ChlP-Seq workflow template: Some Descriptive Title

Project ID: ChlPseq_PI_Name_Organism_Jun2015
Project PI: First Last (first.last@inst.edu)
Author of Report: First Last (first.last@inst.edu)

October 21, 2016

Contents

1 Introduction

1.1 Background and objectives

This report describes the analysis of several ChlP-Seq experiments studying the DNA binding patterns of the transcriptions
factors ... from organism

1.2 Experimental design

Typically, users want to specify here all information relevant for the analysis of their NGS study. This includes detailed
descriptions of FASTQ files, experimental design, reference genome, gene annotations, etc.

2 Load workflow environment

2.1 Load packages and sample data

The systemPipeR package needs to be loaded to perform the analysis steps shown in this report (?).

library(systemPipeR)

Load workflow environment with sample data into your current working directory. The sample data are described here.

library(systemPipeRdata)
genWorkenvir (workflow="chipseq")
setwd("chipseq")

In the workflow environments generated by genWorkenvir all data inputs are stored in a data/ directory and all analysis
results will be written to a separate results/ directory, while the systemPipeChIPseq.Rnw script and the targets file
are expected to be located in the parent directory. The R session is expected to run from this parent directory. Additional
parameter files are stored under param/.

To work with real data, users want to organize their own data similarly and substitute all test data for their own data.
To rerun an established workflow on new data, the initial targets file along with the corresponding FASTQ files are
usually the only inputs the user needs to provide.

http://www.bioconductor.org/packages/devel/bioc/vignettes/systemPipeR/inst/doc/systemPipeR.html#load-sample-data-and-workflow-templates

systemPipeR ChIP-Seq Workflow 3 Read preprocessing

If applicable users can load custom functions not provided by systemPipeR. Skip this step if this is not the case.

source ("systemPipeChIPseq_Fct.R")

2.2 Experiment definition provided by targets file

The targets file defines all FASTQ files and sample comparisons of the analysis workflow.

targetspath <- system.file("extdata", "targets_chip.txt", package="systemPipeR")
targets <- read.delim(targetspath, comment.char = "#")
targets[1:4,-c(5,6)]

FileName SampleName Factor SampleLong SampleReference

1 ./data/SRR446027_1.fastq M1A M1 Mock.1h.A
2 ./data/SRR446028_1.fastq M1B M1 Mock.1h.B
3 ./data/SRR446029_1.fastq A1A Al Avr.1h.A M1A
4 ./data/SRR446030_1.fastq A1B Al Avr.1h.B M1B

3 Read preprocessing

3.1 Read quality filtering and trimming

The following example shows how one can design a custom read preprocessing function using utilities provided by the
ShortRead package, and then apply it with preprocessReads in batch mode to all FASTQ samples referenced in the
corresponding SYSargs instance (args object below). More detailed information on read preprocessing is provided in
systemPipeR’s main vignette.

args <- systemArgs(sysma="param/trim.param", mytargets="targets_chip.txt")
filterFct <- function(fq, cutoff=20, Nexceptions=0) {

gcount <- rowSums(as(quality(fq), "matrix") <= cutoff)

fqlgcount <= Nexceptions] # Retains reads where Phred scores are >= cutoff with N exceptions
}
preprocessReads (args=args, Fct="filterFct(fq, cutoff=20, Nexceptions=0)", batchsize=100000)
writeTargetsout (x=args, file="targets_chip_trim.txt", overwrite=TRUE)

3.2 FASTQ quality report

The following seeFastq and seeFastqPlot functions generate and plot a series of useful quality statistics for a set of
FASTQ files including per cycle quality box plots, base proportions, base-level quality trends, relative k-mer diversity,
length and occurrence distribution of reads, number of reads above quality cutoffs and mean quality distribution. The
results are written to a PDF file named fastqReport.pdf.

args <- systemArgs(sysma="param/bowtieSE.param", mytargets="targets_chip_trim.txt")
fqlist <- seeFastq(fastq=infilel(args), batchsize=100000, klength=8)

pdf ("./results/fastqReport.pdf", height=18, width=4*length(fqlist))

seeFastqPlot (fqlist)

dev.off ()

systemPipeR ChIP-Seq Workflow 4 Alignments

T T T T T T T T T T T T T ey -y .y
O eI N s ¢ Joeeeeses Y (Y © O O DO O O ¢ O D i © i i
\”\\‘\\‘\\W\“\\NWNNN_\N
! \' \

‘i ! ‘5 ! |: ‘g ‘E ‘s ‘? ‘§ ‘5 |g l% ‘g ‘g ‘

n

Figure 1: QC report for 18 FASTQ files.

