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buildSNNGraph Build a SNN graph

Description

Build a shared-nearest-neighbors graph for cells based on their expression profiles.

Usage

## S4 method for signature 'matrix'
buildSNNGraph(x, k=10, d=50, subset.row=NULL)

## S4 method for signature 'SCESet'
buildSNNGraph(x, ..., subset.row=NULL, assay="exprs", get.spikes=FALSE)

Arguments

x A SCESet object, or a matrix containing expression values for each gene (row)
in each cell (column).

k An integer scalar specifying the number of nearest neighbors to consider during
graph construction.

d An integer scalar specifying the number of dimensions to use for the k-NN
search.

subset.row A logical, integer or character scalar indicating the rows of x to use.

... Additional arguments to pass to buildSNNGraph,matrix-method.

assay A string specifying which assay values to use, e.g., counts or exprs.

get.spikes A logical specifying whether spike-in transcripts should be used.

Details

This function builds a SNN graph using cells as nodes. Each cell is connected to its k nearest neigh-
bors, based on Euclidean distances in their expression profiles. The weight of the edge between
two cells is determined by the ranking of their shared nearest neighbors. More shared neighbors, or
shared neighbors that are close to both cells, will yield larger weights.

The aim is to use the SNN graph to perform community-based clustering, using various methods
in the igraph package. This is faster/more memory efficient than hierarchical clustering for large
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numbers of cells. In particular, it avoids the need to construct a distance matrix for all pairs of cells.
The choice of k can be roughly interpreted as the minimum cluster size.

In practice, PCA is performed on x to obtain the first d principal components. This is necessary in
order to perform the k-NN search (done using the get.knn function) in reasonable time. By default,
the first 50 components are chosen, which should retain most of the substructure in the data set. If
d is NA or less than the number of cells, no dimensionality reduction is performed.

Expression values should typically be on the log-scale, e.g., log-transformed counts. Ranks can also
be used for greater robustness, e.g., from quickCluster with get.ranks=TRUE. (Dimensionality
reduction is still okay when ranks are provided - running PCA on ranks is equivalent to running
MDS on the distance matrix derived from Spearman’s rho.)

By default, spike-in transcripts are removed from the expression matrix in buildSNNGraph,SCESet-method.
However, any non-NULL setting of subset.row will override get.spikes.

Note that the setting of k here is slightly different from that used in SNN-Cliq. The original imple-
mentation considers each cell to be its first nearest neighbor that contributes to k. In buildSNNGraph,
the k nearest neighbours refers to the number of other cells.

Value

An igraph-type graph, where nodes are cells and weighted edges represent connections between
nearest neighbors.

Author(s)

Aaron Lun

References

Xu C and Su Z (2015). Identification of cell types from single-cell transcriptomes using a novel
clustering method. Bioinformatics 31:1974-80

See Also

get.knn, make_graph

Examples

exprs <- matrix(rnorm(100000), ncol=100)
g <- buildSNNGraph(exprs)

library(igraph) # lots of algorithms can be used
clusters <- cluster_fast_greedy(g)$membership

combineVar Combine variance decompositions

Description

Combine the results of multiple variance decompositions, usually generated for the same genes
across separate batches of cells.
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Usage

combineVar(..., method=c("fisher", "simes", "berger"))

Arguments

... Two or more data frames, each produced by decomposeVar.

method A string specifying how p-values are to be combined.

Details

This function is designed to merge results from multiple calls to decomposeVar, usually computed
for different batches of cells. Separate variance decompositions are necessary in cases where differ-
ent concentrations of spike-in have been added to the cells in each batch. This affects the technical
mean-variance relationship and precludes the use of a common trend fit.

The default setting is to use method="fisher", where Fisher’s method is used to combine p-values
across batches. This aims to detect genes that are highly variable in any batch and assumes that
the test outcome is independent between batches. If independence does not hold, Simes’ method
should be used by setting method="simes", as it is more robust to correlations between tests. To
identify genes that are detected as highly variable in all batches, Berger’s IUT can be used by setting
method="simes".

Value

A data frame with the same numeric fields as that produced by decomposeVar. Each field contains
the average across all batches except for p.value, which contains the combined p-value based on
method; and FDR, which contains the adjusted p-value using the BH method.

Author(s)

Aaron Lun

References

Simes RJ (1986). An improved Bonferroni procedure for multiple tests of significance. Biometrika
73:751-754.

Berger RL and Hsu JC (1996). Bioequivalence trials, intersection-union tests and equivalence con-
fidence sets. Statist. Sci. 11, 283-319.

Fisher, R.A. (1925). Statistical Methods for Research Workers. Oliver and Boyd (Edinburgh).

See Also

decomposeVar

Examples

example(computeSpikeFactors) # Using the mocked-up data 'y' from this example.
y <- computeSumFactors(y) # Size factors for the the endogenous genes.
y <- computeSpikeFactors(y, general.use=FALSE) # Size factors for spike-ins.

y1 <- y[,1:100]
y1 <- normalize(y1) # normalize separately after subsetting.
fit1 <- trendVar(y1)
results1 <- decomposeVar(y1, fit1)
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y2 <- y[,1:100 + 100]
y2 <- normalize(y2) # normalize separately after subsetting.
fit2 <- trendVar(y2)
results2 <- decomposeVar(y2, fit2)

head(combineVar(results1, results2))
head(combineVar(results1, results2, method="simes"))
head(combineVar(results1, results2, method="berger"))

convertTo Convert to other classes

Description

Convert a SCESet object into other classes for entry into other analysis pipelines.

Usage

## S4 method for signature 'SCESet'
convertTo(x, type=c("edgeR", "DESeq2", "monocle"),

fData.col=NULL, pData.col=NULL, ..., assay,
use.all.sf=TRUE, normalize=TRUE, subset.row=NULL, get.spikes=FALSE)

Arguments

x A SCESet object.

type A string specifying the analysis for which the object should be prepared.

fData.col Any set of indices specifying which columns of fData(x) should be retained in
the returned object.

pData.col Any set of indices specifying which columns of pData(x) should be retained.

... Other arguments to be passed to pipeline-specific constructors.

assay A string specifying which assay of x should be put in the returned object.

use.all.sf A logical scalar indicating whether multiple size factors should be used to gen-
erate the returned object.

normalize A logical scalar specifying whether the assay values should be normalized for
type="monocle".

subset.row A logical, integer or character scalar indicating the rows of x to return.

get.spikes A logical scalar specifying whether rows corresponding to spike-in transcripts
should be returned.

Details

This function converts an SCESet object into various other classes in preparation for entry into other
analysis pipelines, as specified by type. Gene- and cell-specific data fields can be retained in the
output object by setting fData.col and pData.col, respectively. Other arguments can be passed
to the relevant constructors through the ellipsis.

By default, for edgeR and DESeq2, assay is set to "counts" such that count data is stored in
the output object. This is consistent with the required inputs to these analyses. Information about
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normalization is instead transmitted via size or normalization factors in the output object. For
monocle, assay is ignored and counts are divided by the size factors to yield (roughly) log-normally
distributed expression values. Values in assay can be used directly by setting normalize=FALSE.

In all cases, rows corresponding to spike-in transcripts are removed from the output object by de-
fault. As such, rows in the returned object may not correspond directly to rows in x. Users should
consider this when retrieving analysis results from these pipelines, e.g., match on row names in x
before comparing to other results. This behaviour can be turned off by setting get.spikes=TRUE,
such that all rows are retrieved in the output object. Users can also set subset.row to extract
specific rows, in which case get.spikes is ignored.

By default, different size factors for different rows (e.g., for spike-in sets) will be respected. For
edgeR, an offset matrix will be constructed containing mean-centred log-size factors for each row.
For DESeq2, a similar matrix will be constructed containing size factors scaled to have a geometric
mean of unity. For monocle, counts for each row will be divided by the size factors for that row.
This behaviour can be turned off with use.all.sf=FALSE, such that only sizeFactors(x) is used
for normalization for all type. (For edgeR and DESeq2, the offset matrix is not generated if all
rows correspond to sizeFactors(x), as this information is already stored in the object.)

Value

For type="edgeR", a DGEList object is returned containing the count matrix. Size factors are
converted to normalization factors. Gene-specific fData is stored in the genes element, and cell-
specific pData is stored in the samples element.

For type="DESeq2", a DESeqDataSet object is returned containing the count matrix and size fac-
tors. Additional gene- and cell-specific data is stored in the mcols and colData respectively.

For type="monocle", a CellDataSet object is returned containing the unlogged expression values.
Additional gene- and cell-specific data is stored in the fData and pData respectively.

Author(s)

Aaron Lun

See Also

DGEList, DESeqDataSetFromMatrix, newCellDataSet

Examples

example(computeSpikeFactors) # Using the mocked up data 'y' from this example.
sizeFactors(y) <- 2^rnorm(ncells) # Adding some additional embellishments.
fData(y)$SYMBOL <- paste0("X", seq_len(nrow(y)))
y$other <- sample(LETTERS, ncells, replace=TRUE)

# Converting to various objects.
convertTo(y, type="edgeR")
convertTo(y, type="DESeq2")
convertTo(y, type="monocle")
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correlatePairs Test for significant correlations

Description

Identify pairs of genes that are significantly correlated based on a modified Spearman’s rho.

Usage

correlateNull(ncells, iters=1e6, design=NULL, residuals=FALSE)

## S4 method for signature 'matrix'
correlatePairs(x, null.dist=NULL, design=NULL, BPPARAM=SerialParam(),

use.names=TRUE, tol=1e-8, iters=1e6, residuals=FALSE,
subset.row=NULL, per.gene=FALSE)

## S4 method for signature 'SCESet'
correlatePairs(x, subset.row=NULL, use.names=TRUE, per.gene=FALSE,

..., assay="exprs", get.spikes=FALSE)

Arguments

ncells An integer scalar indicating the number of cells in the data set.

iters An integer scalar specifying the number of values in the null distribution.

design A numeric design matrix containing uninteresting factors to be ignored.

residuals A logical scalar indicating whether correlations should be calculated from resid-
uals when design!=NULL.

x A numeric matrix of normalized expression values, where rows are genes and
columns are cells. Alternatively, a SCESet object containing such a matrix.

null.dist A numeric vector of rho values under the null hypothesis.

BPPARAM A BiocParallelParam object to use in bplapply for parallel processing.

use.names A logical scalar specifying whether the row names of exprs should be used in
the output. Alternatively, a character vector containing the names to use.

tol A numeric scalar indicating the maximum difference under which two expres-
sion values are tied.

subset.row A logical, integer or character vector indicating the rows of x to use. Alterna-
tively, a list of 2 such vectors, or a integer/character matrix with 2 columns - see
below for details.

per.gene A logical scalar specifying whether statistics should be summarized per gene.

... Additional arguments to pass to correlatePairs,matrix-method.

assay A string specifying which assay values to use.

get.spikes A logical specifying whether spike-in transcripts should be used.
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Details

The aim of the correlatePairs function is to identify significant correlations between all pairs
of genes in x. This allows prioritization of genes that are driving systematic substructure in the
data set. By definition, such genes should be correlated as they are behaving in the same manner
across cells. In contrast, genes driven by random noise should not exhibit any correlations with
other genes.

