
MSnbase: labelled and label-free MS2 data pre-processing,
visualisation and quantification.

Laurent Gatto∗and Sebastian Gibb

January 4, 2017

Abstract

This vignette describes the functionality implemented in the MSnbase package. MSnbase aims
at (1) facilitating the import, processing, visualisation and quantification of mass spectrometry
data into the Renvironment [1] by providing specific data classes and methods and (2) enabling
the utilisation of throughput-high data analysis pipelines provided by the Bioconductor [2] project.
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Foreword

MSnbase is under active developed; current functionality is evolving and new features will be added.
This software is free and open-source software. If you use it, please support the project by citing it in
publications:

Laurent Gatto and Kathryn S. Lilley. MSnbase - an R/Bioconductor package for isobaric
tagged mass spectrometry data visualization, processing and quantitation. Bioinformatics
28, 288-289 (2011).

Questions and bugs

You are welcome to contact me directly about MSnbase. For bugs, typos, suggestions or other questions,
please file an issue in our tracking system (https://github.com/lgatto/MSnbase/issues) providing as
much information as possible, a reproducible example and the output of sessionInfo().

If you wish to reach a broader audience for general questions about proteomics analysis using R, you
may want to use the Bioconductor support site: https://support.bioconductor.org/.

http://bioconductor.org/packages/MSnbase
https://github.com/lgatto/MSnbase/issues
https://support.bioconductor.org/
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1 Introduction

MSnbase [3] aims are providing a reproducible research framework to proteomics data analysis. It should
allow researcher to easily mine mass spectrometry data, explore the data and its statistical properties
and visually display these.

MSnbase also aims at being compatible with the infrastructure implemented in Bioconductor, in partic-
ular Biobase. As such, classes developed specifically for proteomics mass spectrometry data are based
on the eSet and ExpressionSet classes. The main goal is to assure seamless compatibility with existing
meta data structure, accessor methods and normalisation techniques.

This vignette illustrates MSnbase utility using a dummy data sets provided with the package without
describing the underlying data structures. More details can be found in the package, classes, method
and function documentations. A description of the classes is provided in the MSnbase-development

vignette.

Speed and memory requirements Raw mass spectrometry file are generally several hundreds of
MB large and most of this is used for binary raw spectrum data. As such, data containers can easily
grow very large and thus require large amounts of RAM. This requirement is being tackled by avoiding
to load the raw data into memory and using on-disk random access to the content of mzXML/mzML data
files on demand. When focusing on reporter ion quantitation, a direct solution for this is to trim the
spectra using the trimMz method to select the area of interest and thus substantially reduce the size
of the Spectrum objects. This is illustrated in section 6.2 on page 25 of the MSnbase-demo vignette.

The independent handling of spectra is ideally suited for parallel processing. The quantify method
now performs reporter peaks quantitation in parallel. More functions are being updated.

2 Data structure and content

2.1 Importing experiments

MSnbase is able to import raw MS data stored in one of the XML-based formats as well as peak lists in
the mfg format1

Raw data The XML-based formats, mzXML [4], mzData [5] and mzML [6] can be imported with the
readMSData function, as illustrated below (see ?readMSData for more details).

file <- dir(system.file(package = "MSnbase", dir = "extdata"),

full.names = TRUE, pattern = "mzXML$")

rawdata <- readMSData(file, msLevel = 2, verbose = FALSE)

1Mascot Generic Format – http://www.matrixscience.com/help/data file help.html#GEN

http://bioconductor.org/packages/MSnbase
http://bioconductor.org/packages/MSnbase
http://bioconductor.org/packages/MSnbase
http://bioconductor.org/packages/Biobase
http://bioconductor.org/packages/MSnbase
http://bioconductor.org/packages/MSnbase
http://www.matrixscience.com/help/data_file_help.html#GEN
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Only spectra of a give MS level can be loaded at a time by setting the msLevel parameter accordingly.
In this document, we will use the itraqdata data set, provided with MSnbase. It includes feature
metadata, accessible with the fData accessor. The metadata includes identification data for the 55
MS2 spectra.

MSnbase 2.0 The new major version of MSnbase uses a new on-disk data storage model (see
the benchmarking vignette for more details). The new data backend is compatible with the orignal
in-memory model. To make use of the new infrastructure, read your raw data using readMSData2,
rather than readMSData. All existing operations work irrespective of the backend.

Peak lists Peak lists can often be exported after spectrum processing from vendor-specific software
and are also used as input to search engines. Peak lists in mgf format can be imported with the function
readMgfData (see ?readMgfData for details) to create experiment objects. Experiments or individual
spectra can be exported to an mgf file with the writeMgfData methods (see ?writeMgfData for details
and examples).

Experiments with multiple runs Although it is possible to load and process multiple files serially
and later merge the resulting quantitation data as show in section 13 (page 50), it is also feasible to
load several raw data files at once. Here, we report the analysis of an LC-MSMS experiment were 14
liquid chromatography (LC) fractions were loaded using readMSData on a 32-cores servers with 128
Gb of RAM. It took about 90 minutes to read the 14 uncentroided mzXML raw files (4.9 Gb on disk in
total) and create a 3.3 Gb raw data object (an MSnExp instance, see next section). Quantitation of 9
reporter ions (iTRAQ9 object, see 2.4) for 88690 features was performed in parallel on 16 processors
and took 76 minutes. The resulting quantitation data was only 22.1 Mb and could easily be further
processed and analysed on a standard laptop computer.

Since verions 1.13.5, parallel support is provided by the BiocParallel and various backends including
multicore (forking), simple networf network of workstations (SNOW) using sockets, forking or MPI
among others.

See also section 7.2 to import quantitative data stored in spreadsheets into Rfor further processing using
MSnbase. The MSnbase-io vignette gives a general overview of MSnbase’s input/ouput capabilites.

2.2 MS experiments

Raw data is contained in MSnExp objects, that stores all the spectra of an experiment, as defined by
one or multiple raw data files.

library("MSnbase")

itraqdata

http://bioconductor.org/packages/MSnbase
http://bioconductor.org/packages/MSnbase
http://bioconductor.org/packages/MSnbase
http://bioconductor.org/packages/BiocParallel
http://bioconductor.org/packages/MSnbase
http://bioconductor.org/packages/MSnbase
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## Object of class "MSnExp" (in memory)

## Object size in memory: 1.88 Mb

## - - - Spectra data - - -

## MS level(s): 2

## Number of spectra: 55

## MSn retention times: 19:9 - 50:18 minutes

## - - - Processing information - - -

## Data loaded: Wed May 11 18:54:39 2011

## Updated from version 0.3.0 to 0.3.1 [Fri Jul 8 20:23:25 2016]

## MSnbase version: 1.1.22

## - - - Meta data - - -

## phenoData

## rowNames: 1

## varLabels: sampleNames sampleNumbers

## varMetadata: labelDescription

## Loaded from:

## dummyiTRAQ.mzXML

## protocolData: none

## featureData

## featureNames: X1 X10 ... X9 (55 total)

## fvarLabels: spectrum ProteinAccession ProteinDescription PeptideSequence

## fvarMetadata: labelDescription

## experimentData: use 'experimentData(object)'

head(fData(itraqdata))

## spectrum ProteinAccession ProteinDescription PeptideSequence

## X1 1 BSA bovine serum albumin NYQEAK

## X10 10 ECA1422 glucose-1-phosphate cytidylyltransferase VTLVDTGEHSMTGGR

## X11 11 ECA4030 50S ribosomal subunit protein L4 SPIWR

## X12 12 ECA3882 chaperone protein DnaK TAIDDALK

## X13 13 ECA1364 succinyl-CoA synthetase alpha chain SILINK

## X14 14 ECA0871 NADP-dependent malic enzyme DFEVVNNESDPR

As illustrated above, showing the experiment textually displays it’s content:

• Information about the raw data, i.e. the spectra.
• Specific information about the experiment processing2 and package version. This slot can be

accessed with the processingData method.
• Other meta data, including experimental phenotype, file name(s) used to import the data, protocol

data, information about features (individual spectra here) and experiment data. Most of these
are implemented as in the eSet class and are described in more details in their respective manual
pages. See ?MSnExp and references therein for additional background information.
The experiment meta data associated with an MSnExp experiment is of class MIAPE. It stores

2this part will be automatically updated when the object is modified with it’s ad hoc methods, as illustrated later

http://bioconductor.org/packages/MSnbase
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general information about the experiment as well as MIAPE (Minimum Information About a Pro-
teomics Experiment) information [7, 8]. This meta-data can be accessed with the experimentData
method. When available, a summary of MIAPE-MS data can be printed with the msInfo method.
See ?MIAPE for more details.

2.3 Spectra objects

The raw data is composed of the 55 MS spectra. The spectra are named individually (X1, X10,
X11, X12, X13, X14, ...) and stored in a environment. They can be accessed individually with
itraqdata[["X1"]] or itraqdata[[1]], or as a list with spectra(itraqdata). As we have loaded
our experiment specifying msLevel=2, the spectra will all be of level 2 (or higher, if available).

sp <- itraqdata[["X1"]]

sp

## Object of class "Spectrum2"

## Precursor: 520.7833

## Retention time: 19:9

## Charge: 2

## MSn level: 2

## Peaks count: 1922

## Total ion count: 26413754

Attributes of individual spectra or of all spectra of an experiment can be accessed with their respective
methods: precursorCharge for the precursor charge, rtime for the retention time, mz for the MZ
values, intensity for the intensities, ... see the Spectrum, Spectrum1 and Spectrum2 manuals for
more details.

peaksCount(sp)

## [1] 1922

head(peaksCount(itraqdata))

## X1 X10 X11 X12 X13 X14

## 1922 1376 1571 2397 2574 1829

rtime(sp)

## [1] 1149.31

head(rtime(itraqdata))

## X1 X10 X11 X12 X13 X14

## 1149.31 1503.03 1663.61 1663.86 1664.08 1664.32

http://bioconductor.org/packages/MSnbase
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2.4 Reporter ions

Reporter ions are defined with the ReporterIons class. Specific peaks of interest are defined by a MZ
value, a with around the expected MZ and a name (and optionally a colour for plotting, see section 3).
ReporterIons instances are required to quantify reporter peaks in MSnExp experiments. Instances for
the most commonly used isobaric tags like iTRAQ 4-plex and 8-plex and TMT 6- and 10-plex tags are
already defined in MSnbase. See ?ReporterIons for details about how to generate new ReporterIons
objects.

iTRAQ4

## Object of class "ReporterIons"

## iTRAQ4: '4-plex iTRAQ' with 4 reporter ions

## - 114.1112 +/- 0.05 (red)

## - 115.1083 +/- 0.05 (green)

## - 116.1116 +/- 0.05 (blue)

## - 117.115 +/- 0.05 (yellow)

TMT10

## Object of class "ReporterIons"

## TMT10HCD: '10-plex TMT HCD' with 10 reporter ions

## - 126.1277 +/- 0.002 (#8DD3C7)

## - 127.1248 +/- 0.002 (#FFFFB3)

## - 127.1311 +/- 0.002 (#BEBADA)

## - 128.1281 +/- 0.002 (#FB8072)

## - 128.1344 +/- 0.002 (#80B1D3)

## - 129.1315 +/- 0.002 (#FDB462)

## - 129.1378 +/- 0.002 (#B3DE69)

## - 130.1348 +/- 0.002 (#FCCDE5)

## - 130.1411 +/- 0.002 (#D9D9D9)

## - 131.1382 +/- 0.002 (#BC80BD)

http://bioconductor.org/packages/MSnbase
http://bioconductor.org/packages/MSnbase
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3 Plotting raw data

3.1 MS data space

The MSmap class can be used to isolate specific slices of interest from a complete MS acquisition by
specifying m/z and retention time ranges. One needs a raw data file in a format supported by mzR ’s
openMSfile (mzML, mzXML, ...). Below we first download a raw data file from the PRIDE repository
and create3 an MSmap containing all the MS1 spectra between acquired between 30 and 35 minutes
and peaks between 521 and 523 m/z. See ?MSmap for details.

