 40 60 80 100

1.
00

1.
02

1.
04

1.
06

1.
08

Index

V
ar

ia
nc

e

(a) Sample variance

0 20 40 60 80 100

−
0.

20
−

0.
15

−
0.

10
−

0.
05

0.
00

Index

P
C

 1

(b) PC1 loadings

0 20 40 60 80 100

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Index

P
C

 2

(c) PC2 loadings

Figure 1: Principal components analysis for on-disk dataset.

As shown in the plots of the first and second principal components, the first PC shows that most of the variation in
the data occurs in the first twenty variables, while the second PC distinguishes the first ten variables from the next
ten variables.

6 Design and implementation

matter is designed with several goals in mind. Like the bigmemory and ff packages, it seeks to make statistical
methods scalable to larger-than-memory datasets by utilizing data-on-disk. Unlike those packages, it seeks to make
domain-specific file formats (such as Analyze 7.5 and imzML for MS imaging experiments) accessible from disk directly
without additional file conversion. It seeks to have a minimal memory footprint, and require minimal developer effort
to use, while maintaining computational efficiency wherever possible.



matter : Rapid prototyping with data on disk 9

6.1 S4 classes

matter utilizes S4 classes to implement on-disk matrices in a way so that they can be seamlessly accessed as if they
were ordinary R matrices. These are the atoms class and the matter class. The atoms class is not exported to the
user, who only interacts with the matter class and matter objects to create and manipulate on-disk matrices.

6.1.1 atoms: contiguous sectors of data on disk

By analogy to R’s notion of“atomic”vectors, the atoms class uses the notion of contiguous“atomic”sectors of disk.
Each “atom” in an atoms object gives the location of one block of contiguous data on disk, as denoted by a file
path, an byte offset from the beginning of the file, a data type, and the number of data elements (i.e., the length)
of the atom. An atoms object may consist of many atoms from multiple files and multiple locations on disk, while
ultimately representing a single vector or row or column of a matrix.

Structure:

� length: the total cumulative length of all of the atoms
� source_id: the ID’s of the file paths where each atom is located
� datamode: the type of data (short, int, long, float, double) for each atom
� offset: each atom’s byte offset from the beginning of the file
� extent: the length of each atom
� index_offset: the cumulative index of the first element of each atom
� index_extent: the cumulative one-past-the-end index of each atom

The atoms class has a C++ backend in the Atoms C++ class.

6.1.2 matter: vectors and matrices stored on disk

A matter object is made of one or more atoms objects, and represents a vector or matrix. It includes additional
metadata such as dimensions and row names or column names.

Structure:

� data: one or more atoms objects
� datamode: the type of data (integer, numeric) for the represented vector or matrix
� paths: the paths to the files used by the atoms objects
� filemode: should the files be open for read/write, or read-only?
� chunksize: how large the chunk sizes should be for calculations that operate on chunks of the dataset
� length: the total length of the dataset
� dim: the extent of each dimension (for a matrix)
� names: the names of the data elements (for a vector)
� dimnames: the names of the dimensions (for a matrix)

A matter_vec vector contains a single atoms object that represents all of the atoms of the vector. The matter_mat

matrix class has two subtypes for column-major (matter_matc) and row-major (matter_matr) matrices. A column-
major matter_matc matrix has one atoms object for each column, while a row-major matter_matr matrix has one
atoms object for each row.

The matter class has a C++ backend in the Matter C++ class.

6.2 C++ classes

matter utilizes a C++ backend to access the data on disk and transform it into the appropriate representation in
R. Although these classes correspond to S4 classes in R, and are responsible for most of the computational work,
all of the required metadata is stored in the S4 classes in R, and are simply read by the C++ classes. This means
that matter never depends on external pointers, which makes it trivial to share matter vectors and matter matrices
between R sessions that have access to the same filesystem.



matter : Rapid prototyping with data on disk 10

6.2.1 Atoms: contiguous sectors of data on disk

The Atoms C++ class is responsible for reading and writing the data on disk, based on its metadata. For compu-
tational efficiency, it tries to perform sequential reads over random read/writes whenever possible, while minimizing
the total number of atomic read/writes on disk.