An approximation of Spearman’s rho is used to quantify correlations robustly based on ranks. To
identify correlated gene pairs, the significance of non-zero correlations is assessed using a permu-
tation test. The null hypothesis is that the (ranking of) normalized expression across cells should be
independent between genes. This allows us to construct a null distribution by randomizing (ranked)
expression within each gene.

The correlateNull function constructs an empirical null distribution for rho computed with ncells
cells. When design=NULL, this is done by shuffling the ranks, calculating the rho and repeating un-
til iters values are obtained. The p-value for each gene pair is defined as the tail probability of this
distribution at the observed correlation (with some adjustment to avoid zero p-values). Correction
for multiple testing is done using the BH method.

For correlatePairs, a pre-computed empirical distribution can be supplied as null.dist if avail-
able. Otherwise, it will be automatically constructed via correlateNull with ncells set to the
number of columns in exprs. If the limited field is TRUE in the returned dataframe, it may be
possible to obtain lower p-values by increasing iters. This should be examined for non-significant
pairs, in case some correlations are overlooked due to computational limitations. The function will
automatically raise a warning if any genes are limited in their significance at a FDR of 5%.

For correlatePairs,SCESet-method, correlations should be computed for normalized expression
values in the specified assay. By default, rows corresponding to spike-in transcripts are removed
with get.spikes=FALSE. This avoids picking up strong technical correlations between pairs of
spike-in transcripts. Users can also set subset.row to specify which genes to test, which will
override any setting of get.spikes.

If per.gene=TRUE, results are summarized on a per-gene basis. For each gene, all of its pairs are
identified, and the corresponding p-values are combined using Simes’ method. This tests whether
the gene is involved in significant correlations to any other gene. Setting per.gene=TRUE is useful
for identifying correlated genes without regard to what they are correlated with (e.g., during feature
selection).

Value

For correlateNull, a numeric vector of length iters is returned containing the sorted correlations
under the null hypothesis of no correlations. Arguments to design and residuals are stored in the
attributes.

For correlatePairs with per.gene=FALSE, a dataframe is returned with one row per gene pair
and the following fields:

gene1, gene2: Character or integer fields specifying the genes in the pair. If use.names=FALSE,
integers are returned representing row indices of x, otherwise gene names are returned.

rho: A numeric field containing the approximate Spearman’s rho.
p.value, FDR: Numeric fields containing the permutation p-value and its BH-corrected equiva-

lent.
limited: A logical scalar indicating whether the p-value is at its lower bound, defined by iters.

Rows are sorted by increasing p.value and, if tied, decreasing absolute size of rho. The exception
is if subset.row is a matrix, in which case each row in the dataframe correspond to a row of
subset.row.
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For correlatePairs with per.gene=TRUE, a dataframe is returned with one row per gene. For each
row, the rho field contains the correlation with the largest magnitude across all gene pairs involving
the corresponding gene. The p.value field contains the Simes p-value, and the FDR field contains
the corresponding adjusted p-value. No sorting is performed, so if subset.row=NULL, each row of
the returned dataframe corresponds to a row of x. For the SCESet method, if get.spikes=FALSE,
rows corresponding to spike-in features will have NA entries for most fields.

Accounting for uninteresting variation

If the experiment has known (and uninteresting) factors of variation, these can be included in
design. These factors will be regressed out to ensure that they do not drive strong correlations
between genes. Examples might be to block on batch effects or cell cycle phase, which may have
substantial but uninteresting effects on expression.

The approach used to remove these factors depends on the design matrix. If there is only one factor
in design, the levels of the factor are defined as separate groups. For each pair of genes, correlations
are computed within each group, and a weighted mean (based on the group size) of the correlations
is taken across all groups. The same strategy is used to generate the null distribution where ranks
are computed and shuffled within each group.

For designs containing multiple factors or covariates, a linear model is fitted to the (log-normalized)
expression values with design. The correlation between a pair of genes is then computed from
the residuals of the fitted model. Similarly, to obtain a null distribution of rho values, normally-
distributed random errors are simulated in a fitted model based on design; the corresponding resid-
uals are generated from these errors; and the correlation between sets of residuals is computed at
each iteration. This approach can also be used for one-way layouts by setting residuals=TRUE.

(The second procedure assumes normality, during both linear modelling and generation of the null
distribution. This is why it is not used for the simpler one-way layouts by default. However, this
assumption is largely unavoidable for complex designs, where some quantitative constraints are
required to remove nuisance effects.)

Gene selection

We recommend setting subset.row to contain only the subset of highly variable genes (HVGs).
This will focus on genes contributing to cell-to-cell heterogeneity (and thus more likely to be in-
volved in driving substructure). There is no need to account for HVG pre-selection in multiple
testing, because rank correlations are unaffected by the variance. For more genes, set BPPARAM to
use more workers and reduce computational time.

Lowly-expressed genes can also cause problems when design is non-NULL and residuals=TRUE.
Tied counts, and zeroes in particular, may not result in tied residuals after fitting of the linear
model. Model fitting may break ties in a consistent manner across genes, yielding large correlations
between genes with many zero counts. Focusing on HVGs should mitigate the detection of these
uninteresting correlations, as genes dominated by zeroes will usually have low variance.

If subset.row is a list of two vectors, correlations will be computed between one gene in the first
vector and another gene in the second vector. This improves efficiency if the only correlations
of interest are those between two pre-defined sets of genes. Alternatively, if subset.row is an
integer/character matrix of two columns, each row is assumed to specify a gene pair. Correlations
will then be computed for only those gene pairs, and the returned dataframe will not be sorted by
p-value.

Approximating Spearman’s rho with tied values

As previously mentioned, an approximate version of Spearman’s rho is used. Specifically, untied
ranks are randomly assigned to any tied values. This means that a common empirical distribution
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can be used for all gene pairs, rather than having to do new permutations for every pair to account for
the different pattern of ties. Generally, this modification has little effect on the results for expressed
genes (and in any case, differences in library size break ties for normalized expression values).
Some correlations may end up being spuriously large, but this should be handled by the error control
machinery after multiplicity correction.

Author(s)

Aaron Lun

References

Phipson B and Smyth GK (2010). Permutation P-values should never be zero: calculating exact
P-values when permutations are randomly drawn. Stat. Appl. Genet. Mol. Biol. 9:Article 39.

Simes RJ (1986). An improved Bonferroni procedure for multiple tests of significance. Biometrika
73:751-754.

See Also

bpparam, cor

Examples

set.seed(0)
ncells <- 100
null.dist <- correlateNull(ncells, iters=100000)
exprs <- matrix(rpois(ncells*100, lambda=10), ncol=ncells)
out <- correlatePairs(exprs, null.dist=null.dist)
hist(out$p.value)

cyclone Cell cycle phase classification

Description

Classify single cells into their cell cycle phases based on gene expression data.

Usage

## S4 method for signature 'matrix'
cyclone(x, pairs, gene.names=rownames(x), iter=1000, min.iter=100, min.pairs=50,

BPPARAM=SerialParam(), verbose=FALSE, subset.row=NULL)

## S4 method for signature 'SCESet'
cyclone(x, pairs, subset.row=NULL, ..., assay="counts", get.spikes=FALSE)
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Arguments

x A numeric matrix of gene expression values where rows are genes and columns
are cells. Alternatively, a SCESet object containing such a matrix.

pairs A list of data.frames produced by sandbag, containing pairs of marker genes.

gene.names A character vector of gene names.

iter An integer scalar specifying the number of iterations for random sampling to
obtain a cycle score.

min.iter An integer scalar specifying the minimum number of iterations for score esti-
mation.

min.pairs An integer scalar specifying the minimum number of pairs for cycle estimation.

BPPARAM A BiocParallelParam object to use in bplapply for parallel processing.

verbose A logical scalar specifying whether diagnostics should be printed to screen.

subset.row A logical, integer or character scalar indicating the rows of x to use.

... Additional arguments to pass to cyclone,matrix-method.

assay A string specifying which assay values to use, e.g., counts or exprs.

get.spikes A logical specifying whether spike-in transcripts should be used.

Details

This function implements the classification step of the pair-based prediction method described by
Scialdone et al. (2015). To illustrate, consider classification of cells into G1 phase. Pairs of marker
genes are identified with sandbag, where the expression of the first gene in the training data is
greater than the second in G1 phase but less than the second in all other phases. For each cell,
cyclone calculates the proportion of all marker pairs where the expression of the first gene is
greater than the second in the new data x (pairs with the same expression are ignored). A high
proportion suggests that the cell is likely to belong in G1 phase, as the expression ranking in the
new data is consistent with that in the training data.

Proportions are not directly comparable between phases due to the use of different sets of gene pairs
for each phase. Instead, proportions are converted into scores (see below) that account for the size
and precision of the proportion estimate. The same process is repeated for all phases, using the
corresponding set of marker pairs in pairs. Cells with G1 or G2M scores above 0.5 are assigned to
the G1 or G2M phases, respectively. (If both are above 0.5, the higher score is used for assignment.)
Cells can be assigned to S phase based on the S score, but a more reliable approach is to define S
phase cells as those with G1 and G2M scores below 0.5.

For cyclone,SCESet-method, the matrix of counts is used but can be replaced with expression
values by setting assay. By default, get.spikes=FALSE which means that any rows corresponding
to spike-in transcripts will not be considered for score calculation. This is for the same reasons as
described in ?sandbag.

Users can also manually set subset.row to specify which rows of x are to be used. This is better
than subsetting x directly, as it reduces memory usage and also subsets gene.names at the same
time. If this is specified, it will overwrite any setting of get.spikes.

While this method is described for cell cycle phase classification, any biological groupings can be
used here – see ?sandbag for details. However, for non-cell cycle phase groupings, the output
phases will be an empty character vector. Users should manually apply their own score thresholds
for assigning cells into specific groups.
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Value

A list is returned containing:

phases: A character vector containing the predicted phase for each cell.

scores: A data frame containing the numeric phase scores for each phase and cell (i.e., each row
is a cell).

normalized.scores: A data frame containing the row-normalized scores (i.e., where the row sum
for each cell is equal to 1).

Description of the score calculation

To make the proportions comparable between phases, a distribution of proportions is constructed
by shuffling the expression values within each cell and recalculating the proportion. The phase
score is defined as the lower tail probability at the observed proportion. High scores indicate that
the proportion is greater than what is expected by chance if the expression of marker genes were
independent (i.e., with no cycle-induced correlations between marker pairs within each cell).

By default, shuffling is performed iter times to obtain the distribution from which the score is
estimated. However, some iterations may not be used if there are fewer than min.pairs pairs
with different expression, such that the proportion cannot be calculated precisely. A score is only
returned if the distribution is large enough for stable calculation of the tail probability, i.e., consists
of results from at least min.iter iterations.

