
Alternative CDF environments

Laurent Gautier

April 24, 2017

Contents

1 Introduction 1

2 The class CdfEnvAffy 2

3 Reading sequence information in FASTA connections 2

4 Creating an alternative mapping from sequences in a FASTA file 3
4.1 Select the constituting elements . 3
4.2 analyzing the matches . 4

5 Always up-to-date 6
5.1 Casual checking of genes . 6

1 Introduction

On short oligonuleotide arrays, several probes are designed to match a target transcript,
and probes matching the same target transcript can be grouped in a probe set. Between
the time the probes for a given short oligonucleotide chip were designed, and the time
an analysis is made, the knowledge of expected transcripts for a given organism might
have changed. Unless one includes the latest development in transcripts into an analysis,
the analysis could suffer from what we like to call a Dorian Gray1 effect. The chip itself
does not change, which means that the probes and their respective sequences remain
the same, while the knowledge of the transcripts, and eventually their sequence, might
evolve, and in time the immobility of the probe and probe sets give an uglier picture of
the biological phenomena to study. Being able to easily modify or replace the grouping
of probes in probe sets gives the opportunity to minimize this effect.

The package is directly usable with Affymetrix GeneChip short oligonucleotide arrays,
and can be adapted or extended to other platforms.

1From the novel ‘The Picture of Dorian Gray’ by Oscar Wilde.

1

The bibliographic reference associated with the package is given by the command:

citation(package="altcdfenvs")

Alternative mapping of probes to genes for Affymetrix chips Laurent Gautier,
Morten Mooller, Lennart Friis-Hansen, Steen Knudsen BMC Bioinformatics
2004, 5:111

If you use it, consider citing it, and if you cite it consider citing as well other packages
it depends on.

To start we will first load the package:

> library(altcdfenvs)

2 The class CdfEnvAffy

Each instance of this class contains a way to group probes in probe sets. Different
instances, describing different ways to group probes in probe sets, can co-exist for a
given chip type.

When experimenting, it is highly recommended to use the functions validCdfEn-

vAffy and validAffyBatch to make sure that a given instance is a valid one.

3 Reading sequence information in FASTA connec-

tions

The package contains simple functions to read R connections in the FASTA format.
Typically, collections of sequences are stored in FASTA files, which can be significantly
large, one can wish to read and process sequences one after the other. This can be done
by opening the file in ‘r’ mode:

> fasta.filename <- system.file("exampleData", "sample.fasta",

+ package="altcdfenvs")

> con <- file(fasta.filename, open="r")

Reading the sequences one after another, and printing information about them in
turn goes like:

> fasta.seq <- read.FASTA.entry(con)

> while(! is.null(fasta.seq$header)) {

+ print(fasta.seq)

+ fasta.seq <- read.FASTA.entry(con)

+ }

2

FASTA sequence:

>gnl|UG|Hs#S1730546 membrane-spanning 4-domains, subfamily A ...

AACCCATTTCAACTGCCTATTCAGAGCATGCAGTAAGAGGAAATCCACCAAGTCTCAATA ...

FASTA sequence:

>gi|28626515|ref|NM_007257.3| Homo sapiens paraneoplastic an ...

GGTCATTTGTCCAGAAAACTTTGTGACTGTCTTTGAGTGACCTAGTCTGGGACCCATTCA ...

FASTA sequence:

>gi|31377729|ref|NM_020143.2| Homo sapiens putatative 28 kDa ...

TGGCTTCTGCGTGGTGCAGCTGCGCACGTGTTTCAGCCGGCAGCGCTTTAAGATTTCCGG ...

> close(con)

One can foresee that the matching of a set of reference sequences against all the
probes can be parallelized easily: the reference sequences can simply be distributed
across different processors/machines. When working with all the reference sequences in
a single large FASTA file, the option skip can let one implement a poor man’s parallel
sequence matching very easily.

4 Creating an alternative mapping from sequences

in a FASTA file

4.1 Select the constituting elements

� Chip type: For this tutorial we decide to work with the Affymetrix chip HG-U133A.

