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Introduction

This vignette contains the computations that underlie the numerical code of vsn.
If you are a new user and looking for an introduction on how to use vsn, please
refer to the vignette Robust calibration and variance stabilization with vsn, which
is provided separately.

Setup and Notation

Consider the model
arsinh (f(b;) - yri + a;) = g + i

where uy, for k=1,...,n, and a;, b;, for i = 1,...,d are real-valued parameters,
fis a function R — R (see below), and ey; are i.i.d. Normal with mean 0 and
variance o2. yy; are the data. In applications to parray data, k indexes the features
and ¢ the arrays and/or colour channels.

Examples for f are f(b) = b and f(b) = €. The former is the most obvious choice;
in that case we will usually need to require b; > 0. The choice f(b) = e® assures
that the factor in front of yy; is positive for all b € R, and as it turns out, simplifies
some of the computations.

In the following calculations, | will also use the notation

2] Y=Y(y,a,b)=f()-y+a
3] h = h(y,a,b) = arsinh (f(b) -y +a).

The probability of the data (ygi)k=1...n, i=1...4 lying in a certain volume element
of y-space (hyperrectangle with sides [yg‘l,y,fz}) is
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where 11, is the expectation value for feature k and o2 the variance.

With
E pNormaI(Jj, M, 0'2) = 5 exp (_('u))

7'(0'2 20’2

the likelihood is
1\ (M) — )\ dh
5 ( TW) 1_11_pr( ) ) ()

For the following, | will need the derivatives
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8] e =y- f'(b)
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= dy 1+ (fby+a? VI+Y?
oh

da = VITVE
Oh _ Yy

il ob  J1+Y2 7).

Note that for f(b) = b, we have f/(b) =1, and for f(b) = €®, f'(b) = f(b) = €’.

3 Likelihood for Incremental Normalization

Here, incremental normalization means that the model parameters p1, ..., 4, and
o2 are already known from a fit to a previous set of parrays, i.e. a set of reference
arrays. See Section ?7? for the profile likelihood approach that is used if u1, ..., tn
and o2 are not known and need to be estimated from the same data. Versions
> 2.0 of the vsn package implement both of these approaches; in versions 1.X
only the profile likelihood approach was implemented, and it was described in the

initial publication [?].

First, let us note that the likelihood is simply a product of independent terms for

different . We can optimize the parameters (a;, b;) separately foreach: =1,...,d.
From the likelihood we get the i-th negative log-likelihood
d
—log(L) = Z _
i=1
i ykz )2 14 Yk2
—LL; = log 27m )+ ———— 4 log ¥——F"
> (", 700
14] :ﬁlog(Qwa)—nlogf Z yk?—uk)z%—llg(l+Yk)
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This is what we want to optimize as a function of a; and b;. The optimizer benefits
from the derivatives. The derivative with respect to a; is

h(y:i) — 1 n Yii . 1
o2 VI+YE ) J1+Y2
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and with respect to b;
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Here, | have introduced the following shorthand notation for the “intermediate
results” terms

17| Thi = h(Yri) — pre

1
A =

VI+YZ

Variables for these intermediate values are also used in the C code to organise the
computations of the gradient.

Profile Likelihood

If 11,..., tn and o2 are not already known, we can plug in their maximum likeli-
hood estimates, obtained from optimizing LL for p1,. .., i, and o

1
m a Jz::l yk]

n d
20 5 idzz (1)

into the negative log-likelihood. The result is called the negative profile log-
likelihood

nd R nd d 1 — d
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Note that this no longer decomposes into a sum of terms for each j that are inde-
pendent of each other — the terms for different j are coupled through Equations
and . We need the following derivatives.

962 2 <~ Oh(yw)
8ai B m;rki aai

22/ = id ’é ki Aki
23] a;bj = % - f'(bi) éTkiAkiyki
So, finally
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Summary
Likelihoods, from Equations and i
26
n ~ (h(yki) — pr)* RS
_ 2 i) . - 2
—LL; = 5 log (2m0?) + Z — o1 —nlog f(b;) + 5 Z log(1 + YY)
< —— k=1 k=1
scale 3 - -
residuals jacobian
nd nd 4 1 —
_ A2 N 2
—PLL = 5 log (2m67) + 5> —l—Z (—nlog fb:) + 5 Zlog(l + Yki)>
N———— ~~ i=1 k=1
scale residuals . .
jacobian

The computations in the C code are organised into steps for computing the terms

“scale”, “residuals” and “jacobian”.

Partial derivatives with respect to a;, from Equations and

g - T'ki
m‘ 6ai (_LL'L) - ’; (; + AkiYki) Aki
4 - Tki

Partial derivatives with respect to b;, from Equations and

0 _f)
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Note that the terms have many similarities — this is used in the implementation in
the C code.
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