Note that the score calculation in cyclone is slightly different from that described originally by
Scialdone et al. The original code shuffles all expression values within each cell, while in this im-
plementation, only the expression values of genes in the marker pairs are shuffled. This modification
aims to use the most relevant expression values to build the null score distribution.

Author(s)

Antonio Scialdone, with modifications by Aaron Lun

References

Scialdone A, Natarajana KN, Saraiva LR et al. (2015). Computational assignment of cell-cycle
stage from single-cell transcriptome data. Methods 85:54–61

See Also

sandbag

Examples

example(sandbag) # Using the mocked-up data in this example.

# Classifying (note: test.data!=training.data in real cases)
test <- training
assignments <- cyclone(test, out)
head(assignments$scores)
head(assignments$phases)

# Visualizing
col <- character(ncells)
col[is.G1] <- "red"
col[is.G2M] <- "blue"
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col[is.S] <- "darkgreen"
plot(assignments$score$G1, assignments$score$G2M, col=col, pch=16)

decomposeVar Decompose the gene-level variance

Description

Decompose the gene-specific variance into biological and technical components for single-cell
RNA-seq data.

Usage

## S4 method for signature 'matrix,list'
decomposeVar(x, fit, design=NA, subset.row=NULL, ...)

## S4 method for signature 'SCESet,list'
decomposeVar(x, fit, subset.row=NULL, ..., assay="exprs", get.spikes=FALSE)

Arguments

x A numeric matrix of normalized log-expression values, where each column cor-
responds to a cell and each row corresponds to an endogenous gene. Alterna-
tively, a SCESet object containing such a matrix.

fit A list containing the output of trendVar, run on log-expression values for spike-
in genes.

design A numeric matrix describing the uninteresting factors contributing to expression
in each cell.

subset.row A logical, integer or character scalar indicating the rows of x to use.

... For decomposeVar,matrix,list-method, additional arguments to pass to testVar.
For decomposeVar,SCESet,list-method, additional arguments to pass to the
matrix method.

assay A string specifying which assay values to use, e.g., counts or exprs.

get.spikes A logical scalar specifying whether decomposition should be performed for
spike-ins.

Details

This function computes the variance of the normalized log-counts for each endogenous gene. The
technical component of the variance for each gene is determined by interpolating the fitted trend
in fit at the mean log-count for that gene. This represents variance due to sequencing noise,
variability in capture efficiency, etc. The biological component is determined by subtracting the
technical component from the total variance.

Highly variable genes (HVGs) can be identified as those with large biological components. Unlike
other methods for decomposition, this approach estimates the variance of the log-counts rather than
of the counts themselves. The log-transformation blunts the impact of large positive outliers and
ensures that the HVG list is not dominated by outliers. Interpretation is not compromised – HVGs
will still be so, regardless of whether counts or log-counts are considered.
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The design matrix can be set if there are factors that should be blocked, e.g., batch effects, known
(and uninteresting) clusters. If NULL, it will be set to an all-ones matrix, i.e., all cells are replicates.
If NA, it will be extracted from fit$design, assuming that the same cells were used to fit the trend.

Users can also directly specify which rows to use with subset.row. This is equivalent to running
decomposeVar on x[subset.row,], but is more efficient as it avoids the construction of large
temporary matrices.

If assay="exprs" and the size factors are not centred at unity, a warning will be raised - see
?trendVar for details.

Value

A data frame is returned where each row corresponds to and is named after a row of x (if subset.row=NULL;
otherwise, each row corresponds to an element of subset.row). This contains the numeric fields:

mean: Mean normalized log-count per gene.

total: Variance of the normalized log-counts per gene.

bio: Biological component of the variance.

tech: Technical component of the variance.

p.value, FDR: Raw and adjusted p-values for the test against the null hypothesis that bio=0.

Rows corresponding to spike-in transcripts have their p-value and FDR fields set to NA unless
get.spikes=TRUE.

Author(s)

Aaron Lun

References

Lun ATL, McCarthy DJ and Marioni JC (2016). A step-by-step workflow for low-level analysis of
single-cell RNA-seq data with Bioconductor. F1000Res. 5:2122

See Also

trendVar, testVar

Examples

example(computeSpikeFactors) # Using the mocked-up data 'y' from this example.
y <- computeSumFactors(y) # Size factors for the the endogenous genes.
y <- computeSpikeFactors(y, general.use=FALSE) # Size factors for spike-ins.
y <- normalize(y) # Normalizing the counts by the size factors.

# Decomposing technical and biological noise.
fit <- trendVar(y)
results <- decomposeVar(y, fit)
head(results)

plot(results$mean, results$total)
o <- order(results$mean)
lines(results$mean[o], results$tech[o], col="red", lwd=2)

plot(results$mean, results$bio)
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# A trend fitted to endogenous genes can also be used, pending assumptions.
fit.g <- trendVar(y, use.spikes=FALSE)
results.g <- decomposeVar(y, fit.g)
head(results.g)

Deconvolution Methods Normalization by deconvolution

Description

Methods to normalize single-cell RNA-seq data by deconvolving size factors from cell pools.

Usage

## S4 method for signature 'matrix'
computeSumFactors(x, sizes=seq(20, 100, 5), clusters=NULL,

ref.clust=NULL, positive=FALSE, errors=FALSE, subset.row=NULL)
## S4 method for signature 'SCESet'
computeSumFactors(x, subset.row=NULL, ..., assay="counts",

get.spikes=FALSE, sf.out=FALSE)

Arguments

x A numeric count matrix where rows are genes and columns are cells. Alterna-
tively, a SCESet object containing such a matrix.

sizes A numeric vector of pool sizes, i.e., number of cells per pool.

clusters An optional factor specifying which cells belong to which cluster, for deconvo-
lution within clusters.

ref.clust A level of clusters to be used as the reference cluster for inter-cluster normal-
ization.

positive A logical scalar indicating whether linear inverse models should be used to en-
force positive estimates.

errors A logical scalar indicating whether the standard error should be returned.

subset.row A logical, integer or character scalar indicating the rows of x to use.

... Additional arguments to pass to computeSumFactors,matrix-method.

assay A string specifying which assay values to use, e.g., counts or exprs.

get.spikes A logical scalar specifying whether spike-in transcripts should be used.

sf.out A logical scalar indicating whether only size factors should be returned.

Value

For computeSumFactors,matrix-method, a numeric vector of size factors for all cells in x is
returned.

For computeSumFactors,SCESet-method, an object of class x is returned containing the vector of
size factors in sizeFactors(x), if sf.out=FALSE. Otherwise, the vector of size factors is returned
directly.

If errors=TRUE, the standard errors of the size factor estimates are stored as the "standard.error"
field of the attributes of the returned vector.
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Overview of the deconvolution method

The computeSumFactors function provides an implementation of the deconvolution strategy for
normalization. Briefly, a pool of cells is selected and the counts for those cells are summed together.
The count sums for this pool is normalized against an average reference pseudo-cell, constructed
by averaging the counts across all cells. This defines a size factor for the pool as the median ratio
between the count sums and the average across all genes.

Now, the bias for the pool is equal to the sum of the biases for the constituent cells. The same
applies for the size factors (which are effectively estimates of the bias for each cell). This means
that the size factor for the pool can be written as a linear equation of the size factors for the cells.
Repeating this process for multiple pools will yield a linear system that can be solved to obtain the
size factors for the individual cells.

In this manner, pool-based factors are deconvolved to yield the relevant cell-based factors. The
advantage is that the pool-based estimates are more accurate, as summation reduces the number of
stochastic zeroes and the associated bias of the size factor estimate. This accuracy will feed back
into the deconvolution process, thus improving the accuracy of the cell-based size factors.

Normalization within and between clusters

In general, it is more appropriate to pool more similar cells to avoid violating the assumption of a
non-DE majority of genes across the data set. This can be done by specifying the clusters argu-
ment where cells in each cluster have similar expression profiles. Deconvolution is subsequently
applied on the cells within each cluster. Each cluster should contain a sufficient number of cells
for pooling – an error is thrown if the number of cells is less than the maximum value of sizes.
A convenince function quickCluster is provided for rapid clustering based on Spearman’s rank
correlation.

Size factors computed within each cluster must be rescaled for comparison between clusters. This
is done by normalizing between clusters to identify the rescaling factor. One cluster is chosen as a
“reference” (by default, that with the median of the mean per-cell library sizes is used) to which all
others are normalized. Ideally, a cluster that is not extremely different from all other clusters should
be used as the reference. This can be specified using ref.clust if there is prior knowledge about
which cluster is most suitable, e.g., from PCA or t-SNE plots.

Additional details about pooling and deconvolution

Within each cluster (if not specified, all cells are put into a single cluster), cells are sorted by
increasing library size and a sliding window is applied to this ordering. Each location of the window
defines a pool of cells with similar library sizes. This avoids inflated estimation errors for very
small cells when they are pooled with very large cells. Sliding the window will construct an over-
determined linear system that can be solved with methods like the QR decomposition.

Window sliding is repeated with different window sizes to construct the linear system, as speci-
fied by sizes. By default, the number of cells in each window ranges from 20 to 100. Using a
range of window sizes improves the precision of the estimates, at the cost of increased computa-
tional complexity. The defaults are chosen to provide a reasonable compromise between these two
considerations.

The smallest window should be large enough so that the pool-based size factors are, on average,
non-zero. We recommend window sizes no lower than 20 for UMI data, though smaller windows
may be possible for read count data.
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Dealing with negative size factors

In theory, it is possible to obtain negative estimates for the size factors. These values are obviously
nonsensical and computeSumFactors will raise a warning if they are encountered. Negative es-
timates are mostly commonly generated from low quality cells with few expressed features, such
that most counts are zero even after pooling. They may also occur if insufficient filtering of low-
abundance genes was performed.

To avoid negative size factors, the best solution is to increase the stringency of the filtering.

• If only a few negative size factors are present, they are likely to correspond to a few low-
quality cells with few expressed features. Such cells are difficult to normalize reliably under
any approach, and can be removed by increasing the stringency of the quality control.

• If many negative size factors are present, it is probably due to insufficient filtering of low-
abundance genes. This results in many zero counts and pooled size factors of zero, and can be
fixed by filtering out more genes.

A complementary approach is to increase in the number of sizes to improve the precision of the
estimates. This reduces the chance of obtaining negative size factors due to estimation error for
cells with near-zero true size factors.

As a last resort, some protection can be provided by setting positive=TRUE, which will use linear
inverse models to solve the system. This ensures that non-negative values for the size factors will
always be obtained. Note that some cells may still have size factors of zero and should be removed
prior to downstream analysis. Such occurrences are unavoidable – rather, the aim is to prevent
negative values from affecting the estimates for all other cells.

Gene selection

By default, get.spikes=FALSE in quickCluster,SCESet-method which means that spike-in tran-
scripts are not included in the set of genes used for deconvolution. This is because they can behave
differently from the endogenous genes. Users wanting to perform spike-in normalization should
see computeSpikeFactors instead.

Users can also set subset.row to specify which rows of x are to be used to calculate correlations.
This is equivalent to but more efficient than subsetting x directly, as it avoids constructing a (poten-
tially large) temporary matrix. If this is specified, it will overwrite any setting of get.spikes.