� Target sequences: The set of target sequences we use for this tutorial is in the
exemplar FASTA file:

> ## first, count the number of FASTA entries in our file

> con <- file(fasta.filename, open="r")

> n <- countskip.FASTA.entries(con)

> close(con)

> ## read all the entries

> con <- file(fasta.filename, open="r")

> my.entries <- read.n.FASTA.entries.split(con, n)

> close(con)

matching the probes

The package Biostrings and the probe data package for HG-U133A are required to
perform the matching. The first step is to load them:

3

> library(hgu133aprobe)

>

The matching is done simply (one can refer to the documentation for the package
Biostrings for further details):

> targets <- my.entries$sequences

> names(targets) <- sub(">.+\\|(Hs\\#|NM_)([^[:blank:]\\|]+).+",

+ "\\1\\2", my.entries$headers)

> m <- matchAffyProbes(hgu133aprobe, targets, "HG-U133A")

>

>

4.2 analyzing the matches

When the position of the match between probes and target sequences does not matter,
the association can be represented as a bipartite graph.

The method toHypergraph will transform an instance of AffyProbesMatch into an
Hypergraph.

> hg <- toHypergraph(m)

Currently, there are not many functions implemented around hypergraphs, so we
convert it to a more common graph.

> gn <- toGraphNEL(hg)

Since this is now a regular graph, all of probes and targets are regular nodes on that
graph. Node name-based rules can be applied to identify whether a node is a target
sequence or a probe.

> targetNodes <- new.env(hash=TRUE, parent=emptyenv())

> for (i in seq(along=targets)) {

+ targetNodes[[names(targets)[i]]] <- i

+ }

Since the graph is relatively small, we can plot it, and see that one probe is common
to both probe sets:

> library(Rgraphviz)

> tShapes <- rep("ellipse", length=length(targets))

> names(tShapes) <- names(targets)

> tColors <- rep("ivory", length=length(targets))

> names(tColors) <- names(targets)

> nAttrs <- list(shape = tShapes, fillcolor = tColors)

4

> gAttrs <- list(node = list(shape = "rectangle", fixedsize = FALSE))

> plot(gn, "neato",

+ nodeAttrs = nAttrs,

+ attrs = gAttrs)

>

508−429 448−567

255−601

660−355

554−641588−157

41−665 79−209
701−117

91−13280−47

397−641

663−415

237−239

51−527

220−447
211−695

629−145

593−391

167−639
668−161

71−239

657−643
431−337

575−331
433−357

311−349

636−29

641−217

132−509

49−37

433−343

541−361

68−241

326−641

7−507

141−253

48−409

619−345

360−409

343−543
20−549

433−383

27−83

586−643

87−515
605−605

283−201

621−315
82−399

642−363

556−683

567−377

430−543

53−443

507−429

512−127

198−149

39−499

246−539
630−403

409−271

197−217

112−107

479−249

Hs#S1730546

NM_007257.3

NM_020143.2

Whenever a large number oftarget sequences are involved, counting the degrees will
be more efficient than plotting.

The package contains a function to create a CdfEnv from the matches:

> alt.cdf <-

+ buildCdfEnv.biostrings(m, nrow.chip = 712, ncol.chip = 712)

>

Note that the size for chip must be specified. This is currently a problem with cdfenvs
as they are created by the package makecdfenv . The class CdfEnv suggests a way to
solve this (hopefully this will be integrated in makecdfenv in the near future). When
this happens, the section below will be replaced by something more intuitive. But in the
meanwhile, here is the current way to use our shiny brand new class CdfEnv:

5

say we have an AffyBatch of HG-U133A chips called 'abatch'

summary checks to avoid silly mistakes

validAffyBatch(abatch, alt.cdf)

it is ok, so we proceed...

get the environment out of it class

alt.cdfenv <- alt.cdf@envir

abatch@cdfName <- "alt.cdfenv"

From now on, the object abatch will use our ‘alternative mapping’ rather than the
one provided by the manufacturer of the chip:

print(abatch)

5 Always up-to-date

Even if alternative mapping is not used upstream of the analysis, it can still be interesting
to verify probesets highlighted during data analysis.

