Import and summarize transcript-level abundance estimates for gene-level analysis. The motivation and methods for the functions provided by the tximport package are described in the following article:
Charlotte Soneson, Michael I. Love, Mark D. Robinson (2015): Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research http://dx.doi.org/10.12688/f1000research.7563.1
We begin by locating some prepared files that contain
transcript abundance estimates for six samples, from the
tximportData package. The tximport pipeline will be nearly
identical for various quantification tools, usually only
requiring one change the type
argument.
We begin with quantification files generated by the kallisto
software, and later show the use of tximport
with Salmon, Sailfish, and RSEM.
First, we locate the directory containing the files. (Here we use
system.file
to locate the package directory, but for a typical use,
we would just provide a path, e.g. "/path/to/dir"
.)
library(tximportData)
dir <- system.file("extdata", package = "tximportData")
list.files(dir)
## [1] "cufflinks" "kallisto" "rsem"
## [4] "sailfish" "salmon" "samples.txt"
## [7] "samples_extended.txt" "tx2gene.csv"
Next, we create a named vector pointing to the kallisto files. We will
create a vector of filenames first by reading in a table that contains
the sample IDs, and then combining this with dir
and
"abundance.tsv"
.
samples <- read.table(file.path(dir, "samples.txt"), header = TRUE)
samples
## pop center assay sample experiment run
## 1 TSI UNIGE NA20503.1.M_111124_5 ERS185497 ERX163094 ERR188297
## 2 TSI UNIGE NA20504.1.M_111124_7 ERS185242 ERX162972 ERR188088
## 3 TSI UNIGE NA20505.1.M_111124_6 ERS185048 ERX163009 ERR188329
## 4 TSI UNIGE NA20507.1.M_111124_7 ERS185412 ERX163158 ERR188288
## 5 TSI UNIGE NA20508.1.M_111124_2 ERS185362 ERX163159 ERR188021
## 6 TSI UNIGE NA20514.1.M_111124_4 ERS185217 ERX163062 ERR188356
files <- file.path(dir, "kallisto", samples$run, "abundance.tsv")
names(files) <- paste0("sample", 1:6)
all(file.exists(files))
## [1] TRUE
Transcripts need to be associated with gene IDs for gene-level
summarization. If that information is present in the files, we can
skip this step. But for kallisto, Salmon and Sailfish, the files only
provide the transcript ID. We first make a data.frame called
tx2gene
with two columns: 1) transcript ID and 2) gene ID. The column names do not
matter but this column order must be used. The transcript ID must be
the same one used in the abundance files.
Creating this tx2gene
data.frame can be accomplished from a TxDb object
and the select
function from the AnnotationDbi package. The
following code could be used to construct such a table:
library(TxDb.Hsapiens.UCSC.hg19.knownGene)
txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene
k <- keys(txdb, keytype = "GENEID")
df <- select(txdb, keys = k, keytype = "GENEID", columns = "TXNAME")
tx2gene <- df[, 2:1] # tx ID, then gene ID
Note: if you are using an Ensembl transcriptome, the easiest way to
create the tx2gene
data.frame is to use the
ensembldb packages.
The annotation packages can be found by version number, and use
the pattern EnsDb.Hsapiens.vXX
. The transcripts
function can
be used with return.type="DataFrame"
, in order to obtain
something like the df
object constructed in the code chunk above.
See the ensembldb package vignette for more details.
Here we read in a pre-constructed tx2gene
table:
tx2gene <- read.csv(file.path(dir, "tx2gene.csv"))
head(tx2gene)
## TXNAME GENEID
## 1 NM_130786 A1BG
## 2 NR_015380 A1BG-AS1
## 3 NM_001198818 A1CF
## 4 NM_001198819 A1CF
## 5 NM_001198820 A1CF
## 6 NM_014576 A1CF
The tximport package has a single function for importing
transcript-level estimates. The type
argument is used to specify
what software was used for estimation (“kallisto”, “salmon”,
“sailfish”, and “rsem” are implemented). A simple list with
matrices, “abundance”, “counts”, and “length”, is returned, where the
transcript level information is summarized to the gene-level. The
“length” matrix can be used to generate an offset matrix for
downstream gene-level differential analysis of count matrices, as
shown below.
While tximport works without any dependencies, it is much faster to
read in files using the readr package (version >= 0.2.2).