Note that pooling does not eliminate the need to filter out low-abundance genes. As mentioned
above, if too many genes have consistently low counts across all cells, even the pool-based size
factors will be zero. This results in zero or negative size factor estimates for many cells. Filtering
ensures that this is not the case, e.g., by removing genes with average counts below 1.

Author(s)

Aaron Lun and Karsten Bach

References

Lun ATL, Bach K and Marioni JC (2016). Pooling across cells to normalize single-cell RNA
sequencing data with many zero counts. Genome Biol. 17:75

See Also

quickCluster
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Examples

# Mocking up some data.
set.seed(100)
popsize <- 200
ngenes <- 10000
all.facs <- 2^rnorm(popsize, sd=0.5)
counts <- matrix(rnbinom(ngenes*popsize, mu=all.facs*10, size=1), ncol=popsize, byrow=TRUE)

# Computing the size factors.
out.facs <- computeSumFactors(counts)
head(out.facs)
plot(colSums(counts), out.facs, log="xy")

Denoise with PCA Denoise expression with PCA

Description

Denoise log-expression data by removing principal components corresponding to technical noise.

Usage

## S4 method for signature 'matrix'
denoisePCA(x, technical, design=NULL, subset.row=NULL)

## S4 method for signature 'SCESet'
denoisePCA(x, ..., subset.row=NULL, assay="exprs", get.spikes=FALSE)

Arguments

x A numeric matrix of log-expression values for denoisePCA,matrix-method, or
a SCESet object containing such values for denoisePCA,SCESet-method.

technical A named numeric vector containing the technical variance for each gene in x.
Alternatively, a function that accepts the average log-expression and returns the
technical variance.

design A numeric matrix containing the experimental design. If NULL, all cells are
assumed to belong to a single group.

subset.row A logical, integer or character vector indicating the rows of x to use. All genes
are used by default.

... Further arguments to pass to denoisePCA,matrix-method.

assay A string specifying which assay values to use.

get.spikes A logical specifying whether spike-in transcripts should be used. This is ignored
if subset.row is specified.
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Details

The aim of this function is to perform a principal components analysis to reduce random technical
noise in the data. Random noise is uncorrelated across genes and should be captured by later PCs,
as the variance in the data explained by any single gene is low. In contrast, biological substructure
should be correlated and captured by earlier PCs, as this explains more variance for sets of genes.
The idea is to discard later PCs to remove technical noise and improve the resolution of substructure.

The choice of the number of PCs to discard is based on the estimates of technical variance in
technical. This either uses the trend function obtained from trendVar or the technical compo-
nents from decomposeVar. (Obviously, the log-expression values used in those functions should
be the same as those used here.) The total technical variance is estimated by summing the values
across genes.

PCs are discarded in order of increasing variance, stopping before the discarded variance is greater
than the total technical variance. This eliminates the last PCs that should contain only uncorrelated
noise. In this manner, it is possible to make a justified choice for the number of PCs to retain. The
retained PCs should now be enriched for biological signal (both variance and substructure).

If design is specified, the residuals of a linear model fitted to each gene are computed. Because
variances computed from residuals are usually underestimated, the residuals are scaled up so that
their variance is equal to the residual variance of the model fit. This ensures that the sum of variances
is not understated, which would lead to more PCs being discarded than appropriate.

Value

For denoisePCA,matrix-method, a numeric matrix is returned containing the selected PCs (columns)
for all cells (rows).

For denoisePCA,SCESet-method, a SCESet object is returned containing the PCs in the reducedDimension
slot.

Author(s)

Aaron Lun

See Also

trendVar, decomposeVar

Examples

# Mocking up some data.
ngenes <- 1000
is.spike <- 1:100
means <- 2^runif(ngenes, 6, 10)
dispersions <- 10/means + 0.2
nsamples <- 50
counts <- matrix(rnbinom(ngenes*nsamples, mu=means, size=1/dispersions), ncol=nsamples)
rownames(counts) <- paste0("Gene", seq_len(ngenes))

# Fitting a trend.
lcounts <- log2(counts + 1)
fit <- trendVar(lcounts, subset.row=is.spike)
dec <- decomposeVar(lcounts, fit)

# Denoising (not including the spike-ins in the PCA;
# spike-ins are automatically removed with the SCESet method).
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pcs <- denoisePCA(lcounts, technical=fit$trend, subset.row=-is.spike)
dim(pcs)

# Gets the same result as above, if you don't have the function.
pcs2 <- denoisePCA(lcounts, technical=setNames(dec$tech,

rownames(dec)), subset.row=-is.spike) # same result
dim(pcs2)

# With a design matrix.
design <- model.matrix(~factor(rep(0:1, length.out=nsamples)))
fit3 <- trendVar(lcounts, design=design, subset.row=is.spike)
pcs3 <- denoisePCA(lcounts, technical=fit3$trend, design=design, subset.row=-is.spike)
dim(pcs3)

Distance-to-median Compute the distance-to-median statistic

Description

Compute the distance-to-median statistic for the CV2 residuals of all genes

Usage

DM(mean, cv2, win.size=50)

Arguments

mean A numeric vector of average counts for each gene.

cv2 A numeric vector of squared coefficients of variation for each gene.

win.size An integer scalar specifying the window size for median-based smoothing.

Details

This function will compute the distance-to-median (DM) statistic described by Kolodziejczyk et
al. (2015). Briefly, a median-based trend is fitted to the log-transformed cv2 against the log-
transformed mean. The DM is defined as the residual from the trend for each gene. This statistic is
a measure of the relative variability of each gene, after accounting for the empirical mean-variance
relationship. Highly variable genes can then be identified as those with high DM values.

Value

A numeric vector of DM statistics for all genes.

Author(s)

Jong Kyoung Kim, with modifications by Aaron Lun

References

Kolodziejczyk AA, Kim JK, Tsang JCH et al. (2015). Single cell RNA-sequencing of pluripotent
states unlocks modular transcriptional variation. Cell Stem Cell 17(4), 471–85.
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Examples

# Mocking up some data
ngenes <- 1000
ncells <- 100
gene.means <- 2^runif(ngenes, 0, 10)
dispersions <- 1/gene.means + 0.2
counts <- matrix(rnbinom(ngenes*ncells, mu=gene.means, size=1/dispersions), nrow=ngenes)

# Computing the DM.
means <- rowMeans(counts)
cv2 <- apply(counts, 1, var)/means^2
dm.stat <- DM(means, cv2)
head(dm.stat)

Explore Data Shiny app for explorative data analysis

Description

Generate an interactive Shiny app to explore gene expression patterns in single-cell data

Usage

exploreData(x, cell.data, gene.data, red.dim, run=TRUE)

Arguments

x A numeric matrix of expression values to be visualized.

cell.data A data frame of cell information, where each row corresponds to a column of x.

gene.data A data frame of gene information, where each row corresponds to a row of x.

red.dim A numeric matrix with two colums, specifying the reduced-dimension coordi-
nates for each cell.

run A logical scalar specifying whether the app should be run immediately.

Details

This function will return a Shiny app object that can be run with runApp. The app allows the user to
interactively explore gene expression patterns in single-cell RNA-seq data. Explorative analysis is
focused on comparing gene exression between different groups of cells, as defined by the covariates
of cell.data.

Three plots are shown in the app:

• a scatterplot of cell locations based on the red.dim coordinates, colored by a selected covariate

• a scatterplot of cell locations based on the red.dim coordinates, colored by expression of a
selected gene

• boxplot(s) of expression values for a selected gene, grouped by a selected covariate.

Several options are available within the app:

“Color by”: Covariate to be used for coloring the first scatter plot.
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“Group by”: Covariate with which expression values are grouped in the boxplots.

In addition, the gene.data data frame is rendered as an interactive table using the JavaScript library
DataTable. This allows the user to subset/search the feature data and select a gene by clicking on
the corresponding row.

Value

If run=FALSE, a Shiny app object is returned, which can be run with runApp. If run=TRUE, a Shiny
app object is created and run.

Author(s)

Karsten Bach

See Also

runApp,

Examples

# Set up example data
example(newSCESet)
x <- exprs(example_sceset)
cell.data <- pData(example_sceset)
gene.data <- data.frame("meanExp"=rowMeans(x))
rownames(gene.data) <- rownames(x)

# Mocking up some reduced dimensions.
library(Rtsne)
tsn <- Rtsne(t(x), perplexity=10)
red.dim <- tsn$Y[,1:2]

# Creating the app object.
app <- exploreData(x, cell.data, gene.data, red.dim, run=FALSE)
if (interactive()) { shiny::runApp(app) }

## Not run: # Running directly from the function.
saved <- exploreData(x, cell.data, gene.data, red.dim)

## End(Not run)

findMarkers Find marker genes

Description

Find candidate marker genes for clusters of cells, by testing for differential expression between
clusters.
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Usage

## S4 method for signature 'matrix'
findMarkers(x, clusters, design=NULL, subset.row=NULL)

## S4 method for signature 'SCESet'
findMarkers(x, ..., subset.row=NULL, assay="exprs", get.spikes=FALSE)

Arguments

x A numeric matrix of normalized log-expression values, where each column cor-
responds to a cell and each row corresponds to an endogenous gene. Alterna-
tively, a SCESet object containing such a matrix.

clusters A vector of cluster identities for all cells.

design A numeric matrix containing blocking terms, i.e., uninteresting factors driving
expression across cells.

subset.row A logical, integer or character scalar indicating the rows of x to use.

... Additional arguments to pass to the matrix method.

assay A string specifying which assay values to use, e.g., counts or exprs.

get.spikes A logical scalar specifying whether decomposition should be performed for
spike-ins.

Details

This function uses limma to test for differentially expressed genes (DEGs) between pairs of clusters.
For each cluster, the log-fold changes and other statistics from all relevant pairwise comparisons
are combined into a single table. A list of such tables is returned for all clusters to define a set of
potential marker genes.

Each table is sorted by the Top value, which specifies the size of the candidate marker set. Taking
all rows with Top values no greater than some integer X will yield a set containing the top X genes
(ranked by significance) from each pairwise comparison. For example, if X is 5, the set will consist
of the union of the top 5 genes from each pairwise comparison. This set allows the cluster to be
distinguished from the others based on the expression of at least one gene. It should be stressed that
markers are not explicitly chosen to be uniquely expressed in the cluster. Such a strategy is often too
stringent, especially in cases involving overclustering or cell types defined by combinatorial gene
expression.

The FDR value is calculated by combining p-values across contrasts for each gene using Simes’
method, and then applying the BH method across genes. The null hypothesis here is that the gene
is not DE in any of the contrasts. However, this is intended only as a rough measure of significance.
Properly correcting for multiple testing is not generally possible when clusters is determined from
the same x used for DE testing.

The application of limma uses the “trend” approach on the normalized log-expression values, as
described by Law et al. (2015). This is fast and avoids putting too much weight on outliers or cells
with large library sizes. Uninteresting factors of variation (e.g., preparation time, sequencing batch)
will be blocked if they are stored in design. Note that the presence of factors that are confounded
with clusters will raise a warning about unestimable coefficients.