## downloads the data

library("rpx")

px1 <- PXDataset("PXD000001")

mzf <- pxget(px1, 6)

## reads the data

ms <- openMSfile(mzf)

hd <- header(ms)

## a set of spectra of interest: MS1 spectra eluted

## between 30 and 35 minutes retention time

ms1 <- which(hd$msLevel == 1)

rtsel <- hd$retentionTime[ms1] / 60 > 30 &

hd$retentionTime[ms1] / 60 < 35

## the map

M <- MSmap(ms, ms1[rtsel], 521, 523, .005, hd, zeroIsNA = TRUE)

M

## Object of class "MSmap"

## Map [75, 401]

## [1] Retention time: 30:1 - 34:58

## [2] M/Z: 521 - 523 (res 0.005)

The M map object can be rendered as a heatmap with plot, as shown on figure 1.

One can also render the data in 3 dimension with the plot3D function, as show on figure 2.

To produce figure 3, we create a second MSmap object containing the first two MS1 spectra of the
first map (object M above) and all intermediate MS2 spectra and display m/z values between 100 and
1000.

i <- ms1[which(rtsel)][1]

j <- ms1[which(rtsel)][2]

3This code chunk is not evaluated to avoid repeated downloaded of the raw data file. The M map is provided with
the package and loaded to evaluate subsequent code chunks.

http://bioconductor.org/packages/MSnbase
http://bioconductor.org/packages/mzR
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plot(M, aspect = 1, allTicks = FALSE)

Retention time

M
/Z
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521.22
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521.665
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522.33

522.555

522.775

523

30:1 30:33 31:5 31:37 32:9 32:4533:1733:4934:22 34:58

3

4

5
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7

8

Figure 1: Heat map of a chunk of the MS data.

M2 <- MSmap(ms, i:j, 100, 1000, 1, hd)

M2

## Object of class "MSmap"

## Map [12, 901]

## [1] Retention time: 30:1 - 30:5

## [2] M/Z: 100 - 1000 (res 1)

3.2 MS Spectra

Spectra can be plotted individually or as part of (subset) experiments with the plot method. Full spectra
can be plotted (using full=TRUE), specific reporter ions of interest (by specifying with reporters with
reporters=iTRAQ4 for instance) or both (see figure 4).

http://bioconductor.org/packages/MSnbase
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plot3D(M)
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Figure 2: 3 dimensional represention of MS map data.

It is also possible to plot all spectra of an experiment (figure 5). Lets start by subsetting the itraqdata
experiment using the protein accession numbers included in the feature metadata, and keep the 6 from
the BSA protein.

sel <- fData(itraqdata)$ProteinAccession == "BSA"

bsa <- itraqdata[sel]

bsa

## Object of class "MSnExp" (in memory)

## Object size in memory: 0.1 Mb

## - - - Spectra data - - -

## MS level(s): 2

## Number of spectra: 3

## MSn retention times: 19:9 - 36:17 minutes

## - - - Processing information - - -

## Data loaded: Wed May 11 18:54:39 2011

## Updated from version 0.3.0 to 0.3.1 [Fri Jul 8 20:23:25 2016]

## Data [logically] subsetted 3 spectra: Wed Jan 04 19:09:33 2017

## MSnbase version: 1.1.22

## - - - Meta data - - -

## phenoData

http://bioconductor.org/packages/MSnbase
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plot3D(M2)
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Figure 3: 3 dimensional represention of MS map data. MS1 and MS2 spectra are coloured in blue and
magenta respectively.

## rowNames: 1

## varLabels: sampleNames sampleNumbers

## varMetadata: labelDescription

## Loaded from:

## dummyiTRAQ.mzXML

## protocolData: none

## featureData

## featureNames: X1 X52 X53

## fvarLabels: spectrum ProteinAccession ProteinDescription PeptideSequence

## fvarMetadata: labelDescription

## experimentData: use 'experimentData(object)'

as.character(fData(bsa)$ProteinAccession)

## [1] "BSA" "BSA" "BSA"

These can then be visualised together by plotting the MSnExp object, as illustrated on figure 5.

Customising your plots The MSnbase plot methods have a logical plot parameter (default is
TRUE), that specifies if the plot should be printed to the current device. A plot object is also (invisibly)

http://bioconductor.org/packages/MSnbase
http://bioconductor.org/packages/MSnbase
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plot(sp, reporters = iTRAQ4, full = TRUE)
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Figure 4: Raw MS2 spectrum with details about reporter ions.

returned, so that it can be saved as a variable for later use or for customisation.

MSnbase uses the ggplot2 package to generate plots, which can subsequently easily be customised.
More details about ggplot2 can be found in [9] (especially chapter 8) and on http://had.co.nz/ggplot2/.
Finally, if a plot object has been saved in a variable p, it is possible to obtain a summary of the object
with summary(p). To view the data frame used to generate the plot, use p@data.

http://bioconductor.org/packages/MSnbase
http://bioconductor.org/packages/MSnbase
http://cran.fhcrc.org/web/packages/ggplot2/index.html
http://cran.fhcrc.org/web/packages/ggplot2/index.html
http://had.co.nz/ggplot2/
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plot(bsa, reporters = iTRAQ4, full = FALSE) + theme_gray(8)
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Figure 5: Experiment-wide raw MS2 spectra. The y-axes of the individual spectra are automatically
rescaled to the same range. See section 8.2 to rescale peaks identically.

http://bioconductor.org/packages/MSnbase
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4 Tandem MS identification data

4.1 Adding identification data

MSnbase is able to integrate identification data from mzIdentML [10] files.

We first load two example files shipped with the MSnbase containing raw data (as above) and the corre-
sponding identification results respectively. The raw data is read with the readMSData, as demonstrated
above. As can be seen, the default feature data only contain spectra numbers4.

## find path to a mzXML file

quantFile <- dir(system.file(package = "MSnbase", dir = "extdata"),

full.name = TRUE, pattern = "mzXML$")

## find path to a mzIdentML file

identFile <- dir(system.file(package = "MSnbase", dir = "extdata"),

full.name = TRUE, pattern = "dummyiTRAQ.mzid")

## create basic MSnExp

msexp <- readMSData(quantFile, verbose = FALSE)

head(fData(msexp), n = 2)

## spectrum

## X1.1 1

## X2.1 2

The addIdentificationData method takes an MSnExp instance (or an MSnSet instance storing
quantitation data, see section 7.1) as first argument and one or multiple mzIdentML file names (as a
character vector) as second one and updates the MSnExp feature data using the identification data
read from the mzIdentML file(s).

## add identification information

msexp <- addIdentificationData(msexp, id = identFile,

verbose = FALSE)

head(fData(msexp), n = 2)

## spectrum scan number(s) passthreshold rank calculatedmasstocharge

## X1.1 1 1 TRUE 1 645.0375

## X2.1 2 2 TRUE 1 546.9633

## experimentalmasstocharge chargestate ms-gf:denovoscore ms-gf:evalue ms-gf:rawscore

## X1.1 645.3741 3 77 79.36958 -39

## X2.1 546.9586 3 39 13.46615 -30

## ms-gf:specevalue assumeddissociationmethod isotopeerror isdecoy post pre end start

## X1.1 5.527468e-05 CID 1 FALSE A R 186 170

## X2.1 9.399048e-06 CID 0 FALSE A K 62 50

## accession length

## X1.1 ECA0984;ECA3829 231

4More data about the spectra is of course available in an MSnExp object, as illustrated in the previous sections. See
also ?pSet and ?MSnExp for more details.

http://bioconductor.org/packages/MSnbase
http://bioconductor.org/packages/MSnbase
http://bioconductor.org/packages/MSnbase
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## X2.1 ECA1028 275

## description

## X1.1 DNA mismatch repair protein;acetolactate synthase isozyme III large subunit

## X2.1 2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase

## pepseq modified modification idFile databaseFile

## X1.1 VESITARHGEVLQLRPK FALSE NA dummyiTRAQ.mzid erwinia_carotovora.fasta

## X2.1 IDGQWVTHQWLKK FALSE NA dummyiTRAQ.mzid erwinia_carotovora.fasta

## nprot npep.prot npsm.prot npsm.pep

## X1.1 2 1 1 1

## X2.1 1 1 1 1

Finally we can use idSummary to summarise the percentage of identified features per quantitation/identification
pairs.

idSummary(msexp)

## spectrumFile idFile coverage

## 1 dummyiTRAQ.mzXML dummyiTRAQ.mzid 0.6

When identification data is present, and hence peptide sequences, one can annotation fragment peaks
on the MS2 figure by passing the peptide sequence to the plot method.

itraqdata2 <- pickPeaks(itraqdata, verbose=FALSE)

i <- 14

s <- as.character(fData(itraqdata2)[i, "PeptideSequence"])

The fragment ions are calculated with the calculateFragments, described in section 4.3 on page ??.