4 Alignments

4.1 Read mapping with Bowtie2

The NGS reads of this project will be aligned with Bowtie2 against the reference genome sequence (?). The parameter
settings of the aligner are defined in the bowtieSE.paran file. In ChlP-Seq experiments it is usually more appropriate
to eliminate reads mapping to multiple locations. To achieve this, users wants to remove the argument setting '~k 50
--non-deterministic’ in the bowtieSE. paran file.

args <- systemArgs(sysma="param/bowtieSE.param", mytargets="targets_chip_trim.txt")
sysargs(args) [1] # Command-line parameters for first FASTQ file

moduleload(modules(args)) # Skip i¢f a module system is mot used

system("bowtie2-build ./data/tairl0.fasta ./data/tairl0.fasta") # Indezes reference genome
runCommandline (args)

writeTargetsout (x=args, file="targets_bam.txt", overwrite=TRUE)

Check whether all BAM files have been created
file.exists(outpaths(args))

4.2 Read and alignment stats

The following provides an overview of the number of reads in each sample and how many of them aligned to the reference.

read_statsDF <- alignStats(args=args)
write.table(read_statsDF, "results/alignStats.xls", row.names=FALSE, quote=FALSE, sep="\t")
read.delim("results/alignStats.x1ls")

4.3 Create symbolic links for viewing BAM files in IGV

The symLink2bam function creates symbolic links to view the BAM alignment files in a genome browser such as IGV
without moving these large files to a local system. The corresponding URLs are written to a file with a path specified
under urlfile, here |GVurl. txt.

symLink2bam(sysargs=args, htmldir=c("~/.html/", "somedir/"),
urlbase="http://biocluster.ucr.edu/ " tgirke/",

systemPipeR ChIP-Seq Workflow 6 Annotate peaks with genomic context

urlfile="./results/IGVurl.txt")

5 Peak calling with MACS2

5.1 Merge BAM files of replicates prior to peak calling

Merging BAM files of technical and/or biological replicates can improve the sensitivity of the peak calling by increasing
the depth of read coverage. The mergeBamByFactor function merges BAM files based on grouping information specified
by a factor, here the Factor column of the imported targets file. It also returns an updated SYSargs object containing
the paths to the merged BAM files as well as to any unmerged files without replicates. This step can be skipped if
merging of BAM files is not desired.

args <- systemArgs(sysma=NULL, mytargets="targets_bam.txt")
args_merge <- mergeBamByFactor(args, overwrite=TRUE)
writeTargetsout (x=args_merge, file="targets_mergeBamByFactor.txt", overwrite=TRUE)

5.2 Peak calling without input/reference sample

MACS2 can perform peak calling on ChIP-Seq data with and without input samples (?). The following performs peak
calling without input on all samples specified in the corresponding args object. Note, due to the small size of the sample
data, MACS2 needs to be run here with the '--nomodel’ setting. For real data sets, users want to remove this parameter
in the corresponding *.param file(s).

args <- systemArgs(sysma="param/macs2_noinput.param", mytargets="targets_mergeBamByFactor.txt")
sysargs(args) [1] # Command-line parameters for first FASTQ file

runCommandline (args)

file.exists(outpaths(args))

writeTargetsout (x=args, file="targets_macs.txt", overwrite=TRUE)

5.3 Peak calling with input/reference sample

To perform peak calling with input samples, they can be most conveniently specified in the SampleReference column
of the initial targets file. The function writeTargetsRef uses this information to create a targets file intermediate for
running MACS2 with the corresponding input samples.

writeTargetsRef (infile="targets_mergeBamByFactor.txt", outfile="targets_bam_ref.txt", silent=FALSE, overwr
args <- systemArgs(sysma="param/macs2.param", mytargets="targets_bam_ref.txt")

sysargs(args) [1] # Command-line parameters for first FASTQ file

runCommandline (args)

file.exists(outpaths(args))

writeTargetsout (x=args, file="targets_macs.txt", overwrite=TRUE)

The peak calling results from MACS2 are written for each sample to separate files in the results directory. They are
named after the corresponding *.bam files with extensions used by MACS2.