By default, spike-in transcripts are ignored in findMarkers,SCESet-method with get.spikes=FALSE.
This is overridden by any non-NULL value of subset.row.
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Value

A named list of data frames, where each data frame corresponds to a cluster and contains a ranked
set of potential marker genes. In each data frame, the log-fold change of the cluster against every
other cluster Y is also reported, under the column named Y.

Author(s)

Aaron Lun

References

Law CW, Chen Y, Shi W and Smyth, GK (2014). voom: precision weights unlock linear model
analysis tools for RNA-seq read counts. Genome Biol. 15:R29

Simes RJ (1986). An improved Bonferroni procedure for multiple tests of significance. Biometrika
73:751-754.

See Also

normalize

Examples

example(computeSpikeFactors) # Using the mocked-up data 'y' from this example.

kout <- kmeans(t(exprs(y)), centers=2)

out <- findMarkers(y, clusters=kout$cluster)

Get spikes Set spike-in rows

Description

Specify the rows in the SCESet corresponding to spike-in transcripts.

Usage

## S4 replacement method for signature 'SCESet'
isSpike(x) <- value

Arguments

x A SCESet object with spike-in data in the colData.

value A character vector specifying which control sets are spike-ins. Alternatively a
NULL value, to remove existing spike-in specifications.

Details

This function is deprecated, use setSpike instead.
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Value

For isSpike<-, x is modified to store a spike-specifying vector in fData(x)$is_feature_spike.
A logical vector indicating which controls are spike-ins is also stored in the featureControlInfo
slot of x.

Author(s)

Aaron Lun

See Also

setSpike,

Examples

example(computeSpikeFactors)
setSpike(y) <- "Spike"

improvedCV2 Stably model the technical coefficient of variation

Description

Model the decompose coefficient of variation as a function of the mean, and determine the signifi-
cance of highly variable genes. This is intended to be a more stable version of technicalCV2.

Usage

## S4 method for signature 'matrix'
improvedCV2(x, is.spike, sf.cell=NULL, sf.spike=NULL,

log.prior=NULL, df=4, robust=FALSE, use.spikes=FALSE)

## S4 method for signature 'SCESet'
improvedCV2(x, spike.type=NULL, ..., assay="exprs", logged=NULL)

Arguments

x A numeric matrix of counts or log-expression values, where each column corre-
sponds to a cell and each row corresponds to a spike-in transcript. Alternatively,
a SCESet object that contains such values.

is.spike A vector indicating which rows of x correspond to spike-in transcripts.

sf.cell A numeric vector containing size factors for endogenous genes.

sf.spike A numeric vector containing size factors for spike-in transcripts.

log.prior A numeric scalar specifying the pseudo-count added prior to log-transformation.
If this is set, x is assumed to contain log-expression values, otherwise it is as-
sumed to contain counts.

df An integer scalar indicating the number of degrees of freedom for the spline fit
with ns.

robust A logical scalar indicating whether robust fitting should be performed with rlm.
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use.spikes A logical scalar indicating whether p-values should be returned for spike-in tran-
scripts.

spike.type A character vector containing the names of the spike-in sets to use.

... Additional arguments to pass to improvedCV2,matrix-method.

assay A string specifying which assay values to use.

logged A logical scalar indicating if assay contains log-expression values. This is au-
tomatically determined if assay="counts" or "exprs".

Details

This function will estimate the squared coefficient of variation (CV2) and mean for each spike-
in transcript. Both values are log-transformed and a mean-dependent trend is fitted to the log-
CV2 values, using a linear model with a natural spline of degree df. The trend is used to obtain
the technical contribution to the CV2 for each gene. The biological contribution is computed by
subtracting the technical contribution from the total CV2.

Deviations from the trend are identified by modelling the CV2 estimates for the spike-in transcripts
as log-normally distributed around the fitted trend. This accounts for sampling variance as well
as any variability in the true dispersions (e.g., due to transcript-specific amplification biases). The
p-value for each gene is calculated from a one-sided Z-test on the log-CV2, using the fitted value as
the mean and the robust scale estimate as the standard deviation. A Benjamini-Hochberg adjustment
is applied to correct for multiple testing.

If log.prior is specified, x is assumed to contain log-expression values. These are converted back
to the count scale prior to calculation of the CV2. Otherwise, x is assumed to contain raw counts,
which need to be normalized with sf.cell and sf.spike prior to calculating the CV2. Note that
both sets of size factors are set to 1 by default if their values are not supplied to the function.

For any given data set, the maximum CV2 that can be achieved is equal to the number of cells. (This
occurs when only one cell has a non-zero expression value - proof via Holder’s inequality.) Genes
with CV2 values equal to the maximum are ignored during trend fitting. This ensures that the trend
is not distorted by the presence of an upper bound on CV2 values, especially at low means.

For improvedCV2,matrix-method, the rows corresponding to spike-in transcripts are specified
with is.spike. These rows will be used for trend fitting, while all other rows are treated as endoge-
nous genes. By default, p-values are set to NA for the spike-in transcripts, such that they do not con-
tribute to the multiple testing correction. This behaviour can be modified with use.spikes=TRUE,
which will return p-values for all features.

For improvedCV2,SCESet-method, transcripts from spike-in sets named in spike.type will be
used for trend fitting. If spike.type=NULL, all spike-in sets listed in x will be used. Size factors
for endogenous genes are automatically extracted via sizeFactors. Spike-in-specific size factors
for spike.type are extracted from x, if available; otherwise they are set to the size factors for
the endogenous genes. Note that the spike-in-specific factors must be the same for each set in
spike.type.

Users can also set is.spike to NA in improvedCV2,matrix-method; or spike.type to NA in
decomposeCV2,SCESet-method. In such cases, all rows will be used for trend fitting, and (ad-
justed) p-values will be reported for all rows. This should be used in cases where there are no
spike-ins. Here, the assumption is that most endogenous genes do not exhibit high biological vari-
ability and thus can be used to model decompose variation.

Value

A data frame is returned containing one row per row of x (including both endogenous genes and
spike-in transcripts). Each row contains the following information:
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mean: A numeric field, containing mean (scaled) counts for all genes and transcripts.

var: A numeric field, containing the variances for all genes and transcripts.

cv2: A numeric field, containing CV2 values for all genes and transcripts.

trend: A numeric field, containing the fitted value of the trend in the CV2 values. Note that
the fitted value is reported for all genes and transcripts, but the trend is only fitted using the
transcripts.

p.value: A numeric field, containing p-values for all endogenous genes (NA for rows correspond-
ing to spike-in transcripts).

FDR: A numeric field, containing adjusted p-values for all genes.

Author(s)

Aaron Lun

See Also

ns, technicalCV2

Examples

# Mocking up some data.
ngenes <- 10000
nsamples <- 50
means <- 2^runif(ngenes, 6, 10)
dispersions <- 10/means + 0.2
counts <- matrix(rnbinom(ngenes*nsamples, mu=means, size=1/dispersions), ncol=nsamples)
is.spike <- logical(ngenes)
is.spike[seq_len(500)] <- TRUE

# Running it directly on the counts.
out <- improvedCV2(counts, is.spike)
head(out)
plot(out$mean, out$cv2, log="xy")
points(out$mean, out$trend, col="red", pch=16, cex=0.5)

# Same again with an SCESet.
rownames(counts) <- paste0("X", seq_len(ngenes))
colnames(counts) <- paste0("Y", seq_len(nsamples))
X <- newSCESet(countData=counts)
X <- calculateQCMetrics(X, list(Spikes=is.spike))
setSpike(X) <- "Spikes"

# Dummying up some size factors (for convenience only, use computeSumFactors() instead).
sizeFactors(X) <- 1
X <- computeSpikeFactors(X, general.use=FALSE)

# Running it.
out <- improvedCV2(X, spike.type="Spikes")
head(out)
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mnnCorrect Mutual nearest neighbors correction

Description

Correct for batch effects in single-cell expression data using the mutual nearest neighbors method.

Usage

mnnCorrect(..., inquiry.genes=NULL, hvg.genes=NULL, k=20, sigma=0.1,
cos.norm=TRUE, svd.dim=2, order=NULL)

Arguments

... Two or more expression matrices where genes correspond to rows and cells cor-
respond to columns. Each matrix should contain cells from the same batch;
multiple matrices represent separate batches of cells. Each matrix should con-
tain the same number of rows, corresponding to the same genes (in the same
order).

inquiry.genes A vector specifying the genes in all batches on which the correction is to be
performed. All genes are used by default.

hvg.genes A vector specifying the genes in all batches with which to identify the mutual
nearest neighbours. All genes are used by default.

k An integer scalar specifying the number of nearest neighbors to consider when
identifying mutual nearest neighbors.

sigma A numeric scalar specifying the bandwidth of the Gaussian smoothing kernel
used to compute the correction vector for each cell.

cos.norm A logical scalar indicating whether cosine normalization should be performed.

svd.dim An integer scalar specifying the number of dimensions to use for summarizing
biological substructure within each batch.

order An integer vector specifying the order in which batches are to be corrected.

Details

This function is designed for batch correction of single-cell RNA-seq data where the batches are
partially confounded with biological conditions of interest. It does so by identifying pairs of mutual
nearest neighbors (MNN) in the high-dimensional expression space. Each MNN pair represents
cells in different batches that are of the same cell type/state, assuming that batch effects are mostly
orthogonal to the biological manifold. Correction vectors are calculated from the pairs of MNNs
and corrected expression values are returned for use in clustering and dimensionality reduction.

The concept of a MNN pair can be explained by considering cells in each of two batches. For each
cell in one batch, the set of k nearest cells in the other batch is identified, based on the Euclidean
distance in expression space. Two cells in different batches are considered to be MNNs if each cell
is in the other’s set. The size of k can be interpreted as the minimum size of a subpopulation in each
batch. The algorithm is generally robust to the choice of k, though values that are too small will not
yield enough MNN pairs, while values that are too large will ignore substructure within each batch.

For each MNN pair, a pairwise correction vector is computed based on the difference in the expres-
sion profiles. The correction vector for each cell is computed by applying a Gaussian smoothing
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kernel with bandwidth sigma is the pairwise vectors. This stabilizes the vectors across many MNN
pairs and extends the correction to those cells that do not have MNNs. The choice of sigma deter-
mines the extent of smoothing - a value of 1 is used by default to reflect the boundaries of the space
after cosine normalization.

Value

A named list containing two components:

corrected A list of length equal to the number of batches, containing matrices of corrected expres-
sion values for each cell in each batch. The order of batches is the same as supplied in ...,
and the order of cells in each matrix is also unchanged.

mnn An integer matrix with two columns, specifying the number of MNNs used for correction of
each batch. Each row corresponds to a batch, and the first and second columns contain the
number of MNNs in the reference and current batch, respectively.