To use this, we pass the read_tsv
function to tximport
.
library(tximport)
library(readr)
txi <- tximport(files, type = "kallisto", tx2gene = tx2gene, reader = read_tsv)
names(txi)
## [1] "abundance" "counts" "length"
## [4] "countsFromAbundance"
head(txi$counts)
## sample1 sample2 sample3 sample4 sample5 sample6
## A1BG 108.581000 314.42400 110.450000 116.00000 85.80300 75.91360
## A1BG-AS1 86.163600 140.10700 129.994000 146.40800 136.92800 97.29540
## A1CF 9.003863 12.01096 3.005232 15.01082 24.01285 22.01611
## A2M 24.000000 2.00000 21.000000 6.00000 38.00000 8.00000
## A2M-AS1 1.000000 1.00000 1.000000 1.00000 0.00000 0.00000
## A2ML1 3.012760 1.01650 3.049480 2.04965 2.02477 3.04483
We could alternatively generate counts from abundances, using the
argument countsFromAbundance
, scaled to library size, "scaledTPM"
,
or additionally scaled using the average transcript length, averaged
over samples and to library size, "lengthScaledTPM"
. Using either
of these approaches, the counts are not correlated with length, and so
the length matrix should not be provided as an offset for
downstream analysis packages. For more details on these approaches,
see the article listed under citation("tximport")
.
We can avoid gene-level summarization by setting txOut=TRUE
, giving
the original transcript level estimates as a list of matrices.
txi.tx <- tximport(files, type = "kallisto", txOut = TRUE, tx2gene = tx2gene,
reader = read_tsv)
These matrices can then be summarized afterwards using the function
summarizeToGene
. This then gives the identical list of matrices as using
txOut=FALSE
(default) in the first tximport
call.
txi.sum <- summarizeToGene(txi.tx, tx2gene)
all.equal(txi$counts, txi.sum$counts)
## [1] TRUE
Salmon or Sailfish quant.sf
files can be imported by setting type to
"salmon"
or "sailfish"
.
files <- file.path(dir, "salmon", samples$run, "quant.sf")
names(files) <- paste0("sample", 1:6)
txi.salmon <- tximport(files, type = "salmon", tx2gene = tx2gene, reader = read_tsv)
head(txi.salmon$counts)
## sample1 sample2 sample3 sample4 sample5 sample6
## A1BG 109.232000 316.22400 110.638000 116.00000 86.38430 76.91630
## A1BG-AS1 83.969700 138.44900 119.274000 151.08300 123.98500 103.25100
## A1CF 9.030691 10.01847 5.019242 13.01820 25.21914 25.07356
## A2M 24.000000 2.00000 21.000000 6.00000 38.00000 8.00000
## A2M-AS1 1.000000 1.00000 1.000000 1.00000 0.00000 0.00000
## A2ML1 3.047950 1.02987 4.076160 1.04945 3.07761 5.12409
Likewise, RSEM sample.genes.results
files can be imported by setting
type to "rsem"
.
files <- file.path(dir, "rsem", samples$run, paste0(samples$run, ".genes.results"))
names(files) <- paste0("sample", 1:6)
txi.rsem <- tximport(files, type = "rsem", reader = read_tsv)
head(txi.rsem$counts)
## sample1 sample2 sample3 sample4 sample5 sample6
## A1BG 94.64 278.03 94.07 96.00 55.00 64.03
## A1BG-AS1 64.28 114.08 98.88 109.05 95.32 73.11
## A1CF 0.00 2.00 1.00 1.00 0.00 1.00
## A2M 24.00 2.00 18.00 4.00 35.00 8.00
## A2M-AS1 1.00 1.00 1.00 0.00 0.00 0.00
## A2ML1 0.84 2.89 0.00 1.00 2.00 3.11
Note: there are two suggested ways of importing estimates for use
with gene-level differential expression methods. The first method,
which we show below for edgeR and for DESeq2, is to use the
estimated counts from the quantification tools, and additionally to
use the transcript-level abundance estimates to calculate an offset
that corrects for changes to the average transcript length across
samples. The code examples below accomplish these steps for you. The
second method is to use the tximport
argument
countsFromAbundance="lengthScaledTPM"
or "scaledTPM"
, and then to
use the count matrix txi$counts
directly as you would a regular
count matrix with these software.