6 Annotate peaks with genomic context

systemPipeR ChIP-Seq Workflow 7 Count reads overlapping peak regions

6.1 Annotation with ChlPpeakAnno package

The following annotates the identified peaks with genomic context information using the ChIPpeakAnno and ChlPseeker
packages, respectively (?7?).

library (ChIPpeakAnno); library(GenomicFeatures)
args <- systemArgs(sysma="param/annotate_peaks.param", mytargets="targets_macs.txt")
txdb <- loadDb("./data/tair10.sqlite")
ge <- genes(txdb, columns=c("tx_name", "gene_id", "tx_type"))
for(i in seq(along=args)) {
peaksGR <- as(read.delim(infilel(args) [i], comment="#"), "GRanges")
annotatedPeak <- annotatePeakInBatch(peaksGR, AnnotationData=genes(txdb))
df <- data.frame(as.data.frame(annotatedPeak), as.data.frame(values(ge[values(annotatedPeak)$feature,]
write.table(df, outpaths(args[il), quote=FALSE, row.names=FALSE, sep="\t")

}

writeTargetsout (x=args, file="targets_peakanno.txt", overwrite=TRUE)

The peak annotation results are written for each peak set to separate files in the results directory. They are named after
the corresponding peak files with extensions specified in the annotate_peaks.param file, here '*.peaks.annotated.x1ls’.

6.2 Annotation with ChlPseeker package

Same as in previous step but using the ChlPseeker package for annotating the peaks.

library (ChIPseeker)
txdb <- loadDb("./data/tair10.sqlite")
for(i in seq(along=args)) {
peakAnno <- annotatePeak(infilel(args)[i], TxDb=txdb, verbose=FALSE)
df <- as.data.frame(peakAnno)
write.table(df, outpaths(args([i]), quote=FALSE, row.names=FALSE, sep="\t")

}

writeTargetsout (x=args, file="targets_peakanno.txt", overwrite=TRUE)

Summary plots provided by the ChlPseeker package. Here applied only to one sample for demonstration purposes.

peak <- readPeakFile(infilel(args) [1])

covplot (peak, weightCol="X.logl0O.pvalue.")

peakHeatmap (outpaths(args) [1], TxDb=txdb, upstream=1000, downstream=1000, color="red")
plotAvgProf2(outpaths(args) [1], TxDb=txdb, upstream=1000, downstream=1000, xlab="Genomic Region (5'->3')",

7 Count reads overlapping peak regions

The countRangeset function is a convenience wrapper to perform read counting iteratively over serveral range sets,
here peak range sets. Internally, the read counting is performed with the summarizeOverlaps function from the
GenomicAlignments package. The resulting count tables are directly saved to files, one for each peak set.

library(GenomicRanges)

args <- systemArgs(sysma="param/count_rangesets.param", mytargets="targets_macs.txt")
args_bam <- systemArgs(sysma=NULL, mytargets="targets_bam.txt")

bfl <- BamFileList(outpaths(args_bam), yieldSize=50000, index=character())
countDFnames <- countRangeset(bfl, args, mode="Union", ignore.strand=TRUE)
writeTargetsout (x=args, file="targets_countDF.txt", overwrite=TRUE)

systemPipeR ChIP-Seq Workflow 10 Motif analysis

8 Differential binding analysis of peaks

The function runDiff performs differential binding analysis in batch mode for several count tables using edgeR or
DESeq2 (?7). Internally, it calls the functions run_edgeR and run DESeq2. It also returns the filtering results and
plots from the downstream filterDEGs function using the fold change and FDR cutoffs provided under the dbrfilter
argument.

args_diff <- systemArgs(sysma="param/rundiff.param", mytargets="targets_countDF.txt")

cmp <- readComp(file=args_bam, format="matrix")

dbrlist <- runDiff(args=args_diff, diffFct=run_edgeR, targets=targetsin(args_bam),
cmp=cmp[[1]], independent=TRUE, dbrfilter=c(Fold=2, FDR=1))

writeTargetsout (x=args_diff, file="targets_rundiff.txt", overwrite=TRUE)

9 GO term enrichment analysis

The following performs GO term enrichment analysis for each annotated peak set.

args <- systemArgs(sysma="param/macs2.param", mytargets="targets_bam_ref.txt")

args_anno <- systemArgs(sysma="param/annotate_peaks.param", mytargets="targets_macs.txt")

annofiles <- outpaths(args_anno)

gene_ids <- sapply(names(annofiles), function(x) unique(as.character(read.delim(annofiles[x])[,"gene_id"])
load("data/G0/catdb.RData")

BatchResult <- GOCluster_Report(catdb=catdb, setlist=gene_ids, method="all", id_type="gene", CLSZ=2, cutof

10 Motif analysis

10.1 Parse DNA sequences of peak regions from genome

Enrichment analysis of known DNA binding motifs or de novo discovery of novel motifs requires the DNA sequences of
the identified peak regions. To parse the corresponding sequences from the reference genome, the getSeq function from
the Biostrings package can be used. The following example parses the sequences for each peak set and saves the results
to separate FASTA files, one for each peak set. In addition, the sequences in the FASTA files are ranked (sorted) by
increasing p-values as expected by some motif discovery tools, such as BCRANK.