4.2 Filtering identification data

One can remove the features that have not been identified using removeNoId. This function uses by
default the pepseq feature variable to search the presence of missing data (NA values) and then filter
these non-identified spectra.

fData(msexp)$pepseq

## [1] "VESITARHGEVLQLRPK" "IDGQWVTHQWLKK" NA NA

## [5] "LVILLFR"

msexp <- removeNoId(msexp)

fData(msexp)$pepseq

## [1] "VESITARHGEVLQLRPK" "IDGQWVTHQWLKK" "LVILLFR"

idSummary(msexp)

## spectrumFile idFile coverage

## 1 dummyiTRAQ.mzXML dummyiTRAQ.mzid 1

http://bioconductor.org/packages/MSnbase
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plot(itraqdata2[[i]], s, main = s)
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Figure 6: Annotated MS2 spectrum.

Similarly, the removeMultipleAssignment method can be used to filter out non-unique features, i.e.
that have been assigned to protein groups with more than one member. This function uses by default
the nprot feature variable.

Note that removeNoId and removeMultipleAssignment methods can also be called on MSnExp
instances.

4.3 Calculate Fragments

MSnbase is able to calculate theoretical peptide fragments via calculateFragments.

calculateFragments("ACEK",

type = c("a", "b", "c", "x", "y", "z"))

## mz ion type pos z seq

http://bioconductor.org/packages/MSnbase
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## 1 44.04947 a1 a 1 1 A

## 2 204.08012 a2 a 2 1 AC

## 3 333.12271 a3 a 3 1 ACE

## 4 461.21767 a4 a 4 1 ACEK

## 5 72.04439 b1 b 1 1 A

## 6 232.07504 b2 b 2 1 AC

## 7 361.11763 b3 b 3 1 ACE

## 8 489.21259 b4 b 4 1 ACEK

## 9 89.07094 c1 c 1 1 A

## 10 249.10159 c2 c 2 1 AC

## 11 378.14417 c3 c 3 1 ACE

## 12 506.23913 c4 c 4 1 ACEK

## 13 173.09207 x1 x 1 1 K

## 14 302.13466 x2 x 2 1 EK

## 15 462.16531 x3 x 3 1 CEK

## 16 533.20242 x4 x 4 1 ACEK

## 17 147.11280 y1 y 1 1 K

## 18 276.15539 y2 y 2 1 EK

## 19 436.18604 y3 y 3 1 CEK

## 20 507.22315 y4 y 4 1 ACEK

## 21 130.08625 z1 z 1 1 K

## 22 259.12884 z2 z 2 1 EK

## 23 419.15949 z3 z 3 1 CEK

## 24 490.19660 z4 z 4 1 ACEK

## 25 269.13700 x2_ x_ 2 1 EK

## 26 243.15774 y2_ y_ 2 1 EK

## 27 226.13119 z2_ z_ 2 1 EK

## 28 140.09441 x1_ x_ 1 1 K

## 29 429.16765 x3_ x_ 3 1 CEK

## 30 500.20476 x4_ x_ 4 1 ACEK

## 31 114.11515 y1_ y_ 1 1 K

## 32 403.18839 y3_ y_ 3 1 CEK

## 33 474.22550 y4_ y_ 4 1 ACEK

## 34 97.08860 z1_ z_ 1 1 K

## 35 386.16184 z3_ z_ 3 1 CEK

## 36 457.19895 z4_ z_ 4 1 ACEK

It is also possible to match these fragments against an Spectrum2 object.

pepseq <- fData(msexp)$pepseq[1]

calculateFragments(pepseq, msexp[[1]], type=c("b", "y"))

## mz intensity ion type pos z seq error

## 1 100.0005 0.00 b1 b 1 1 V 0.07522824

## 2 114.1109 706555.69 y1_ y_ 1 1 K 0.00425275

## 3 429.2563 1972344.00 b4 b 4 1 VESI -0.02189010
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## 4 513.3047 2574137.00 y4 y 4 1 LRPK 0.04598246

## 5 754.4504 537234.81 y6 y 6 1 LQLRPK 0.04293155

## 6 836.6139 82364.42 y7* y* 7 1 VLQLRPK -0.07865960

## 7 982.5354 500159.06 y8 y 8 1 EVLQLRPK 0.06897061

## 8 1080.5867 209363.69 b10 b 10 1 VESITARHGE -0.04344392

## 9 1656.9252 0.00 b15_ b_ 15 1 VESITARHGEVLQLR 0.01662010

## 10 1672.8380 76075.02 b15* b* 15 1 VESITARHGEVLQLR 0.07488430

## 11 1688.0375 136748.83 y15* y* 15 1 SITARHGEVLQLRPK -0.07729359

## 12 1882.0074 149649.14 b17_ b_ 17 1 VESITARHGEVLQLRPK 0.08206471
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5 Quality control

The current section is not executed dynamically for package size and processing time constrains. The
figures and tables have been generated with the respective methods and included statically in the
vignette for illustration purposes.

MSnbase allows easy and flexible access to the data, which allows to visualise data features to assess it’s
quality. Some methods are readily available, although many QC approaches will be experiment specific
and users are encourage to explore their data.

The plot2d method takes one MSnExp instance as first argument to produce retention time vs.
precursor MZ scatter plots. Points represent individual MS2 spectra and can be coloured based on
precursor charge (with second argument z="charge"), total ion count (z="ionCount"), number of
peaks in the MS2 spectra z="peaks.count") or, when multiple data files were loaded, file z="file"),
as illustrated on figure 7. The lower right panel is produced for only a subset of proteins. See the
method documentation for more details.

Figure 7: Illustration of the plot2d output.

The plotDensity method illustrates the distribution of several parameters of interest (see figure 8).
Similarly to plot2d, the first argument is an MSnExp instance. The second is one of precursor.mz,
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peaks.count or ionCount, whose density will be plotted. An optional third argument specifies whether
the x axes should be logged.

Figure 8: Illustration of the plotDensity output.

The plotMzDelta method5 implements the m/z delta plot from [11] The m/z delta plot illustrates
the suitability of MS2 spectra for identification by plotting the m/z differences of the most intense
peaks. The resulting histogram should optimally shown outstanding bars at amino acid residu masses.
More details and parameters are described in the method documentation (?plotMzDelta). Figure 9
has been generated using the PRIDE experiment 12011, as in [11].

In section 12 on page 48, we illustrate how to assess incomplete reporter ion dissociation.

5The code to generate the histograms has been contributed by Guangchuang Yu from Jinan University, China.
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Histogram of Mass Delta Distributions for PRIDE experiment 12011
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Figure 9: Illustration of the plotMzDelta output for the PRIDE experiment 12011, as in figure 4A
from [11].
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6 Raw data processing

6.1 Cleaning spectra

There are several methods implemented to perform basic raw data processing and manipulation. Low
intensity peaks can be set to 0 with the removePeaks method from spectra or whole experiments. The
intensity threshold below which peaks are removed is defined by the t parameter. t can be specified
directly as a numeric. The default value is the character "min", that will remove all peaks equal to
the lowest non null intensity in any spectrum. We observe the effect of the removePeaks method by
comparing total ion count (i.e. the total intensity in a spectrum) with the ionCount method before
(object itraqdata) and after (object experiment) for spectrum X55. The respective spectra are
shown on figure 10 (page 24).

experiment <- removePeaks(itraqdata, t = 400, verbose = FALSE)

## total ion current

ionCount(itraqdata[["X55"]])

## [1] 555408.8

ionCount(experiment[["X55"]])

## [1] 499769.6
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Figure 10: Same spectrum before (left) and after setting peaks ¡= 400 to 0.

Unlike the name might suggest, the removePeaks method does not actually remove peaks from the
spectrum; they are set to 0. This can be checked using the peaksCount method, that returns the
number of peaks (including 0 intensity peaks) in a spectrum. To effectively remove 0 intensity peaks
from spectra, and reduce the size of the data set, one can use the clean method. The effect of the
removePeaks and clean methods are illustrated on figure 11 on page 27.
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## number of peaks

peaksCount(itraqdata[["X55"]])

## [1] 1726

peaksCount(experiment[["X55"]])

## [1] 1726

experiment <- clean(experiment, verbose = FALSE)

peaksCount(experiment[["X55"]])

## [1] 442

6.2 Focusing on specific MZ values

Another useful manipulation method is trimMz, that takes as parameters and MSnExp (or a Spectrum)
and a numeric mzlim. MZ values smaller then min(mzlim) or greater then max(mzmax) are discarded.
This method is particularly useful when one wants to concentrate on a specific MZ range, as for reporter
ions quantification, and generally results in substantial reduction of data size. Compare the size of the
full trimmed experiment to the original 1.88 Mb.

range(mz(itraqdata[["X55"]]))

## [1] 100.0002 977.6636

experiment <- filterMz(experiment, mzlim = c(112,120))

range(mz(experiment[["X55"]]))

## [1] 100.0002 977.6636

experiment

## Object of class "MSnExp" (in memory)

## Object size in memory: 1.17 Mb

## - - - Spectra data - - -

## MS level(s): 2

## Number of spectra: 55

## MSn retention times: 19:9 - 50:18 minutes

## - - - Processing information - - -

## Data loaded: Wed May 11 18:54:39 2011

## Updated from version 0.3.0 to 0.3.1 [Fri Jul 8 20:23:25 2016]

## Curves <= 400 set to '0': Wed Jan 04 19:09:39 2017

## Spectra cleaned: Wed Jan 04 19:09:41 2017

## MSnbase version: 1.1.22

## - - - Meta data - - -

## phenoData

## rowNames: 1

## varLabels: sampleNames sampleNumbers
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## varMetadata: labelDescription

## Loaded from:

## dummyiTRAQ.mzXML

## protocolData: none

## featureData

## featureNames: X1 X10 ... X9 (55 total)

## fvarLabels: spectrum ProteinAccession ProteinDescription PeptideSequence

## fvarMetadata: labelDescription

## experimentData: use 'experimentData(object)'

As can be seen above, all processing performed on the experiment is recorded and displayed as integral
part of the experiment object.

6.3 Spectrum processing

MSnExp and Spectrum2 instances also support standard MS data processing such as smoothing and
peak picking, as described in the smooth and pickPeak manual pages. The methods that either single
spectra of experiments, process the spectrum/spectra, and return a updated, processed, object. The
implementations originate from the MALDIquant package [12].

http://bioconductor.org/packages/MSnbase
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Figure 11: This figure illustrated the effect or the removePeaks and clean methods. The left-most
spectrum displays two peaks, of max height 3 and 7 respectively. The middle spectrum shows the
result of calling removePeaks with argument t=3, which sets all data points of the first peak, whose
maximum height is smaller or equal to t to 0. The second peak is unaffected. Calling clean after
removePeaks effectively deletes successive 0 intensities from the spectrum, as shown on the right plot.
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7 MS2 isobaric tagging quantitation

7.1 Reporter ions quantitation

Quantitation is performed on fixed peaks in the spectra, that are specified with an ReporterIons object.
A specific peak is defined by it’s expected mz value and is searched for within mz ± width. If no data
is found, NA is returned.

mz(iTRAQ4)

## [1] 114.1112 115.1083 116.1116 117.1150

width(iTRAQ4)

## [1] 0.05

The quantify method takes the following parameters: an MSnExp experiment, a character describing
the quantification method, the reporters to be quantified and a strict logical defining whether data
points ranging outside of mz ± width should be considered for quantitation. Additionally, a progress
bar can be displaying when setting the verbose parameter to TRUE. Three quantification methods are
implemented, as illustrated on figure 12: trapezoidation returns the area under the peak of interest,
max returns the apex of the peak and sum returns the sum of all intensities of the peak. See ?quantify

for more details.