Further options

The input expression values should generally be log-transformed, e.g., log-counts, see normalize
for details. By default, a further cosine normalization step is performed on the supplied expression
data prior to identifying MNNs, etc. This can be turned off with cos.norm=FALSE, though we do
not advise doing so.

The function depends on a shared biological manifold, i.e., one or more cell types/states being
present in multiple batches. If this is not true, MNNs may be incorrectly identified. We protect
against this by raising a warning if there are no shared biological subspaces between batches. We
also remove components of the correction vectors that are parallel to the biological subspaces in
each batch, to avoid over-correction of interesting biology. The biological subspace in each batch
is identified with SVD, analogous to taking the first several principal components after PCA. The
number of dimensions of this subspace can be controlled with svd.dim.

Users should note that the order in which batches are corrected will affect the final results. The
first batch in order is used as the reference batch against which the second batch is corrected.
Corrected values of the second batch are added to the reference batch, against which the third batch
is corrected, and so on. This strategy maximizes the chance of detecting sufficient MNN pairs for
stable calculation of correction vectors. We would consider 20 cells involved in MNN pairs to be
the minimum number required for batch correction.

Author(s)

Laleh Haghverdi, with modifications by Aaron Lun

See Also

get.knnx

Examples

B1 <- matrix(rnorm(10000), ncol=50) # Batch 1
B2 <- matrix(rnorm(10000), ncol=50) # Batch 2
out <- mnnCorrect(B1, B2) # corrected values
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overlapExprs Overlap expression profiles

Description

Compute the gene-specific overlap in expression profiles between two groups of cells.

Usage

## S4 method for signature 'matrix'
overlapExprs(x, groups, design=NULL, residuals=FALSE, tol=1e-8, subset.row=NULL)

## S4 method for signature 'SCESet'
overlapExprs(x, ..., subset.row=NULL, assay="exprs", get.spikes=FALSE)

Arguments

x A numeric matrix of expression values, where each column corresponds to a
cell and each row corresponds to an endogenous gene. Alternatively, a SCESet
object containing such a matrix.

groups A vector of group assignments for all cells.
design A numeric matrix containing blocking terms, i.e., uninteresting factors driving

expression across cells.
residuals A logical scalar indicating whether overlaps should be computed between resid-

uals of a linear model.
tol A numeric scalar specifying the tolerance with which ties are considered.
subset.row A logical, integer or character scalar indicating the rows of x to use.
... Additional arguments to pass to the matrix method.
assay A string specifying which assay values to use, e.g., counts or exprs.
get.spikes A logical scalar specifying whether decomposition should be performed for

spike-ins.

Details

For two groups of cells A and B, consider the distribution of expression values for gene X across
those cells. The overlap proportion is defined as the probability that a randomly selected cell in A
has a greater expression value of X than a randomly selected cell in B. Overlap proportions near
0 or 1 indicate that the expression distributions are well-separated. In particular, large proportions
indicate that most cells of the first group (A) express the gene more highly than most cells of the
second group (B).

This function computes, for each gene, the overlap proportions between all pairs of groups in
groups. It is designed to complement findMarkers, which reports the log-fold changes between
groups. This is useful for prioritizing candidate markers that are distinctive to one group or another,
without needing to plot the expression values.

Expression values that are tied between groups are considered to be 50% likely to be greater in
either group. Thus, if all values were tied, the overlap proportion would be 0.5. The tolerance with
which ties are considered can be set by changing tol.

By default, spike-in transcripts are ignored in overlapExprs,SCESet-method with get.spikes=FALSE.
This is overridden by any non-NULL value of subset.row.
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Value

A named list of numeric matrices. Each matrix corresponds to a group (A) in groups and contains
one row per gene in x (or the subset specified by subset.row). Each column corresponds to another
group (B) in groups. The matrix entries contain overlap proportions between groups A and B for
each gene.

Accounting for uninteresting variation

If the experiment has known (and uninteresting) factors of variation, these can be included in
design. The approach used to remove these factors depends on the design matrix. If there is
only one factor in design, the levels of the factor are defined as separate blocks. Overlaps between
groups are computed within each block, and a weighted mean (based on the number of cells in each
block) of the overlaps is taken across all blocks.

This approach avoids the need for linear modelling and the associated assumptions regarding nor-
mality and correct model specification. In particular, it avoids problems with breaking of ties when
counts or expression values are converted to residuals. However, it also makes less use of infor-
mation, e.g., we ignore any blocks containing cells from only one group. NA proportions may be
observed for a pair of groups if there is no block that contains cells from that pair.

For designs containing multiple factors or covariates, a linear model is fitted to the (log-normalized)
expression values with design. The overlaps are then computed from the residuals of the fitted
model. This approach is not ideal (see ?correlatePairs for a related discussion) but is unavoid-
able for covariates. It can also be used for one-way layouts by setting residuals=TRUE.

Author(s)

Aaron Lun

See Also

findMarkers

Examples

example(computeSpikeFactors) # Using the mocked-up data 'y' from this example.
groups <- sample(3, ncol(y), replace=TRUE)
out <- overlapExprs(y, groups, subset.row=1:10)

Quick clustering Quick clustering of cells

Description

Cluster similar cells based on rank correlations in their gene expression profiles.

Usage

## S4 method for signature 'matrix'
quickCluster(x, min.size=200, subset.row=NULL, get.ranks=FALSE,

method=c("hclust", "igraph"), ...)

## S4 method for signature 'SCESet'
quickCluster(x, subset.row=NULL, ..., assay="counts", get.spikes=FALSE)
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Arguments

x A numeric count matrix where rows are genes and columns are cells. Alterna-
tively, a SCESet object containing such a matrix.

min.size An integer scalar specifying the minimum size of each cluster for method="hclust".

subset.row A logical, integer or character scalar indicating the rows of x to use.

get.ranks A logical scalar specifying whether a matrix of adjusted ranks should be re-
turned.

method A string specifying the clustering method to use.

... For quickCluster,matrix-method, additional arguments to be passed to cutreeDynamic
for method="hclust", or buildSNNGraph for method="igraph". For quickCluster,SCESet-method,
additional arguments to pass to quickCluster,matrix-method.

assay A string specifying which assay values to use, e.g., counts or exprs.

get.spikes A logical specifying whether spike-in transcripts should be used.

Details

This function provides a correlation-based approach to quickly define clusters of a minimum size
min.size. Two clustering strategies are available:

• If method="hclust", a distance matrix is constructed using Spearman’s rho on the counts
between cells. (Some manipulation is performed to convert Spearman’s rho into a proper
distance metric.) Hierarchical clustering is performed and a dynamic tree cut is used to define
clusters of cells.

• If method="igraph", a shared nearest neighbor graph is constructed using the buildSNNGraph
function. This is used to define clusters based on highly connected communities in the graph,
using the cluster_fast_greedy function. Again, neighbors are identified using distances
based on Spearman’s rho.

A correlation-based approach is preferred here as it is invariant to scaling normalization. This avoids
circularity between normalization and clustering, e.g., in computeSumFactors.

When using cutreeDynamic some cells may not be assigned to any cluster, and are assigned iden-
tities of "0" in the output vector. In most cases, this is because those cells belong in a separate
cluster with fewer than min.size cells. The function will not be able to call this as a cluster as the
minimum threshold on the number of cells has not been passed. Users are advised to check that the
unassigned cells do indeed form their own cluster. Otherwise, it may be necessary to use a custom
clustering algorithm.

Using method="igraph" should be used in situations where there are too many cells for construc-
tion of a distance matrix. It can also be used in cases with few cells, though it is less customizable
than method="hclust" - for example, there are no options to control the minimum cluster size.
(When there are many cells, the “quick” in the function’s name refers to the number of commands
you have to call rather than the computation speed.)

In quickCluster,SCESet-method, spike-in transcripts are not used by default as they provide little
information on the biological similarities between cells. This may not be the case if subpopulations
differ by total RNA content, in which case setting get.spikes=TRUE may provide more discrimi-
native power. Users can also set subset.row to specify which rows of x are to be used to calculate
correlations. This is equivalent to but more efficient than subsetting x directly, as it avoids construct-
ing a (potentially large) temporary matrix. Note that if subset.row is specified, it will overwrite
any setting of get.spikes.
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Users can also set get.ranks=TRUE, in which case a matrix of ranks will be returned. Each column
contains the ranks for the expression values within a single cell after standardization and mean-
centring. Computing Euclidean distances between the rank vectors for pairs of cells will yield the
same correlation-based distance as that used above. This allows users to apply their own clustering
algorithms on the ranks, which protects against outliers and is invariant to scaling (at the cost of
sensitivity).

Value

If get.ranks=FALSE, a character vector of cluster identities for each cell in counts is returned.

If get.ranks=TRUE, a numeric matrix is returned where each column contains ranks for the expres-
sion values in each cell.

Author(s)

Aaron Lun and Karsten Bach

References

van Dongen S and Enright AJ (2012). Metric distances derived from cosine similarity and Pearson
and Spearman correlations. arXiv 1208.3145

Lun ATL, Bach K and Marioni JC (2016). Pooling across cells to normalize single-cell RNA
sequencing data with many zero counts. Genome Biol. 17:75

See Also

cutreeDynamic, computeSumFactors, buildSNNGraph

Examples

set.seed(100)
popsize <- 200
ngenes <- 1000
all.facs <- 2^rnorm(popsize, sd=0.5)
counts <- matrix(rnbinom(ngenes*popsize, mu=all.facs, size=1), ncol=popsize, byrow=TRUE)

clusters <- quickCluster(counts, min.size=20)
clusters <- quickCluster(counts, method="igraph")

sandbag Cell cycle phase training

Description

Use gene expression data to train a classifier for cell cycle phase.
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Usage

## S4 method for signature 'matrix'
sandbag(x, phases, gene.names=rownames(x),

fraction=0.5, subset.row=NULL)

## S4 method for signature 'SCESet'
sandbag(x, phases, subset.row=NULL, ...,

assay="counts", get.spikes=FALSE)

Arguments

x A numeric matrix of gene expression values where rows are genes and columns
are cells. Alternatively, a SCESet object containing such a matrix.

phases A list of subsetting vectors specifying which cells are in each phase of the cell
cycle. This should typically be of length 3, with elements named as "G1", "S"
and "G2M".

gene.names A character vector of gene names.

fraction A numeric scalar specifying the minimum fraction to define a marker gene pair.

subset.row A logical, integer or character scalar indicating the rows of x to use.

... Additional arguments to pass to sandbag,matrix-method.

assay A string specifying which assay values to use, e.g., counts or exprs.

get.spikes A logical specifying whether spike-in transcripts should be used.

Details

This function implements the training step of the pair-based prediction method described by Scial-
done et al. (2015). Pairs of genes (A, B) are identified from a training data set where in each
pair, the fraction of cells in phase G1 with expression of A > B (based on expression values in
training.data) and the fraction with B > A in each other phase exceeds fraction. These pairs
are defined as the marker pairs for G1. This is repeated for each phase to obtain a separate marker
pair set.