library(Biostrings); library(seqlogo); library(BCRANK)
args <- systemArgs(sysma="param/annotate_peaks.param", mytargets="targets_macs.txt")
rangefiles <- infilel(args)
for(i in seq(along=rangefiles)) {
df <- read.delim(rangefiles[i], comment="#")
peaks <- as(df, "GRanges")
names (peaks) <- pasteO(as.character(segnames(peaks)), "_", start(peaks), "-", end(peaks))
peaks <- peaks[order(values(peaks)$X.loglO.pvalue, decreasing=TRUE)]
pseq <- getSeq(FaFile("./data/tair10.fasta"), peaks)
names (pseq) <- names(peaks)
writeXStringSet (pseq, pasteO(rangefiles[i], ".fasta"))

systemPipeR ChIP-Seq Workflow 11 Version Information

10.2 Motif discovery with BCRANK

The Bioconductor package BCRANK is one of the many tools available for de novo discovery of DNA binding motifs in
peak regions of ChIP-Seq experiments. The given example applies this method on the first peak sample set and plots
the sequence logo of the highest ranking motif.

set.seed(0)

BCRANKout <- bcrank(pasteO(rangefiles[1], ".fasta"), restarts=25, use.P1=TRUE, use.P2=TRUE)
toptable (BCRANKout)

topMotif <- toptable(BCRANKout, 1)

weightMatrix <- pwm(topMotif, normalize = FALSE)

weightMatrixNormalized <- pwm(topMotif, normalize = TRUE)

pdf ("results/seqlogo.pdf")

seqLogo (weightMatrixNormalized)

dev.off ()

15

Information content
-
|

0.5

AA
A
-

1 2 3 4 5 6 7

Position

Figure 2: One of the motifs identified by BCRANK

11 Version Information

toLatex(sessionInfo())

e R version 3.3.1 (2016-06-21), x86_64-apple-darwini3.4.0

e Locale: C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

e Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, stats4, utils

e Other packages: Biobase 2.34.0, BiocGenerics 0.20.0, BiocParallel 1.8.0, BiocStyle 2.2.0, Biostrings 2.42.0,
DESeq2 1.14.0, GenomelnfoDb 1.10.0, GenomicAlignments 1.10.0, GenomicRanges 1.26.1, IRanges 2.8.0,
Rsamtools 1.26.1, S4Vectors 0.12.0, ShortRead 1.32.0, SummarizedExperiment 1.4.0, XVector 0.14.0, ape 3.5,
ggplot2 2.1.0, knitr 1.14, systemPipeR 1.8.1

e Loaded via a namespace (and not attached): AnnotationDbi 1.36.0, AnnotationForge 1.16.0, BBmisc 1.10,
BatchJobs 1.6, Category 2.40.0, DBI 0.5-1, Formula 1.2-1, GO.db 3.4.0, GOstats 2.40.0, GSEABase 1.36.0,

systemPipeR ChIP-Seq Workflow 12 Funding

GenomicFeatures 1.26.0, Hmisc 3.17-4, Matrix 1.2-7.1, RBGL 1.50.0, RColorBrewer 1.1-2, RCurl 1.95-4.8,
RSQLite 1.0.0, Rcpp 0.12.7, XML 3.98-1.4, acepack 1.4.0, annotate 1.52.0, assertthat 0.1, backports 1.0.3,
base64enc 0.1-3, biomaRt 2.30.0, bitops 1.0-6, brew 1.0-6, checkmate 1.8.1, chron 2.3-47, cluster 2.0.5,
codetools 0.2-15, colorspace 1.2-7, data.table 1.9.6, digest 0.6.10, edgeR 3.16.0, evaluate 0.10, fail 1.3,

foreign 0.8-67, formatR 1.4, genefilter 1.56.0, geneplotter 1.52.0, graph 1.52.0, grid 3.3.1, gridExtra 2.2.1,
gtable 0.2.0, highr 0.6, htmltools 0.3.5, hwriter 1.3.2, labeling 0.3, lattice 0.20-34, latticeExtra 0.6-28,

limma 3.30.0, locfit 1.5-9.1, magrittr 1.5, munsell 0.4.3, nlme 3.1-128, nnet 7.3-12, pheatmap 1.0.8, plyr 1.8.4,
rjson 0.2.15, rmarkdown 1.1, rpart 4.1-10, rtracklayer 1.34.0, scales 0.4.0, sendmailR 1.2-1, splines 3.3.1,
stringi 1.1.2, stringr 1.1.0, survival 2.39-5, tibble 1.2, tools 3.3.1, xtable 1.8-2, yaml 2.1.13, zlibbioc 1.20.0

12 Funding

This project was supported by funds from the National Institutes of Health (NIH) and the National Science Foundation
(NSF).