The quantify method returns MSnSet objects, that extend the well-known eSet class defined in the
Biobase package. MSnSet instances are very similar to ExpressionSet objects, except for the experiment
meta-data that captures MIAPE specific information. The assay data is a matrix of dimensions n×m,
where m is the number of features/spectra originally in the MSnExp used as parameter in quantify

and m is the number of reporter ions, that can be accessed with the exprs method. The meta data is
directly inherited from the MSnExp instance.

qnt <- quantify(experiment,

method = "trap",

reporters = iTRAQ4,

strict = FALSE,

verbose = FALSE)

qnt

## MSnSet (storageMode: lockedEnvironment)

## assayData: 55 features, 4 samples

## element names: exprs

## protocolData: none

## phenoData

## sampleNames: iTRAQ4.114 iTRAQ4.115 iTRAQ4.116 iTRAQ4.117

## varLabels: mz reporters

## varMetadata: labelDescription

## featureData

http://bioconductor.org/packages/MSnbase
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## featureNames: X1 X10 ... X9 (55 total)

## fvarLabels: spectrum ProteinAccession ... collision.energy (15 total)

## fvarMetadata: labelDescription

## experimentData: use 'experimentData(object)'

## Annotation: No annotation

## - - - Processing information - - -

## Data loaded: Wed May 11 18:54:39 2011

## Updated from version 0.3.0 to 0.3.1 [Fri Jul 8 20:23:25 2016]

## Curves <= 400 set to '0': Wed Jan 04 19:09:39 2017

## Spectra cleaned: Wed Jan 04 19:09:41 2017

## iTRAQ4 quantification by trapezoidation: Wed Jan 04 19:09:54 2017

## MSnbase version: 1.1.22

head(exprs(qnt))

## iTRAQ4.114 iTRAQ4.115 iTRAQ4.116 iTRAQ4.117

## X1 1347.6158 2247.3097 3927.6931 7661.1463

## X10 739.9861 799.3501 712.5983 940.6793

## X11 27638.3582 33394.0252 32104.2879 26628.7278

## X12 31892.8928 33634.6980 37674.7272 37227.7119

## X13 26143.7542 29677.4781 29089.0593 27902.5608

## X14 6448.0829 6234.1957 6902.8903 6437.2303

Figure 13 illustrated the quantitation of the TMT 10-plex isobaric tags using the quantify method and
the TMT10 reporter instance. The data on the x axis has been quantified using method = "max" and
centroided data (as generated using ProteoWizard’s msconvert with vendor libraries’ peak picking);
on the y axis, the quantitation method was trapezoidation and strict = TRUE (that’s important
for TMT 10-plex) and the profile data. We observe a very good correlation.

If no peak is detected for a reporter ion peak, the respective quantitation value is set to NA. In our case,
there is 1 such case in row 41. We will remove the offending line using the filterNA method. The
pNA argument defines the percentage of accepted missing values per feature. As we do not expect any
missing peaks, we set it to be 0 (which is also the detault value).

table(is.na(qnt))

##

## FALSE TRUE

## 219 1

qnt <- filterNA(qnt, pNA = 0)

sum(is.na(qnt))

## [1] 0

The filtering criteria for filterNA can also be defined as a pattern of columns that can have missing
values and columns that must not exhibit any. See ?filterNA for details and examples.

The infrastructure around the MSnSet class allows flexible filtering using the [ sub-setting operator.
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Below, we mimic the behaviour of filterNA(, pNA = 0) by calculating the row indices that should
be removed, i.e. those that have at least one NA value and explicitly remove these rows. This method
allows one to devise and easily apply any filtering strategy.

whichRow <- which(is.na((qnt))) %% nrow(qnt)

qnt <- qnt[-whichRow, ]

See also the plotNA method to obtain a graphical overview of the completeness of a data set.

7.2 Importing quantitation data

If quantitation data is already available as a spreadsheet, it can be imported, along with additional
optional feature and sample (pheno) meta data, with the readMSnSet function. This function takes
the respective text-based spreadsheet (comma- or tab-separated) file names as argument to create a
valid MSnSet instance.

Note that the quantitation data of MSnSet objects can also be exported to a text-based spreadsheet
file using the write.exps method.

MSnbase also supports the mzTab format6, a light-weight, tab-delimited file format for proteomics data.
mzTab files can be read into Rwith readMzTabData to create and MSnSet instance.

See the MSnbase-io vignette for a general overview of MSnbase’s input/ouput capabilites.

7.3 Peak adjustments

Single peak adjustment In certain cases, peak intensities need to be adjusted as a result of peak
interferance. For example, the +1 peak of the phenylalanine (F, Phe) immonium ion (with m/z 120.03)
inteferes with the 121.1 TMT reporter ion. Below, we calculate the relative intensity of the +1 peaks
compared to the main peak using the Rdisop package.

library(Rdisop)

## Phenylalanine immonium ion

Fim <- getMolecule("C8H10N")

getMass(Fim)

## [1] 120.0813

isotopes <- getIsotope(Fim)

F1 <- isotopes[2, 2]

F1

## [1] 0.08573496

6https://github.com/HUPO-PSI/mzTab
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If desired, one can thus specifically quantify the F immonium ion in the MS2 spectrum, estimate the
intensity of the +1 ion (0.0857% of the F peak) and substract this calculated value from the 121.1
TMT reporter intensity.

The above principle can also be generalised for a set of overlapping peaks, as described below.

Reporter ions purity correction Impurities in the reporter reagents can also bias the results and can
be corrected when manufacturers provide correction coefficients. These generally come as percentages
of each reporter ion that have masses differing by -2, -1, +1 and +2 Da from the nominal reporter
ion mass due to isotopic variants. The purityCorrect method applies such correction to MSnSet
instances. It also requires a square matrix as second argument, impurities, that defines the relative
percentage of reporter in the quantified each peak. See ?purityCorrect for more details.

impurities <- matrix(c(0.929, 0.059, 0.002, 0.000,

0.020, 0.923, 0.056, 0.001,

0.000, 0.030, 0.924, 0.045,

0.000, 0.001, 0.040, 0.923),

nrow = 4)

qnt.crct <- purityCorrect(qnt, impurities)

head(exprs(qnt))

## iTRAQ4.114 iTRAQ4.115 iTRAQ4.116 iTRAQ4.117

## X1 1347.6158 2247.3097 3927.6931 7661.1463

## X10 739.9861 799.3501 712.5983 940.6793

## X11 27638.3582 33394.0252 32104.2879 26628.7278

## X12 31892.8928 33634.6980 37674.7272 37227.7119

## X13 26143.7542 29677.4781 29089.0593 27902.5608

## X14 6448.0829 6234.1957 6902.8903 6437.2303

head(exprs(qnt.crct))

## iTRAQ4.114 iTRAQ4.115 iTRAQ4.116 iTRAQ4.117

## X1 1304.7675 2168.1082 3784.2244 8133.9211

## X10 743.8159 806.5647 696.9024 988.0787

## X11 27547.6515 33592.3997 32319.1803 27413.1833

## X12 32127.1898 33408.8353 37806.0787 38658.7865

## X13 26187.3141 29788.6254 29105.2485 28936.6871

## X14 6533.1862 6184.1103 6945.2074 6666.5633

The makeImpuritiesMatrix can be used to create impurity matrices. It opens a rudimentary spread-
sheet that can be directly edited.
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Figure 12: The different quantitation methods are illustrated above. Quantitation using sum sums
all the data points in the peaks to produce, for this example, 7, whereas method max only uses the
peak’s maximum intensity, 3. Trapezoidation calculates the area under the peak taking the full with
into account (using strict=FALSE gives 0.375) or only the width as defined by the reporter (using
strict=TRUE gives 0.1).
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Figure 13: TMT 10-plex quantitation.
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8 Processing quantitative data

8.1 Data imputation

A set of imputation methods are available in the impute method: it takes an MSnSet instance as input,
the name of the imputation method to be applied (one of bpca, knn, QRILC, MLE, MinDet, MinProb,
min, zero, mixed, nbavg), possible additional parameters and returns an updated for MSnSet without
any missing values. Below, we apply a deterministic minimum value imputation on the naset example
data:

## an example MSnSet containing missing values

data(naset)

table(is.na(naset))

##

## FALSE TRUE

## 10254 770

## number of NAs per protein

table(fData(naset)$nNA)

##

## 0 1 2 3 4 8 9 10

## 301 247 91 13 2 23 10 2

x <- impute(naset, "min")

processingData(x)

## - - - Processing information - - -

## Data imputation using min Wed Jan 04 19:09:55 2017

## MSnbase version: 1.15.6

table(is.na(x))

##

## FALSE

## 11024

There are two types of mechanisms resulting in missing values in LC/MSMS experiments.

• Missing values resulting from absence of detection of a feature, despite ions being present at
detectable concentrations. For example in the case of ion suppression or as a result from the
stochastic, data-dependent nature of the MS acquisition method. These missing value are ex-
pected to be randomly distributed in the data and are defined as missing at random (MAR) or
missing completely at random (MCAR).
• Biologically relevant missing values, resulting from the absence of the low abundance of ions

(below the limit of detection of the instrument). These missing values are not expected to be
randomly distributed in the data and are defined as missing not at random (MNAR).

MAR and MCAR values can be reasonably well tackled by many imputation methods. MNAR data,
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however, requires some knowledge about the underlying mechanism that generates the missing data, to
be able to attempt data imputation. MNAR features should ideally be imputed with a left-censor (for
example using a deterministic or probabilistic minimum value) method. Conversely, it is recommended
to use hot deck methods (for example nearest neighbour, maximum likelihood, etc) when data are
missing at random.
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Figure 14: Mixed imputation method. Black cells represent presence of quantitation values and light
grey corresponds to missing data. The two groups of interest are depicted in green and blue along the
heatmap columns. Two classes of proteins are annotated on the left: yellow are proteins with randomly
occurring missing values (if any) while proteins in brown are candidates for non-random missing value
imputation.