Pre-defined sets of marker pairs are provided for mouse and human (see Examples). The mouse set
was generated as described by Scialdone et al. (2015), while the human training set was generated
with data from Leng et al. (2015). Classification from test data can be performed using the cyclone
function. For each cell, this involves comparing expression values between genes in each marker
pair. The cell is then assigned to the phase that is consistent with the direction of the difference in
expression in the majority of pairs.

For sandbag,SCESet-method, the matrix of counts is used but can be replaced with expression val-
ues by setting assays. By default, get.spikes=FALSE which means that any rows corresponding
to spike-in transcripts will not be considered when picking markers. This is because the amount of
spike-in RNA added will vary between experiments and will not be a robust predictor. Nonetheless,
if all rows are required, users can set get.spikes=TRUE. Users can also manually select which rows
to use via subset.row, which will override any setting of get.spikes.

While sandbag and its partner function cyclone were originally designed for cell cyclone phase
classification, the same computational strategy can be used to classify cells into any mutually exclu-
sive groupings. Any number and nature of groups can be specified in phases, e.g., differentiation
lineages, activation states. Only the names of phases need to be modified to reflect the biology
being studied.
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Value

A named list of data.frames, where each data frame corresponds to a cell cycle phase and contains
the names of the genes in each marker pair.

Author(s)

Antonio Scialdone, with modifications by Aaron Lun

References

Scialdone A, Natarajana KN, Saraiva LR et al. (2015). Computational assignment of cell-cycle
stage from single-cell transcriptome data. Methods 85:54–61

Leng N, Chu LF, Barry C et al. (2015). Oscope identifies oscillatory genes in unsynchronized
single-cell RNA-seq experiments. Nat. Methods 12:947–50

See Also

cyclone

Examples

ncells <- 50
ngenes <- 20
training <- matrix(rnorm(ncells*ngenes), ncol=ncells)
rownames(training) <- paste0("X", seq_len(ngenes))

is.G1 <- 1:20
is.S <- 21:30
is.G2M <- 31:50
out <- sandbag(training, list(G1=is.G1, S=is.S, G2M=is.G2M))
str(out)

# Getting pre-trained marker sets
mm.pairs <- readRDS(system.file("exdata", "mouse_cycle_markers.rds", package="scran"))
hs.pairs <- readRDS(system.file("exdata", "human_cycle_markers.rds", package="scran"))

Selector plot Construct a selector plot via Shiny

Description

Generate an interactive Shiny plot in which cells can be selected for further analysis.

Usage

selectorPlot(x, y, persist=FALSE, plot.width=5, plot.height=500, run=TRUE, pch=16, ...)
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Arguments

x, y Numeric vectors of x-y coordinates, of length equal to the number of cells.

persist A logical scalar indicating whether selections should persist after stopping the
app.

plot.width A numeric scalar specifying the plot width, see width in ?column.

plot.height A numeric scalar specifying the plot height in pixels.

run A logical scalar specifying whether the Shiny app should be run.

pch, ... Other arguments to pass to plot.

Details

This function will return a Shiny app object that can be run with runApp. The aim is to perform
dimensionality reduction to obtain coordinates for each cell, e.g., from PCA or t-SNE. These co-
ordinates can be plotted with selectorPlot, and subpopulations of interest can be interactively
selected. The selections can then be saved for further manipulation in R.

The app allows users to select groups of cells; mark them as cells of interest; and then save the
marked cells into a list. Currently marked cells will be shown in red, previously saved cells are
shown in orange, and all other cells are shown in grey. The distribution of saved cells is also shown
in a separate plot indicating the list element to which they were saved. This can be repeated multiple
times to obtain several groups of interest.

Several buttons are available within the app:

“Select”: Marks the current selection of cells.

“Deselect”: Unmarks the current selection of cells.

“Clear selection”: Unmarks all currently marked cells.

“Add to list”: Saves currently marked cells into a list.

“Reset all”: Removes all marking, removes all saved cells from the list.

“Save list to R”: Stops the app and returns the list of saved cells to R.

Value

If run=FALSE, a Shiny app object is returned, which can be run with runApp. This transfers control
to a browser window where cells can be selected. Upon stopping the app with the “Save list to R”
button, control is transferred back to R and the list of saved cells is returned. Each element of the
list is a logical vector indicating which cells were saved in that group of interest.

If run=TRUE, a Shiny app object is created and run. This returns a list of saved cells upon stopping
the app as previously described.

Author(s)

Aaron Lun

See Also

runApp
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Examples

example(newSCESet)
pca <- plotPCA(example_sceset)
x <- pca$data$PC1
y <- pca$data$PC2

# Creating the app object.
app <- selectorPlot(x, y, run=FALSE)
if (interactive()) { saved <- shiny::runApp(app) }

## Not run: # Running the app directly from the function.
saved <- selectorPlot(x, y)

## End(Not run)

Spike-in normalization

Normalization with spike-in counts

Description

Compute size factors based on the coverage of spike-in transcripts.

Usage

## S4 method for signature 'SCESet'
computeSpikeFactors(x, type=NULL, sf.out=FALSE, general.use=TRUE)

Arguments

x A SCESet object containing rows corresponding spike-in transcripts.

type A character vector specifying which spike-in sets to use.

sf.out A logical scalar indicating whether only size factors should be returned.

general.use A logical scalar indicating whether the size factors should be stored for general
use by all genes.

Details

The size factor for each cell is defined as the sum of all spike-in counts in each cell. This is
equivalent to normalizing to equalize spike-in coverage between cells. Size factors are scaled so that
the mean of all size factors is unity, for standardization purposes if one were to compare different
sets of size factors.

Spike-in counts are assumed to be stored in the rows specified by isSpike(x). This specification
should have been performed by supplying the names of the spike-in sets – see ?setSpike for more
details. By default, if multiple spike-in sets are available, all of them will be used to compute the
size factors. The function can be restricted to a subset of the spike-ins by specifying the names of
the desired spike-in sets in type.

By default, the function will store several copies of the same size factors in the output object. One
copy will be stored in sizeFactors(x) for normalization of all genes – this can be disabled by
setting general.use=FALSE. One copy will also be stored in sizeFactors(x, type=s), where
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s is the name of a spike-in set in type. (If type=NULL, a copy is stored for every spike-in set, as
all of them would be used to compute the size factors.) Separate storage allows spike-in-specific
normalization in normalize,SCESet-method.

Value

If sf.out=TRUE, a numeric vector of size factors is returned directly.

Otherwise, an object of class x is returned, containing size factors for all cells. A copy of the vector
is stored for each spike-in set that was used to compute the size factors. If general.use=TRUE, a
copy is also stored for use by non-spike-in genes.

Author(s)

Aaron Lun

References

Lun ATL, McCarthy DJ and Marioni JC (2016). A step-by-step workflow for low-level analysis of
single-cell RNA-seq data with Bioconductor. F1000Res. 5:2122

See Also

isSpike, setSpike

Examples

################
# Mocking up some data.
set.seed(100)
ncells <- 200

nspikes <- 100
spike.means <- 2^runif(nspikes, 3, 8)
spike.disp <- 100/spike.means + 0.5
spike.data <- matrix(rnbinom(nspikes*ncells, mu=spike.means, size=1/spike.disp), ncol=ncells)

ngenes <- 2000
cell.means <- 2^runif(ngenes, 2, 10)
cell.disp <- 100/cell.means + 0.5
cell.data <- matrix(rnbinom(ngenes*ncells, mu=cell.means, size=1/cell.disp), ncol=ncells)

combined <- rbind(cell.data, spike.data)
colnames(combined) <- seq_len(ncells)
rownames(combined) <- seq_len(nrow(combined))
y <- newSCESet(countData=combined)
y <- calculateQCMetrics(y, list(Spike=rep(c(FALSE, TRUE), c(ngenes, nspikes))))
setSpike(y) <- "Spike"

################
# Computing and storing spike-in size factors.
y2 <- computeSpikeFactors(y)
head(sizeFactors(y2))
head(sizeFactors(y2, type="Spike"))

# general.use=FALSE does not modify general size factors
sizeFactors(y2) <- 1
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sizeFactors(y2, type="Spike") <- 1
y2 <- computeSpikeFactors(y2, general.use=FALSE)
head(sizeFactors(y2))
head(sizeFactors(y2, type="Spike"))

technicalCV2 Model the technical coefficient of variation

Description

Model the technical coefficient of variation as a function of the mean, and determine the significance
of highly variable genes.

Usage

## S4 method for signature 'matrix'
technicalCV2(x, is.spike, sf.cell=NULL, sf.spike=NULL,

cv2.limit=0.3, cv2.tol=0.8, min.bio.disp=0.25)

## S4 method for signature 'SCESet'
technicalCV2(x, spike.type=NULL, ..., assay="counts")

Arguments

x A numeric matrix of counts, where each column corresponds to a cell and each
row corresponds to a spike-in transcript. Alternatively, a SCESet object that
contains such values.

is.spike A vector indicating which rows of x correspond to spike-in transcripts.

sf.cell A numeric vector containing size factors for endogenous genes.

sf.spike A numeric vector containing size factors for spike-in transcripts.
cv2.limit, cv2.tol

Numeric scalars that determine the minimum mean abundance for the spike-in
transcripts to be used for trend fitting.

min.bio.disp A numeric scalar specifying the minimum biological dispersion.

spike.type A character vector containing the names of the spike-in sets to use.

... Additional arguments to pass to technicalCV2,matrix-method.

assay A string specifying which assay values to use.

Details

This function will estimate the squared coefficient of variation (CV2) and mean for each spike-in
transcript. A mean-dependent trend is fitted to the CV2 values for the transcripts using a Gamma
GLM with glmgam.fit. Only high-abundance transcripts are used for stable trend fitting. (Specifi-
cally, a mean threshold is selected by taking all transcripts with CV2 above cv2.limit, and taking
the quantile of this subset at cv2.tol. A warning will be thrown and all spike-ins will be used if
the subset is empty.)

The trend is used to determine the technical CV2 for each endogenous gene based on its mean. To
identify highly variable genes, the null hypothesis is that the total CV2 for each gene is less than
or equal to the technical CV2 plus min.bio.disp. Deviations from the null are identified using
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a chi-squared test. The additional min.bio.disp is necessary for a ratio-based test, as otherwise
genes with large relative (but small absolute) CV2 would be favoured.

For technicalCV2,matrix-method, the rows corresponding to spike-in transcripts are specified
with is.spike. These rows will be used for trend fitting, while all other rows are treated as endoge-
nous genes. If either sf.cell or sf.spike are not specified, the estimateSizeFactorsForMatrix
function is applied to compute size factors.

For technicalCV2,SCESet-method, transcripts from spike-in sets named in spike.type will be
used for trend fitting. If spike.type=NULL, all spike-in sets listed in x will be used. Size factors for
the endogenous genes are automatically extracted via sizeFactors. Spike-in-specific size factors
for spike.type are extracted from x, if available; otherwise they are set to the size factors for
the endogenous genes. Note that the spike-in-specific factors must be the same for each set in
spike.type.