The biomaRt package makes withdrawing up-to-date sequences very easy, and those
sequences can be matched against the probes.

First, we create a mart :

library(biomaRt)

mart <- useMart("ensembl",dataset="hsapiens_gene_ensembl")

(refer to the documentation for the biomaRt for further information).

5.1 Casual checking of genes

In this example, we assume that for one reason or an other a researcher would like to
know more about the probes matching the SLAMF genes.

> geneSymbols <- c("SLAMF1", "SLAMF3", "SLAMF6", "SLAMF7", "SLAMF8", "SLAMF9")

The vector geneSymbols defined can easily be replaced by your favorite genes; the
example below should still work.

We then write a convenience function getSeq to extract the sequences. This func-
tion appenda a -<number> to the HUGO symbol (as there might be several sequences
matching).

6

> getSeq <- function(name) {

+ seq <- getSequence(id=name, type="hgnc_symbol",

+ seqType="cdna", mart = mart)

+

+ targets <- seq$cdna

+ if (is.null(targets))

+ return(character(0))

+ names(targets) <- paste(seq$hgnc_symbol, 1:nrow(seq), sep="-")

+ return(targets)

+ }

The function let us obtain the target sequences very easily:

targets <- unlist(lapply(geneSymbols,

getSeq))

The targets are matched as seen previously:

> m <- matchAffyProbes(hgu133aprobe, targets, "HG-U133A")

A colorful graph can be made in order to visualize how matching probes are dis-
tributed:

> hg <- toHypergraph(m)

> gn <- toGraphNEL(hg)

> library(RColorBrewer)

> col <- brewer.pal(length(geneSymbols)+1, "Set1")

> tColors <- rep(col[length(col)], length=numNodes(gn))

> names(tColors) <- nodes(gn)

> for (col_i in 1:(length(col)-1)) {

+ node_i <- grep(paste("^", geneSymbols[col_i],

+ "-", sep=""),

+ names(tColors))

+ tColors[node_i] <- col[col_i]

+ }

> nAttrs <- list(fillcolor = tColors)

> plot(gn, "twopi", nodeAttrs=nAttrs)

7

110−587

139−249

33−331

185−423

73−679

310−577

415−59

685−539

250−139

664−397

555−485

49−371

242−491

172−105

621−665

167−599
182−3616−177503−113

306−251

247−273
41−31

165−123

283−83

216−155
293−609

438−643

690−319

2−577

655−325457−457

618−21

422−75

499−79

187−241
680−611654−283580−137

64−677
117−87

254−487

291−293

358−267

31−235

194−571

306−47

470−519

122−401

438−59

89−437

412−691
571−639535−169292−145

652−67
371−387

650−85

33−283

455−181

SLAMF1−2

SLAMF1−3

SLAMF1−4

SLAMF6−2

SLAMF6−3
SLAMF7−1

SLAMF7−2

SLAMF7−3

SLAMF8−1

SLAMF8−2

� Watch for SLAMF6 and SLAMF7

� The second sequence in SLAMF8 can potentially has specific probes (the rest of
the probes are matching both SLAMF8 sequences)

Comparison with the official mapping can be made (not so simply, a future version
should address this)

> library("hgu133a.db")

> affyTab <- toTable(hgu133aSYMBOL)

> slamf_i <- grep("^SLAMF", affyTab$symbol)

> pset_id <- affyTab$probe_id[slamf_i]

> library("hgu133acdf")

> countProbes <- lapply(pset_id, function(x) nrow(hgu133acdf[[x]]))

> names(countProbes) <- affyTab$symbol[slamf_i]

> countProbes

8

$SLAMF1

[1] 11

$SLAMF7

[1] 11

$SLAMF8

[1] 11

$SLAMF8

[1] 11

The results do not appear in complete agreement with the matching just performed.

9