It is anticipated that the identification of both classes of missing values will depend on various factors,
such as feature intensities and experimental design. Below, we use perform mixed imputation, applying
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nearest neighbour imputation on the 654 features that are assumed to contain randomly distributed
missing values (if any) (yellow on figure 14) and a deterministic minimum value imputation on the 35
proteins that display a non-random pattern of missing values (brown on figure 14).

x <- impute(naset, method = "mixed",

randna = fData(naset)$randna,

mar = "knn", mnar = "min")

x

## MSnSet (storageMode: lockedEnvironment)

## assayData: 689 features, 16 samples

## element names: exprs

## protocolData: none

## phenoData

## sampleNames: M1F1A M1F4A ... M2F11B (16 total)

## varLabels: nNA

## varMetadata: labelDescription

## featureData

## featureNames: AT1G09210 AT1G21750 ... AT4G39080 (689 total)

## fvarLabels: nNA randna

## fvarMetadata: labelDescription

## experimentData: use 'experimentData(object)'

## Annotation:

## - - - Processing information - - -

## Data imputation using mixed Wed Jan 04 19:09:56 2017

## Using default parameters

## MSnbase version: 1.15.6

Please read ?impute for a description of the different methods.
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8.2 Normalisation

A MSnSet object is meant to be compatible with further downstream packages for data normalisation
and statistical analysis. There is also a normalise (also available as normalize) method for expression
sets. The method takes and instance of class MSnSet as first argument, and a character to describe
the method to be used:

quantiles Applies quantile normalisation [13] as implemented in the normalize.quantiles function
of the preprocessCore package.

quantiles.robust Applies robust quantile normalisation [13] as implemented in the normalize.quantiles.robust
function of the preprocessCore package.

vsn Applies variance stabilisation normalization [14] as implemented in the vsn2 function of the vsn
package.

max Each feature’s reporter intensity is divided by the maximum of the reporter ions intensities.
sum Each feature’s reporter intensity is divided by the sum of the reporter ions intensities.

See ?normalise for more methods. A scale method for MSnSet instances, that relies on the
base::scale function.

qnt.max <- normalise(qnt, "max")

qnt.sum <- normalise(qnt, "sum")

qnt.quant <- normalise(qnt, "quantiles")

qnt.qrob <- normalise(qnt, "quantiles.robust")

qnt.vsn <- normalise(qnt, "vsn")

The effect of these are illustrated on figure 15 and figure 16 reproduces figure 3 of [15] that described
the application of vsn on iTRAQ reporter data.

Note that it is also possible to normalise individual spectra or whole MSnExp experiments with the
normalise method using the max method. This will rescale all peaks between 0 and 1. To visualise
the relative reporter peaks, one should this first trim the spectra using method trimMz as illustrated in
section 6, then normalise the MSnExp with normalise using method="max" as illustrated above and
plot the data using plot (figure 17).

Additional dedicated normalisation method are available for MS2 label-free quantitation, as described
in section 10 and in the quantify documentation.
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Figure 15: Comparison of the normalisation MSnSet methods. Note that vsn also glog-transforms the
intensities.
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Figure 17: Experiment-wide normalised MS2 spectra. The y-axes of the individual spectra is now
rescaled between 0 and 1 (highest peak), as opposed to figure 5.
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9 Feature aggregation

The above quantitation and normalisation has been performed on quantitative data obtained from
individual spectra. However, the biological unit of interest is not the spectrum but the peptide or the
protein. As such, it is important to be able to summarise features that belong to a same group, i.e.
spectra from one peptide, peptides that originate from one protein, or directly combine all spectra that
have been uniquely associated to one protein.

MSnbase provides one function, combineFeatures, that allows to aggregate features stored in an
MSnSet using build-in or user defined summary function and return a new MSnSet instance. The three
main arguments are described below. Additional details can be found in the method documentation.

combineFeatures’s first argument, object, is an instance of class MSnSet, as has been created in
the section 7.1 for instance. The second argument, groupBy, is a factor than has as many elements
as there are features in the MSnSet object argument. The features corresponding to the groupBy

levels will be aggregated so that the resulting MSnSet output will have length(levels(groupBy))

features. Here, we will combine individual MS2 spectra based on the protein they originate from. As
shown below, this will result in 40 new aggregated features.

gb <- fData(qnt)$ProteinAccession

table(gb)

## gb

## BSA ECA0172 ECA0435 ECA0452 ECA0469 ECA0621 ECA0631 ECA0691 ECA0871 ECA0978 ECA1032

## 3 1 2 1 2 1 1 1 1 1 1

## ECA1093 ECA1104 ECA1294 ECA1362 ECA1363 ECA1364 ECA1422 ECA1443 ECA2186 ECA2391 ECA2421

## 1 1 1 1 1 1 1 1 1 1 1

## ECA2831 ECA3082 ECA3175 ECA3349 ECA3356 ECA3377 ECA3566 ECA3882 ECA3929 ECA3969 ECA4013

## 1 1 1 2 1 1 2 1 1 1 1

## ECA4026 ECA4030 ECA4037 ECA4512 ECA4513 ECA4514 ENO

## 2 1 1 1 1 6 3

length(unique(gb))

## [1] 40

The third argument, fun, defined how to combine the features. Predefined functions are readily available
and can be specified as strings (fun="mean", fun="median", fun="sum", fun="weighted.mean" or
fun="medianpolish" to compute respectively the mean, media, sum, weighted mean or median polish
of the features to be aggregated). Alternatively, is is possible to supply user defined functions with
fun=function(x) { ... }. We will use the median here.

qnt2 <- combineFeatures(qnt, groupBy = gb, fun = "median")

qnt2

## MSnSet (storageMode: lockedEnvironment)

## assayData: 40 features, 4 samples

## element names: exprs

http://bioconductor.org/packages/MSnbase
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## protocolData: none

## phenoData: none

## featureData

## featureNames: BSA ECA0172 ... ENO (40 total)

## fvarLabels: spectrum ProteinAccession ... CV.iTRAQ4.117 (19 total)

## fvarMetadata: labelDescription

## experimentData: use 'experimentData(object)'

## Annotation:

## - - - Processing information - - -

## Data loaded: Wed May 11 18:54:39 2011

## Updated from version 0.3.0 to 0.3.1 [Fri Jul 8 20:23:25 2016]

## Curves <= 400 set to '0': Wed Jan 04 19:09:39 2017

## Spectra cleaned: Wed Jan 04 19:09:41 2017

## iTRAQ4 quantification by trapezoidation: Wed Jan 04 19:09:54 2017

## Subset [55,4][54,4] Wed Jan 04 19:09:54 2017

## Removed features with more than 0 NAs: Wed Jan 04 19:09:54 2017

## Dropped featureData's levels Wed Jan 04 19:09:54 2017

## Combined 54 features into 54 using median: Wed Jan 04 19:09:59 2017

## MSnbase version: 2.0.2
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10 Label-free MS2 quantitation

10.1 Peptide counting

Note that if samples are not multiplexed, label-free MS2 quantitation by spectral counting is possible
using MSnbase. Once individual spectra have been assigned to peptides and proteins (see section 4),
it becomes straightforward to estimate protein quantities using the simple peptide counting method, as
illustrated in section 9.

sc <- quantify(msexp, method = "count")

## lets modify out data for demonstration purposes

fData(sc)$accession[1] <- fData(sc)$accession[2]

fData(sc)$accession

## [1] "ECA1028" "ECA1028" "ECA0510"

sc <- combineFeatures(sc, groupBy = fData(sc)$accession,

fun = "sum")

exprs(sc)

## dummyiTRAQ.mzXML

## ECA0510 1

## ECA1028 2

Such count data could then be further analyses using dedicated count methods (originally developed for
high-throughput sequencing) and directly available for MSnSet instances in the msmsTests Bioconductor
package.

10.2 Spectral counting and intensity methods

The spectral abundance factor (SAF) and the normalised form (NSAF) [16] as well as the spectral index
(SI) and other normalised variations (SIGI and SIN) [17] are also available. Below, we illustrate how to
apply the normalised SIN to the experiment containing identification data produced in section 4.

The spectra that did not match any peptide have already been remove with the removeNoId method.
As can be seen in the following code chunk, the first spectrum could not be matched to any single
protein. Non-identified spectra and those matching multiple proteins are removed automatically prior
to any label-free quantitation. Once can also remove peptide that do not match uniquely to proteins
(as defined by the nprot feature variable column) with the removeMultipleAssignment method.

fData(msexp)[, c("accession", "nprot")]

## accession nprot

## X1.1 ECA0984;ECA3829 2

## X2.1 ECA1028 1

## X5.1 ECA0510 1
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Note that the label-free methods implicitely apply feature aggregation (section 9) and normalise (section
8.2) the quantitation values based on the total sample intensity and or the protein lengths (see [16] and
[17] for details).

Let’s now proceed with the quantitation using the quantify, as in section 7.1, this time however
specifying the method of interest, SIn (the reporters argument can of course be ignored here).
The required peptide-protein mapping and protein lengths are extracted automatically from the feature
meta-data using the default accession and length feature variables.

siquant <- quantify(msexp, method = "SIn")

processingData(siquant)

## - - - Processing information - - -

## Quantitation by total ion current [Wed Jan 04 19:10:00 2017]

## Combined 2 features into 2 using sum: Wed Jan 04 19:10:00 2017

## Quantification by SIn [Wed Jan 04 19:10:00 2017]

## MSnbase version: 2.0.2

exprs(siquant)

## dummyiTRAQ.mzXML

## ECA0510 0.003588641

## ECA1028 0.001470129

Other label-free methods can be applied by specifiying the appropriate method argument. See ?quantify
for more details.
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11 Spectra comparison

11.1 Plotting two spectra

MSnbase provides functionality to compare spectra against each other. The first notable function is
plot. If two Spectrum2 objects are provided plot will draw two plots: the upper and lower panel
contain respectively the first and second spectrum. Common peaks are drawn in a slightly darker
colour.