Users can also set is.spike to NA in technicalCV2,matrix-method; or spike.type to NA in
technicalCV2,SCESet-method. In such cases, all rows will be used for trend fitting, and (adjusted)
p-values will be reported for all rows. This should be used in cases where there are no spike-ins.
Here, the assumption is that most endogenous genes do not exhibit high biological variability and
thus can be used to model technical variation.

Value

A data frame is returned containing one row per row of x (including both endogenous genes and
spike-in transcripts). Each row contains the following information:

mean: A numeric field, containing mean (scaled) counts for all genes and transcripts.

var: A numeric field, containing the variances for all genes and transcripts.

cv2: A numeric field, containing CV2 values for all genes and transcripts.

trend: A numeric field, containing the fitted value of the trend in the CV2 values. Note that
the fitted value is reported for all genes and transcripts, but the trend is only fitted using the
transcripts.

p.value: A numeric field, containing p-values for all endogenous genes (NA for rows correspond-
ing to spike-in transcripts).

FDR: A numeric field, containing adjusted p-values for all genes.

Author(s)

Aaron Lun, based on code from Brennecke et al. (2013)

References

Brennecke P, Anders S, Kim JK et al. (2013). Accounting for technical noise in single-cell RNA-seq
experiments. Nat. Methods 10:1093-95

See Also

glmgam.fit, estimateSizeFactorsForMatrix

Examples

# Mocking up some data.
ngenes <- 10000
means <- 2^runif(ngenes, 6, 10)
dispersions <- 10/means + 0.2
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nsamples <- 50
counts <- matrix(rnbinom(ngenes*nsamples, mu=means, size=1/dispersions), ncol=nsamples)
is.spike <- logical(ngenes)
is.spike[seq_len(500)] <- TRUE

# Running it directly on the counts.
out <- technicalCV2(counts, is.spike)
head(out)
plot(out$mean, out$cv2, log="xy")
points(out$mean, out$trend, col="red", pch=16, cex=0.5)

# Same again with an SCESet.
rownames(counts) <- paste0("X", seq_len(ngenes))
colnames(counts) <- paste0("Y", seq_len(nsamples))
X <- newSCESet(countData=counts)
X <- calculateQCMetrics(X, list(Spikes=is.spike))
setSpike(X) <- "Spikes"

# Dummying up some size factors (for convenience only, use computeSumFactors() instead).
sizeFactors(X) <- 1
X <- computeSpikeFactors(X, general.use=FALSE)

# Running it.
out <- technicalCV2(X, spike.type="Spikes")
head(out)

testVar Test for significantly large variances

Description

Test for whether the total variance exceeds that expected under some null hypothesis, for sample
variances estimated from normally distributed observations.

Usage

testVar(total, null, df, design=NULL, test=c("chisq", "f"), second.df=NULL)

Arguments

total A numeric vector of total variances for all genes.

null A numeric scalar or vector of expected variances under the null hypothesis for
all genes.

df An integer scalar specifying the degrees of freedom on which the variances were
estimated.

design A design matrix, used to determine the degrees of freedom if df is missing.

test A string specifying the type of test to perform.

second.df A numeric scalar specifying the second degrees of freedom for the F-distribution
when test="f".
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Details

The null hypothesis is that the true variance for each gene is equal to null. (Technically, it is that
the variance is equal to or less than this value, but the most conservative test is obtained at equality.)
If test="chisq", variance estimates are assumed to follow a chi-squared distribution on df degrees
of freedom and scaled by null/df. This is used to compute a p-value for total being greater than
null. The underlying assumption is that the observations are normally distributed under the null,
which is reasonable for log-counts with low-to-moderate dispersions.

The aim is to use this function to identify significantly highly variable genes (HVGs). For example,
the null vector can be set to the values of the trend fitted to the spike-in variances. This will
identify genes with variances significantly greater than technical noise. Alternatively, it can be set
to the trend fitted to the cellular variances, which will identify those that are significantly more
variable than the bulk of genes. Selecting HVGs on p-values is better than using total - null, as
the latter is less precise when null is large.

If test="f", the true variance of each spike-in transcript is assumed to be sampled from a scaled
inverse chi-squared distribution. This accounts for any inflated scatter around the trend due to differ-
ences in amplification efficiency between transcripts. As a result, the gene-wise variance estimates
are should be F-distributed around the trend under the null. The second degrees of freedom is es-
timated from the scatter around the trend in trendVar using fitFDistRobustly, and needs to be
supplied to second.df to calculate an appropriate p-value.

Value

A numeric vector of p-values for all genes.

Author(s)

Aaron Lun

References

Law CW, Chen Y, Shi W and Smyth GK (2014). voom: precision weights unlock linear model
analysis tools for RNA-seq read counts Genome Biol. 15(2), R29.

See Also

trendVar, decomposeVar, fitFDistRobustly

Examples

set.seed(100)
null <- 100/runif(1000, 50, 2000)
df <- 30
total <- null * rchisq(length(null), df=df)/df

# Direct test:
out <- testVar(total, null, df=df)
hist(out)

# Rejecting the null:
alt <- null * 5 * rchisq(length(null), df=df)/df
out <- testVar(alt, null, df=df)
plot(alt[order(out)]-null)

# Focusing on genes that have high absolute increases in variability:
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out <- testVar(alt, null+0.5, df=df)
plot(alt[order(out)]-null)

trendVar Fit a variance trend

Description

Fit a mean-dependent trend to the gene-specific variances in single-cell RNA-seq data.

Usage

## S4 method for signature 'matrix'
trendVar(x, trend=c("loess", "semiloess"), span=0.3,

family="symmetric", degree=1, start=NULL, design=NULL, subset.row=NULL)

## S4 method for signature 'SCESet'
trendVar(x, subset.row=NULL, ..., assay="exprs", use.spikes=TRUE)

Arguments

x A numeric matrix of normalized expression values, where each column corre-
sponds to a cell and each row corresponds to a spike-in transcript. Alternatively,
a SCESet object that contains such values.

trend A string indicating whether the trend should be fully loess-based, or a mixture
of loess and parametric fitting.

span, family, degree

Arguments to pass to loess.

start A named list of numeric scalars, containing starting values for parametric fitting
with nls. This is automatically generated with the most suitable values if set to
NULL.

design A numeric matrix describing the uninteresting factors contributing to expression
in each cell.

subset.row A logical, integer or character scalar indicating the rows of x to use.

... Additional arguments to pass to trendVar,matrix-method.

assay A string specifying which assay values to use, e.g., counts or exprs.

use.spikes A logical scalar specifying whether the trend should be fitted to variances for
spike-in transcripts or endogenous genes.

Details

The strategy is to fit an abundance-dependent trend to the variance of the log-normalized expression
for the spike-in transcripts, using trendVar. For SCESet objects, these expression values can be
computed by normalize after setting the size factors, e.g., with computeSpikeFactors. Log-
transformed values are used as these are more robust to genes/transcripts with strong expression in
only one or two outlier cells.

The mean and variance of the normalized log-counts is calculated for each spike-in transcript, and
a trend is fitted to the variance against the mean for all transcripts. The fitted value of this trend
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represents technical variability due to sequencing, drop-outs during capture, etc. Variance decom-
position to biological and technical components for endogenous genes can then be performed later
with decomposeVar.

The design matrix can be set if there are factors that should be blocked, e.g., batch effects, known
(and uninteresting) clusters. Otherwise, it will default to an all-ones matrix, effectively treating all
cells as part of the same group.

Value

A named list is returned, containing:

mean: A numeric vector of mean log-CPMs for all spike-in transcripts.

var: A numeric vector of the variances of log-CPMs for all spike-in transcripts.

trend: A function that returns the fitted value of the trend at any mean log-CPM.

design: A numeric matrix, containing the design matrix that was used.

Trend fitting options

By default, a robust loess curve is used for trend fitting via loess. This protects against genes with
very large or very small variances. Some experimentation with span, degree or family may be
required to obtain satisfactory results. The fit is also dependent on the quality of the spike-ins – the
fit will obviously be poor if the coverage of all spike-ins is low.

Alternatively, when trend="semiloess", a non-linear curve of the form

y =
ax

xn + b

is fitted to the variances against the means using nls, and a loess curve is then fitted to the log-ratios
of the observed to fitted values. The parametric curve reduces the sharpness of the trend for easier
loess fitting. Conversely, the parametric form is not exact, so the loess curve models any remaining
trends in the residuals.

In general, the semi-loess setting tends to give smoother curves than loess alone. It is more robust
to the uneven distribution of spike-in transcripts across the covariate range. However, it tends to be
susceptible to convergence issues, and may require some fiddling with the start values to converge
properly. Reasonably good starting values for a, n and b are chosen automatically but these can be
set manually with start.

Additional notes on row selection

Spike-in transcripts can be selected in trendVar,SCESet-method using the use.spikes method.
By default, use.spikes=TRUE which means that only rows labelled as spike-ins with isSpike(x)
will be used.

When spike-ins are not available, trendVar can also be applied directly to the counts for endoge-
nous genes by setting use.spikes=FALSE (or by manually supplying a matrix of normalized ex-
pression for endogenous genes, for trendVar,matrix-method). This assumes that most genes
exhibit technical variation and little biological variation, e.g., in a homogeneous population.

If use.spikes=NA, every row will be used for trend fitting, regardless of whether it corresponds to
a spike-in transcript or endogenous gene. Users can also directly specify which rows to use with
subset.row. This will override any setting of use.spikes.
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Warning on size factor centring

If assay="exprs", trendVar,SCESet-method will attempt to determine if the expression values
were computed from counts via normalize. If so, a warning will be issued if the size factors are
not centred at unity. This is because different size factors are typically used for endogenous genes
and spike-in transcripts. If these size factor sets are not centred at the same value, there will be
systematic differences in abundance between these features. This precludes the use of a spike-in
fitted trend with abundances for endogenous genes in decomposeVar.

For other expression values and in trendVar,matrix-method, the onus is on the user to ensure
that normalization preserves differences in abundance. In other words, the scaling factors used
to normalize each feature should have the same mean. This ensures that spurious differences in
abundance are not introduced by the normalization process.

Author(s)

Aaron Lun

References

Lun ATL, McCarthy DJ and Marioni JC (2016). A step-by-step workflow for low-level analysis of
single-cell RNA-seq data with Bioconductor. F1000Res. 5:2122

See Also

nls, loess, decomposeVar, computeSpikeFactors, computeSumFactors, normalize

Examples

example(computeSpikeFactors) # Using the mocked-up data 'y' from this example.

# Normalizing (gene-based factors for genes, spike-in factors for spike-ins)
y <- computeSumFactors(y)
y <- computeSpikeFactors(y, general.use=FALSE)
y <- normalize(y)

# Fitting a trend to the spike-ins.
fit <- trendVar(y)
plot(fit$mean, fit$var)
curve(fit$trend(x), col="red", lwd=2, add=TRUE)

# Fitting a trend to the endogenous genes.
fit.g <- trendVar(y, use.spikes=FALSE)
plot(fit.g$mean, fit.g$var)
curve(fit.g$trend(x), col="red", lwd=2, add=TRUE)
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