An example of creating a DGEList
for use with edgeR:
library(edgeR)
cts <- txi$counts
normMat <- txi$length
normMat <- normMat/exp(rowMeans(log(normMat)))
library(edgeR)
o <- log(calcNormFactors(cts/normMat)) + log(colSums(cts/normMat))
y <- DGEList(cts)
y$offset <- t(t(log(normMat)) + o)
# y is now ready for estimate dispersion functions see edgeR User's Guide
An example of creating a DESeqDataSet
for use with DESeq2:
library(DESeq2)
The user should make sure the rownames of sampleTable
align with the
colnames of txi$counts
, if there are colnames. The best practice is
to read sampleTable
from a CSV file, and to construct files
from a
column of sampleTable
, as was shown in the tximport examples above.
sampleTable <- data.frame(condition = factor(rep(c("A", "B"), each = 3)))
rownames(sampleTable) <- colnames(txi$counts)
dds <- DESeqDataSetFromTximport(txi, sampleTable, ~condition)
# dds is now ready for DESeq() see DESeq2 vignette
An example for use with limma-voom. limma-voom does not use the offset
matrix stored in y$offset
, so we recommend using the scaled counts
generated from abundances, either "scaledTPM"
or
"lengthScaledTPM"
:
files <- file.path(dir, "kallisto", samples$run, "abundance.tsv")
names(files) <- paste0("sample", 1:6)
txi <- tximport(files, type = "kallisto", tx2gene = tx2gene, reader = read_tsv,
countsFromAbundance = "lengthScaledTPM")
library(limma)
y <- DGEList(txi$counts)
y <- calcNormFactors(y)
design <- model.matrix(~condition, data = sampleTable)
v <- voom(y, design)
# v is now ready for lmFit() see limma User's Guide
The development of tximport has benefited from contributions and suggestions from:
Matt Shirley, Stephen Turner, Rob Patro, Richard Smith-Unna, Rory Kirchner, Martin Morgan
sessionInfo()
## R version 3.3.1 (2016-06-21)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 16.04.1 LTS
##
## locale:
## [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C
## [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
## [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats4 parallel stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] DESeq2_1.14.0
## [2] SummarizedExperiment_1.4.0
## [3] edgeR_3.16.0
## [4] limma_3.30.0
## [5] readr_1.0.0
## [6] tximport_1.2.0
## [7] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
## [8] GenomicFeatures_1.26.0
## [9] AnnotationDbi_1.36.0
## [10] Biobase_2.34.0
## [11] GenomicRanges_1.26.0
## [12] GenomeInfoDb_1.10.0
## [13] IRanges_2.8.0
## [14] S4Vectors_0.12.0
## [15] BiocGenerics_0.20.0
## [16] tximportData_1.1.2
## [17] knitr_1.14
##
## loaded via a namespace (and not attached):
## [1] genefilter_1.56.0 locfit_1.5-9.1
## [3] splines_3.3.1 lattice_0.20-34
## [5] colorspace_1.2-7 rtracklayer_1.34.0
## [7] chron_2.3-47 survival_2.39-5
## [9] XML_3.98-1.4 foreign_0.8-67
## [11] DBI_0.5-1 BiocParallel_1.8.0
## [13] RColorBrewer_1.1-2 plyr_1.8.4
## [15] stringr_1.1.0 zlibbioc_1.20.0
## [17] Biostrings_2.42.0 munsell_0.4.3
## [19] gtable_0.2.0 evaluate_0.10
## [21] latticeExtra_0.6-28 geneplotter_1.52.0
## [23] biomaRt_2.30.0 Rcpp_0.12.7
## [25] xtable_1.8-2 acepack_1.3-3.3
## [27] scales_0.4.0 formatR_1.4
## [29] Hmisc_3.17-4 annotate_1.52.0
## [31] XVector_0.14.0 Rsamtools_1.26.0
## [33] gridExtra_2.2.1 ggplot2_2.1.0
## [35] stringi_1.1.2 grid_3.3.1
## [37] tools_3.3.1 bitops_1.0-6
## [39] magrittr_1.5 RCurl_1.95-4.8
## [41] tibble_1.2 RSQLite_1.0.0
## [43] Formula_1.2-1 cluster_2.0.5
## [45] Matrix_1.2-7.1 data.table_1.9.6
## [47] assertthat_0.1 rpart_4.1-10
## [49] GenomicAlignments_1.10.0 nnet_7.3-12