11.2 Comparison metrics

Currently MSnbase supports three different metrics to compare spectra against each other: common to
calculate the number of common peaks, cor to calculate the Pearson correlation and dotproduct to
calculate the dot product. See ?compareSpectra to apply other arbitrary metrics.

compareSpectra(centroided[[2]], centroided[[3]],

fun = "common")

## [1] 8

compareSpectra(centroided[[2]], centroided[[3]],

fun = "cor")

## [1] 0.1105021

compareSpectra(centroided[[2]], centroided[[3]],

fun = "dotproduct")

## [1] 0.1185025

compareSpectra supports MSnExp objects as well.

compmat <- compareSpectra(centroided, fun="cor")

compmat[1:10, 1:5]

## X1 X10 X11 X12 X13

## X1 NA 0.07672973 0.38024702 0.51579989 0.46647324

## X10 0.07672973 NA 0.11050214 0.11162512 0.08611906

## X11 0.38024702 0.11050214 NA 0.47184437 0.47905818

## X12 0.51579989 0.11162512 0.47184437 NA 0.57909089

## X13 0.46647324 0.08611906 0.47905818 0.57909089 NA

## X14 0.09999703 0.01558385 0.12165400 0.12057251 0.11853321

## X15 0.03314059 0.00416184 0.01733228 0.04796236 0.03196115

## X16 0.39140514 0.06634870 0.42259036 0.45624614 0.45469020

## X17 0.37945538 0.07188420 0.52292845 0.44791250 0.43679447

## X18 0.55367861 0.10286983 0.56621755 0.66884285 0.64262061

Below, we illustrate how to compare a set of spectra using a hierarchical clustering.

http://bioconductor.org/packages/MSnbase
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centroided <- pickPeaks(itraqdata, verbose = FALSE)

(k <- which(fData(centroided)[, "PeptideSequence"] == "TAGIQIVADDLTVTNPK"))

## [1] 41 42

mzk <- precursorMz(centroided)[k]

zk <- precursorCharge(centroided)[k]

mzk * zk

## X46 X47

## 2046.175 2045.169

plot(centroided[[k[1]]], centroided[[k[2]]])
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Figure 18: Comparing two MS2 spectra.
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plot(hclust(as.dist(compmat)))
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12 Quantitative assessment of incomplete dissociation

Quantitation using isobaric reporter tags assumes complete dissociation between the reporter group
(red on figure 19), balance group (blue) and peptide (the peptide reactive group is drawn in green).
However, incomplete dissociation does occur and results in an isobaric tag (i.e reporter and balance
groups) specific peaks.

Figure 19: iTRAQ 4-plex isobaric tags reagent consist of three parts: (1) a charged reporter group
(MZ of 114, 115, 116 and 117) that is unique to each of the four reagents (red), (2) an uncharged
mass balance group (28-31 Da) (blue)and (3) a peptide reactive group (NHS ester) that binds to the
peptide. In case of incomplete dissociation, the reporter and balance groups produce a specific peaks
at MZ 145.

MSnbase provides, among others, a ReporterIons object for iTRAQ 4-plex that includes the 145 peaks,
called iTRAQ5. This can then be used to quantify the experiment as show in section 7.1 to estimate
incomplete dissociation for each spectrum.

iTRAQ5

## Object of class "ReporterIons"

## iTRAQ5: '4-plex iTRAQ and reporter + balance group' with 5 reporter ions

## - 114.1112 +/- 0.05 (red)

## - 115.1083 +/- 0.05 (green)

## - 116.1116 +/- 0.05 (blue)

## - 117.115 +/- 0.05 (yellow)

## - 145.1 +/- 0.05 (grey)

incompdiss <- quantify(itraqdata,

method = "trap",

reporters = iTRAQ5,

strict = FALSE,

verbose = FALSE)

head(exprs(incompdiss))

## iTRAQ5.114 iTRAQ5.115 iTRAQ5.116 iTRAQ5.117 iTRAQ5.145

## X1 1347.6158 2247.3097 3927.6931 7661.1463 2063.8947

## X10 739.9861 799.3501 712.5983 940.6793 467.3615

## X11 27638.3582 33394.0252 32104.2879 26628.7278 13543.4565

## X12 31892.8928 33634.6980 37674.7272 37227.7119 11839.2558

## X13 26143.7542 29677.4781 29089.0593 27902.5608 12206.5508

## X14 6448.0829 6234.1957 6902.8903 6437.2303 427.6654
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Figure 20 compares these intensities for the whole experiment.
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Figure 20: Boxplot and scatterplot comparing intensities of the 4 reporter ions (or their sum, on the
right) and the incomplete dissociation specific peak.
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13 Combining MSnSet instances

Combining mass spectrometry runs can be done in two different ways depending on the nature of these
runs. If the runs represent repeated measures of identical samples, for instance multiple fractions, the
data has to be combine along the row of the quantitation matrix: all the features (along the rows)
represent measurements of the same set of samples (along the columns). In this situation, described in
section 13.1, two experiments of dimensions n1 (rows) by m (columns and n2 by m will produce a new
experiment of dimensions n1 + n2 by m.

When however, different sets of samples have been analysed in different mass spectrometry runs, the
data has to be combined along the columns of the quantitation matrix: some features will be shared
across experiments and should thus be aligned on a same row in the new data set, whereas unique
features to one experiment should be set as missing in the other one. In this situation, described in
section 13.2, two experiments of dimensions n1 by m1 and n2 by m2 will produce a new experiment of
dimensions uniquen1 +uniquen2 + sharedn1,n2 by m1+m2. The two first terms of the first dimension
will be complemented by NA values.

Default MSnSet feature names (X1, X2, . . . ) and sample names (iTRAQ4.114, iTRAQ4.115, iTRAQ4.116,
. . . ) are not informative. The features and samples of these anonymous quantitative data-sets should
be updated before being combined, to guide how to meaningfully merge them.

13.1 Combining identical samples

To simulate this situation, let us use quantiation data from the itraqdata object that is provided with
the package as experiment 1 and the data from the rawdata MSnExp instance created at the very
beginning of this document. Both experiments share the same default iTRAQ 4-plex reporter names
as default sample names, and will thus automatically be combined along rows.

exp1 <- quantify(itraqdata, reporters = iTRAQ4,

verbose = FALSE)

sampleNames(exp1)

## [1] "iTRAQ4.114" "iTRAQ4.115" "iTRAQ4.116" "iTRAQ4.117"

centroided(rawdata) <- FALSE

exp2 <- quantify(rawdata, reporters = iTRAQ4,

verbose = FALSE)

sampleNames(exp2)

## [1] "iTRAQ4.114" "iTRAQ4.115" "iTRAQ4.116" "iTRAQ4.117"

It important to note that the features of these independent experiments share the same default anony-
mous names: X1, X2, X3, . . . , that however represent quantitation of distinct physical analytes. If the
experiments were to be combined as is, it would result in an error because data points for the same
feature name (say X1) and the same sample name (say iTRAQ4.114) have different values. We thus
first update the feature names to explicitate that they originate from different experiment and represent
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quantitation from different spectra using the convenience function updateFeatureNames. Note that
updating the names of one experiment would suffice here.

head(featureNames(exp1))

## [1] "X1" "X10" "X11" "X12" "X13" "X14"

exp1 <- updateFeatureNames(exp1)

head(featureNames(exp1))

## [1] "X1.exp1" "X10.exp1" "X11.exp1" "X12.exp1" "X13.exp1" "X14.exp1"

head(featureNames(exp2))

## [1] "X1.1" "X2.1" "X3.1" "X4.1" "X5.1"

exp2 <- updateFeatureNames(exp2)

head(featureNames(exp2))

## [1] "X1.1.exp2" "X2.1.exp2" "X3.1.exp2" "X4.1.exp2" "X5.1.exp2"

The two experiments now share the same sample names and have different feature names and will be
combined along the row. Note that all meta-data is correctly combined along the quantitation values.

exp12 <- combine(exp1, exp2)

## Warning in combine(experimentData(x), experimentData(y)):

## unknown or conflicting information in MIAPE field ’email’; using information from

first object ’x’

dim(exp1)

## [1] 55 4

dim(exp2)

## [1] 5 4

dim(exp12)

## [1] 60 4

13.2 Combine different samples

Lets now create two MSnSets from the same raw data to simulate two different independent experiments
that share some features. As done previously (see section 9), we combine the spectra based on the
proteins they have been identified to belong to. Features can thus naturally be named using protein
accession numbers. Alternatively, if peptide sequences would have been used as grouping factor in
combineFeatures, then these would be good feature name candidates.

set.seed(1)

i <- sample(length(itraqdata), 35)
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j <- sample(length(itraqdata), 35)

exp1 <- quantify(itraqdata[i], reporters = iTRAQ4,

verbose = FALSE)

exp2 <- quantify(itraqdata[j], reporters = iTRAQ4,

verbose = FALSE)

exp1 <- droplevels(exp1)

exp2 <- droplevels(exp2)

table(featureNames(exp1) %in% featureNames(exp2))

##

## FALSE TRUE

## 12 23

exp1 <- combineFeatures(exp1,

groupBy = fData(exp1)$ProteinAccession)

exp2 <- combineFeatures(exp2,

groupBy = fData(exp2)$ProteinAccession)

head(featureNames(exp1))

## [1] "BSA" "ECA0435" "ECA0469" "ECA0621" "ECA0631" "ECA0978"

head(featureNames(exp2))

## [1] "BSA" "ECA0172" "ECA0435" "ECA0452" "ECA0469" "ECA0621"

The droplevels drops the unused featureData levels. This is required to avoid passing absent levels
as groupBy in combineFeatures. Alternatively, one could also use factor(fData(exp1)$ProteinAccession)
as groupBy argument.

The feature names are updated automatically by combineFeatures, using the groupBy argument.
Proper feature names, reflecting the nature of the features (spectra, peptides or proteins) is critical
when multiple experiments are to be combined, as this is done using common features as defined by
their names (see below).