6.2.2 Matter: vectors and matrices stored on disk

The Matter C++ class is responsible for transforming the data read by the Atoms class into a format appropriate
for R. This may include re-arranging contiguous data that has been read sequentially into a different order, either
due to the inherent organization of the dataset, or as requested by the user in R.

6.2.3 MatterAccessor: iterate over virtual disk objects

The MatterAccessor C++ class acts similarly to an iterator, and allows buffered iteration over a Matter object. It
can either iterate over the whole dataset (for both vectors and matrices), or over a single column for column-major
matrices, or over a single row for row-major matrices.

A MatterAccessor object will load portions of the dataset (as many elements as the chunksize at once) into
memory, and then free that portion of the data and load a new chunk, as necessary. This buffering is handled
automatically by the class, and code can treat it as a regular iterator. This allows seamless and simple iteration over
Matter objects while maintaining strict control over the memory footprint of the calculation.

7 Session info

� R version 3.4.0 (2017-04-21), x86_64-pc-linux-gnu
� Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C,
LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

� Running under: Ubuntu 16.04.2 LTS

� Matrix products: default
� BLAS: /home/biocbuild/bbs-3.5-bioc/R/lib/libRblas.so
� LAPACK: /home/biocbuild/bbs-3.5-bioc/R/lib/libRlapack.so
� Base packages: base, datasets, grDevices, graphics, methods, stats, utils
� Other packages: DBI 0.6-1, biglm 0.9-1, matter 1.2.0
� Loaded via a namespace (and not attached): BiocGenerics 0.22.0, BiocStyle 2.4.0, Matrix 1.2-9,

Rcpp 0.12.10, backports 1.0.5, compiler 3.4.0, digest 0.6.12, evaluate 0.10, grid 3.4.0, htmltools 0.3.5,
irlba 2.1.2, knitr 1.15.1, lattice 0.20-35, magrittr 1.5, parallel 3.4.0, rmarkdown 1.4, rprojroot 1.2,
stringi 1.1.5, stringr 1.2.0, tools 3.4.0, yaml 2.1.14

References

[1] Michael J. Kane, John Emerson, and Stephen Weston. Scalable strategies for computing with massive data.
Journal of Statistical Software, 55(14):1–19, 2013. URL: http://www.jstatsoft.org/v55/i14/.

[2] Daniel Adler, Christian GlÃd’ser, Oleg Nenadic, Jens OehlschlÃd’gel, and Walter Zucchini. ff: memory-efficient
storage of large data on disk and fast access functions, 2014. R package version 2.2-13. URL: https://CRAN.
R-project.org/package=ff.

[3] B P Welford. Note on a Method for Calculating Corrected Sums of Squares and Products. Technometrics,
4(3):1–3, August 1962.

[4] Thomas Lumley. biglm: bounded memory linear and generalized linear models, 2013. R package version 0.9-1.
URL: https://CRAN.R-project.org/package=biglm.

http://www.jstatsoft.org/v55/i14/
https://CRAN.R-project.org/package=ff
https://CRAN.R-project.org/package=ff
https://CRAN.R-project.org/package=biglm


matter : Rapid prototyping with data on disk 11

[5] Jim Baglama and Lothar Reichel. irlba: Fast Truncated SVD, PCA and Symmetric Eigendecomposition for Large
Dense and Sparse Matrices, 2015. R package version 2.0.0. URL: https://CRAN.R-project.org/package=irlba.

https://CRAN.R-project.org/package=irlba

	1 Introduction
	2 Installation
	3 Basic use and data manipulation
	4 Linear regression for on-disk datasets
	5 Principal components analysis for on-disk datasets
	6 Design and implementation
	6.1 S4 classes
	6.1.1 atoms: contiguous sectors of data on disk
	6.1.2 matter: vectors and matrices stored on disk

	6.2 C++ classes
	6.2.1 Atoms: contiguous sectors of data on disk
	6.2.2 Matter: vectors and matrices stored on disk
	6.2.3 MatterAccessor: iterate over virtual disk objects


	7 Session info