Sample names should also be updated to replace anonymous reporter names with relevant identi-
fiers; the individual reporter data is stored in the phenoData and is not lost. A convenience function
updateSampleNames is provided to append the MSnSet’s variable name to the already defined names,
although in general, biologically relevant identifiers are preferred.

sampleNames(exp1)

## [1] "iTRAQ4.114" "iTRAQ4.115" "iTRAQ4.116" "iTRAQ4.117"

exp1 <- updateSampleNames(exp1)

sampleNames(exp1)

## [1] "iTRAQ4.114.exp1" "iTRAQ4.115.exp1" "iTRAQ4.116.exp1" "iTRAQ4.117.exp1"

sampleNames(exp1) <- c("Ctrl1", "Cond1", "Ctrl2", "Cond2")

sampleNames(exp2) <- c("Ctrl3", "Cond3", "Ctrl4", "Cond4")
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At this stage, it is not yet possible to combine the two experiments, because their feature data is
not compatible yet; they share the same feature variable labels, i.e. the feature data column names
(spectrum, ProteinAccession, ProteinDescription, . . . ), but the part of the content is different because
the original data was (in particular all the spectrum centric data: identical peptides in different runs will
have different retention times, precursor intensities, . . . ). Feature data with identical labels (columns
in the data frame) and names (row in the data frame) are expected to have the same data and produce
an error if not conform.

stopifnot(all(fvarLabels(exp1) == fvarLabels(exp2)))

fData(exp1)["BSA", 1:4]

## spectrum ProteinAccession ProteinDescription PeptideSequence

## BSA 1 BSA bovine serum albumin NYQEAK

fData(exp2)["BSA", 1:4]

## spectrum ProteinAccession ProteinDescription PeptideSequence

## BSA 52 BSA bovine serum albumin QTALVELLK

Instead of removing these identical feature data columns, one can use a second convenience function,
updateFvarLabels, to update feature labels based on the experiements variable name and maintain
all the metadata.

exp1 <- updateFvarLabels(exp1)

exp2 <- updateFvarLabels(exp2)

head(fvarLabels(exp1))

## [1] "spectrum.exp1" "ProteinAccession.exp1" "ProteinDescription.exp1"

## [4] "PeptideSequence.exp1" "file.exp1" "retention.time.exp1"

head(fvarLabels(exp2))

## [1] "spectrum.exp2" "ProteinAccession.exp2" "ProteinDescription.exp2"

## [4] "PeptideSequence.exp2" "file.exp2" "retention.time.exp2"

It is now possible to combine exp1 and exp2, including all the meta-data, with the combine method.
The new experiment will contain the union of the feature names of the individual experiments with
missing values inserted appropriately.

exp12 <- combine(exp1, exp2)

dim(exp12)

## [1] 35 8

pData(exp12)

## data frame with 0 columns and 8 rows

exprs(exp12)[25:28, ]

## Ctrl1 Cond1 Ctrl2 Cond2 Ctrl3 Cond3 Ctrl4 Cond4

## ECA4513 10154.95 10486.94 11018.19 11289.552 NA NA NA NA
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## ECA4514 20396.49 20832.98 23280.82 23693.574 15965.52 16206.91 18455.76 18704.058

## ENO 50826.03 31978.10 NA 7528.967 39965.73 24967.40 NA 5925.663

## ECA0172 NA NA NA NA 17593.55 18545.62 19361.84 18328.237

exp12

## MSnSet (storageMode: lockedEnvironment)

## assayData: 35 features, 8 samples

## element names: exprs

## protocolData: none

## phenoData: none

## featureData

## featureNames: BSA ECA0435 ... ECA4512 (35 total)

## fvarLabels: spectrum.exp1 ProteinAccession.exp1 ... CV.iTRAQ4.117.exp2 (38

## total)

## fvarMetadata: labelDescription

## experimentData: use 'experimentData(object)'

## Annotation:

## - - - Processing information - - -

## Combined [35,8] and [27,4] MSnSets Wed Jan 04 19:10:51 2017

## MSnbase version: 2.0.2

In summary, when experiments with different samples need to be combined (along the columns), one
needs to (1) clarify the sample names using updateSampleNames or better manually, for biological
relevance and (2) update the feature data variable labels with updateFvarLabels. The individual
experiments (there can be more than 2) can then easily be combined with the combine method while
retaining the meta-data.

If runs for the same sample (different fractions for example) need to be combines, one needs to (1)
differentiate the feature provenance with updateFeatureNames prior to use combine.

13.3 Splitting and unsplitting MSnSet instances

A single MSnSet can also be split along the features/rows or samples/columns using the split method
and a factor defining the splitting groups, resulting in an instance of class MSnSetList:

data(dunkley2006)

head(pData(dunkley2006))

## membrane.prep fraction replicate

## M1F1A 1 1 A

## M1F4A 1 4 A

## M1F7A 1 7 A

## M1F11A 1 11 A

## M1F2B 1 2 B

## M1F5B 1 5 B
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split(dunkley2006, dunkley2006$replicate)

## Instance of class 'MSnSetList' containig 2 objects.

## or, defining the appropriate annotation variable name

dun <- split(dunkley2006, "replicate")

Above, we split along the columns/samples, but the function would equally work with a factor of length
equal to the number of rows of the MSnSet (or a feature variable name) to split along the rows/features.

Finally, the effect of split can be reverted by unsplit.

dun2 <- unsplit(dun, pData(dunkley2006)$replicate)

compareMSnSets(dunkley2006, dun2)

## [1] TRUE

See ?MSnSetList for more details about the class, split and unsplit and comments about storing
multiple assays pertaining the same experiment.

13.4 Averaging MSnSet instances

It is sometimes useful to average a set of replicated experiments to facilitate their visualisation. This
can be easily achieved with the averageMSnSet function, which takes a list of valid MSnSet instances
as input and creates a new object whose expression values are an average of the original values. A
value of dispersion (disp) and a count of missing values (nNA) is recorded in the feature metadata
slot. The average and dispersion are computed by default as the median and (non-parametric) coef-
ficient of variation (see ?npcv for details), although this can easily be parametrised, as described in
?averageMSnSet.

The next code chunk illustrates the averaging function using three replicated experiments from [18]
available in the pRolocdata package.

library("pRolocdata")

data(tan2009r1)

data(tan2009r2)

data(tan2009r3)

msnl <- MSnSetList(list(tan2009r1, tan2009r2, tan2009r3))

avgtan <- averageMSnSet(msnl)

head(exprs(avgtan))

## X114 X115 X116 X117

## P20353 0.3605000 0.3035000 0.2095000 0.1265000

## P53501 0.4299090 0.1779700 0.2068280 0.1852625

## Q7KU78 0.1704443 0.1234443 0.1772223 0.5290000

## P04412 0.2567500 0.2210000 0.3015000 0.2205000

## Q7KJ73 0.2160000 0.1830000 0.3420000 0.2590000

## Q7JZN0 0.0965000 0.2509443 0.4771667 0.1750557
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head(fData(avgtan)$disp)

## X114 X115 X116 X117

## P20353 0.076083495 0.1099127 0.109691169 0.14650198

## P53501 0.034172542 0.2640556 0.005139653 0.17104568

## Q7KU78 0.023198743 0.4483795 0.027883087 0.04764499

## P04412 0.053414021 0.2146751 0.090972139 0.27903810

## Q7KJ73 0.000000000 0.0000000 0.000000000 0.00000000

## Q7JZN0 0.007681865 0.1959534 0.097873350 0.06210542

head(fData(avgtan)$nNA)

## X114 X115 X116 X117

## P20353 1 1 1 1

## P53501 1 1 1 1

## Q7KU78 0 0 0 0

## P04412 1 1 1 1

## Q7KJ73 2 2 2 2

## Q7JZN0 0 0 0 0

We are going to visualise the average data on a principle component (PCA) plot using the plot2D

function from the pRoloc package [19]. In addition, we are going to use the measure of dispersion to
highlight averages with high variability by taking, for each protein, the maximum observed dispersion
in the 4 samples. Note that in the default implementation, dispersions estimated from a single mea-
surement (i.e. that had 2 missing values in our example) are set to 0; we will set these to the overal
maximum observed dispersion.
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disp <- rowMax(fData(avgtan)$disp)

disp[disp == 0] <- max(disp)

range(disp)

## [1] 0.01152877 1.20888923

library("pRoloc")

plot2D(avgtan, cex = 3 * disp)
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Figure 21: PCA plot of the averaged MSnSet. The point sizes are proportional to the dispersion of the
protein quantitation across the averaged data.
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14 MSE data processing

MSnbase can also be used for MSE data independent acquisition from Waters instrument. The MSE

pipeline depends on the Bioconductor synapter package [20] that produces MSnSet instances for indvid-
ual acquisitions. The MSnbase infrastructure can subsequently be used to further combine experiments,
as shown in section 13.2 and apply top3 quantitation using the topN method.

15 Session information

• R version 3.3.2 (2016-10-31), x86_64-w64-mingw32
• Locale: LC_COLLATE=C, LC_CTYPE=English_United States.1252,
LC_MONETARY=English_United States.1252, LC_NUMERIC=C,
LC_TIME=English_United States.1252

• Base packages: base, datasets, grDevices, graphics, grid, methods, parallel, stats, stats4, utils
• Other packages: AnnotationDbi 1.36.0, Biobase 2.34.0, BiocGenerics 0.20.0, BiocParallel 1.8.1,

BiocStyle 2.2.1, IRanges 2.8.1, MLInterfaces 1.54.0, MSnbase 2.0.2, ProtGenerics 1.6.0,
Rcpp 0.12.8, RcppClassic 0.9.6, Rdisop 1.34.0, S4Vectors 0.12.1, XML 3.98-1.5,
annotate 1.52.1, cluster 2.0.5, ggplot2 2.2.1, gplots 3.0.1, microbenchmark 1.4-2.1,
msdata 0.14.0, mzR 2.8.0, pRoloc 1.14.5, pRolocdata 1.12.0, pryr 0.1.2, reshape2 1.4.2,
zoo 1.7-14
• Loaded via a namespace (and not attached): BiocInstaller 1.24.0, DBI 0.5-1, DEoptimR 1.0-8,

FNN 1.1, KernSmooth 2.23-15, MALDIquant 1.16, MASS 7.3-45, Matrix 1.2-7.1,
MatrixModels 0.4-1, ModelMetrics 1.1.0, R6 2.2.0, RColorBrewer 1.1-2, RCurl 1.95-4.8,
RSQLite 1.1-1, SparseM 1.74, TH.data 1.0-7, affy 1.52.0, affyio 1.44.0, assertthat 0.1,
backports 1.0.4, base64enc 0.1-3, biomaRt 2.30.0, bitops 1.0-6, caTools 1.17.1, car 2.1-4,
caret 6.0-73, class 7.3-14, codetools 0.2-15, colorspace 1.3-2, dendextend 1.3.0, digest 0.6.11,
diptest 0.75-7, doParallel 1.0.10, dplyr 0.5.0, e1071 1.6-7, evaluate 0.10, flexmix 2.3-13,
foreach 1.4.3, fpc 2.1-10, gbm 2.1.1, gdata 2.17.0, genefilter 1.56.0, ggvis 0.4.3,
gridExtra 2.2.1, gtable 0.2.0, gtools 3.5.0, highr 0.6, htmltools 0.3.5, htmlwidgets 0.8,
httpuv 1.3.3, hwriter 1.3.2, impute 1.48.0, iterators 1.0.8, jsonlite 1.2, kernlab 0.9-25,
knitr 1.15.1, labeling 0.3, lattice 0.20-34, lazyeval 0.2.0, limma 3.30.7, lme4 1.1-12,
lpSolve 5.6.13, magrittr 1.5, mclust 5.2.1, memoise 1.0.0, mgcv 1.8-16, mime 0.5, minqa 1.2.4,
mlbench 2.1-1, modeltools 0.2-21, multcomp 1.4-6, munsell 0.4.3, mvtnorm 1.0-5, mzID 1.12.0,
nlme 3.1-128, nloptr 1.0.4, nnet 7.3-12, pbkrtest 0.4-6, pcaMethods 1.66.0, pls 2.6-0, plyr 1.8.4,
prabclus 2.2-6, preprocessCore 1.36.0, proxy 0.4-16, quantreg 5.29, randomForest 4.6-12,
rda 1.0.2-2, rmarkdown 1.3, robustbase 0.92-7, rpart 4.1-10, rprojroot 1.1, sampling 2.8,
sandwich 2.3-4, scales 0.4.1, sfsmisc 1.1-0, shiny 0.14.2, snow 0.4-2, splines 3.3.2, stringi 1.1.2,
stringr 1.1.0, survival 2.40-1, threejs 0.2.2, tibble 1.2, tools 3.3.2, trimcluster 0.1-2, vsn 3.42.3,
whisker 0.3-2, xtable 1.8-2, yaml 2.1.14, zlibbioc 1.20.0
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years of progress in the standardization of proteomics data 4th annual spring workshop of the hupo-
proteomics standards initiative april 23-25, 2007 ecole nationale supérieure (ens), lyon, france.
Proteomics, 7(19):3436–40, 2007. doi:10.1002/pmic.200700658.

[6] Lennart Martens, Matthew Chambers, Marc Sturm, Darren Kes sner, Fredrik Levander, Jim Shof-
stahl, Wilfred H Tang, Andreas Ro mpp, Steffen Neumann, Angel D Pizarro, Lu isa Montecchi-
Palazzi, Natalie Tasman, Mike Coleman, Florian Reisinger, Pune et Souda, Henning Hermjakob,
Pierre-Alain Binz, and Eric W Deutsch. mzml - a community standard for mass spectrometry data.
Molecular & Cellular Proteomics : MCP, 2010. doi:10.1074/mcp.R110.000133.

[7] Chris F. Taylor, Norman W. Paton, Kathryn S. Lilley, Pierre-Alain Binz, Randall K. Julian, An-
drew R. Jones, Weimin Zhu, Rolf Apweiler, Ruedi Aebersold, Eric W. Deutsch, Michael J. Dunn,
Albert J. R. Heck, Alexander Leitner, Marcus Macht, Matthias Mann, Lennart Martens, Thomas A.
Neubert, Scott D. Patterson, Peipei Ping, Sean L. Seymour, Puneet Souda, Akira Tsugita, Joel
Vandekerckhove, Thomas M. Vondriska, Julian P. Whitelegge, Marc R. Wilkins, Ioannnis Xenarios,
John R. Yates, and Henning Hermjakob. The minimum information about a proteomics experiment
(miape). Nat Biotechnol, 25(8):887–893, Aug 2007. URL: http://dx.doi.org/10.1038/nbt1329,
doi:10.1038/nbt1329.

http://bioconductor.org/packages/MSnbase
http://www.R-project.org/
http://dx.doi.org/10.1186/gb-2004-5-10-r80
http://dx.doi.org/10.1186/gb-2004-5-10-r80
http://dx.doi.org/10.1093/bioinformatics/btr645
http://dx.doi.org/10.1038/nbt1031
http://dx.doi.org/10.1038/nbt1031
http://dx.doi.org/10.1002/pmic.200700658
http://dx.doi.org/10.1074/mcp.R110.000133
http://dx.doi.org/10.1038/nbt1329
http://dx.doi.org/10.1038/nbt1329


MSnbase introduction 60

[8] Chris F Taylor, Pierre-Alain Binz, Ruedi Aebersold, Michel Affolter, Robert Barkovich, Eric W
Deutsch, David M Horn, Andreas Hhmer, Martin Kussmann, Kathryn Lilley, Marcus Macht,
Matthias Mann, Dieter Mller, Thomas A Neubert, Janice Nickson, Scott D Patterson, Roberto
Raso, Kathryn Resing, Sean L Seymour, Akira Tsugita, Ioannis Xenarios, Rong Zeng, and Randall K
Julian. Guidelines for reporting the use of mass spectrometry in proteomics. Nat. Biotechnol.,
26(8):860–1, 2008. doi:10.1038/nbt0808-860.

[9] Hadley Wickham. ggplot2: elegant graphics for data analysis. Springer New York, 2009. URL:
http://had.co.nz/ggplot2/book.

[10] Andrew R. Jones, Martin Eisenacher, Gerhard Mayer, Oliver Kohlbacher, Jennifer Siepen, Si-
mon J. Hubbard, Julian N. Selley, Brian C. Searle, James Shofstahl, Sean L. Seymour, Ran-
dall Julian, Pierre-Alain Binz, Eric W. Deutsch, Henning Hermjakob, Florian Reisinger, Johannes
Griss, Juan Antonio Vizcano, Matthew Chambers, Angel Pizarro, and David Creasy. The mzI-
dentML data standard for mass spectrometry-based proteomics results. Molecular & Cellular
Proteomics, 11(7), 2012. URL: http://www.mcponline.org/content/11/7/M111.014381.abstract,
arXiv:http://www.mcponline.org/content/11/7/M111.014381.full.pdf+html, doi:10.
1074/mcp.M111.014381.

[11] Joseph M Foster, Sven Degroeve, Laurent Gatto, Matthieu Visser, Rui Wang, Johannes Griss, Rolf
Apweiler, and Lennart Martens. A posteriori quality control for the curation and reuse of public
proteomics data. Proteomics, 11(11):2182–94, 2011. doi:10.1002/pmic.201000602.

[12] S Gibb and K Strimmer. MALDIquant: a versatile R package for the analysis of mass spectrometry
data. Bioinformatics, 28(17):2270–1, Sep 2012. doi:10.1093/bioinformatics/bts447.

[13] B M Bolstad, R A Irizarry, M Astrand, and T P Speed. A comparison of normalization methods for
high density oligonucleotide array data based on variance and bias. Bioinformatics, 19(2):185–93,
2003.

[14] Wolfgang Huber, Anja von Heydebreck, Holger Sueltmann, Annemarie Poustka, and Martin Vin-
gron. Variance stabilization applied to microarray data calibration and to the quantification of
differential expression. Bioinformatics, 18 Suppl. 1:S96–S104, 2002.

[15] Natasha A Karp, Wolfgang Huber, Pawel G Sadowski, Philip D Charles, Svenja V Hester, and
Kathryn S Lilley. Addressing accuracy and precision issues in itraq quantitation. Mol. Cell Pro-
teomics, 9(9):1885–97, 2010. doi:10.1074/mcp.M900628-MCP200.

[16] A C Paoletti, T J Parmely, C Tomomori-Sato, S Sato, D Zhu, R C Conaway, J W Conaway,
L Florens, and M P Washburn. Quantitative proteomic analysis of distinct mammalian mediator
complexes using normalized spectral abundance factors. Proc Natl Acad Sci U S A, 103(50):18928–
33, Dec 2006. doi:10.1073/pnas.0606379103.

[17] N M Griffin, J Yu, F Long, P Oh, S Shore, Y Li, J A Koziol, and J E Schnitzer. Label-free, nor-
malized quantification of complex mass spectrometry data for proteomic analysis. Nat Biotechnol,
28(1):83–9, Jan 2010. doi:10.1038/nbt.1592.

[18] Denise J Tan, Heidi Dvinge, Andy Christoforou, Paul Bertone, Alfonso A Martinez, and Kathryn S
Lilley. Mapping organelle proteins and protein complexes in drosophila melanogaster. J Proteome
Res, 8(6):2667–78, Jun 2009. doi:10.1021/pr800866n.

http://bioconductor.org/packages/MSnbase
http://dx.doi.org/10.1038/nbt0808-860
http://had.co.nz/ggplot2/book
http://www.mcponline.org/content/11/7/M111.014381.abstract
http://arxiv.org/abs/http://www.mcponline.org/content/11/7/M111.014381.full.pdf+html
http://dx.doi.org/10.1074/mcp.M111.014381
http://dx.doi.org/10.1074/mcp.M111.014381
http://dx.doi.org/10.1002/pmic.201000602
http://dx.doi.org/10.1093/bioinformatics/bts447
http://dx.doi.org/10.1074/mcp.M900628-MCP200
http://dx.doi.org/10.1073/pnas.0606379103
http://dx.doi.org/10.1038/nbt.1592
http://dx.doi.org/10.1021/pr800866n


MSnbase introduction 61

[19] L Gatto, L M Breckels, S Wieczorek, T Burger, and K S Lilley. Mass-spectrometry-based spatial
proteomics data analysis using pRoloc and pRolocdata. Bioinformatics, 30(9):1322–4, May 2014.
doi:10.1093/bioinformatics/btu013.

[20] N J Bond, P V Shliaha, K S Lilley, and L Gatto. Improving qualitative and quantitative performance
for MSe-based label-free proteomics. J Proteome Res, 12(6):2340–53, Jun 2013. URL: http:
//pubs.acs.org/doi/abs/10.1021/pr300776t, doi:10.1021/pr300776t.

http://bioconductor.org/packages/MSnbase
http://dx.doi.org/10.1093/bioinformatics/btu013
http://pubs.acs.org/doi/abs/10.1021/pr300776t
http://pubs.acs.org/doi/abs/10.1021/pr300776t
http://dx.doi.org/10.1021/pr300776t

	1 Introduction
	2 Data structure and content
	2.1 Importing experiments
	2.2 MS experiments
	2.3 Spectra objects
	2.4 Reporter ions

	3 Plotting raw data
	3.1 MS data space
	3.2 MS Spectra

	4 Tandem MS identification data
	4.1 Adding identification data
	4.2 Filtering identification data
	4.3 Calculate Fragments

	5 Quality control
	6 Raw data processing
	6.1 Cleaning spectra
	6.2 Focusing on specific MZ values
	6.3 Spectrum processing

	7 MS2 isobaric tagging quantitation
	7.1 Reporter ions quantitation
	7.2 Importing quantitation data
	7.3 Peak adjustments

	8 Processing quantitative data
	8.1 Data imputation
	8.2 Normalisation

	9 Feature aggregation
	10 Label-free MS2 quantitation
	10.1 Peptide counting
	10.2 Spectral counting and intensity methods

	11 Spectra comparison
	11.1 Plotting two spectra
	11.2 Comparison metrics

	12 Quantitative assessment of incomplete dissociation
	13 Combining MSnSet instances
	13.1 Combining identical samples
	13.2 Combine different samples
	13.3 Splitting and unsplitting MSnSet instances
	13.4 Averaging MSnSet instances

	14 MSE data processing
	15 Session information

