Pathview: pathway based data integration and visualization

Weijun Luo (luo_weijun AT yahoo.com)

October 17, 2016

Abstract

In this vignette, we demonstrate the pathview package as a tool set for pathway based data integration
and visualization. It maps and renders user data on relevant pathway graphs. All users need is to supply
their gene or compound data and specify the target pathway. Pathview automatically downloads the pathway
graph data, parses the data file, maps user data to the pathway, and renders pathway graph with the mapped
data. Although built as a stand-alone program, pathview may seamlessly integrate with pathway and gene
set (enrichment) analysis tools for a large-scale and fully automated analysis pipeline. In this vignette, we
introduce common and advanced uses of pathview. We also cover package installation, data preparation,
other useful features and common application errors. In gage package, vignette "RNA-Seq Data Pathway
and Gene-set Analysis Workflows” demonstrates GAGE/Pathview workflows on RNA-seq (and microarray)
pathway analysis.

1 Cite our work

Please cite the Pathview paper formally if you use this package. This will help to support the maintenance and
growth of the open source project.

Weijun Luo and Cory Brouwer. Pathview: an R/Bioconductor package for pathway-based data integration
and visualization. Bioinformatics, 29(14):1830-1831, 2013. doi: 10.1093/bioinformatics/btt285.

2 Quick start with demo data

This is the most basic use of pathview, please check the full description below for details. Here we assume that
the input data are already read in R as in the demo examples. If you are not sure how to do so, you may check
Section Common uses for data visualization or gage secondary vignette, "Gene set and data preparation”. If
you have difficulties in using R in general, you may use the Pathview Web server.

> library(pathview)

> data(gse16873.d)

> pv.out <- pathview(gene.data = gsel16873.d[, 1], pathway.id = "04110",
+ species = "hsa", out.suffix = "gsel6873")

3 New features

Pathview (> 1.5.4) provides paths.hsa data, the full list of human pathway ID/names from KEGG, as to help
user specify target pathway IDs when calling pathview. Please check Section Common uses for details.

Pathview (> 1.5.4) adjust the definitions of 7 arguments for pathview function: discrete, limit, bins,
both.dirs, trans.fun, low, mid, high. These arguments now accept 1- or 2-element vectors beside of 2-
element lists. For example, limit=1 is equivalent to limit=list(gene=1, cpd=1), and bins=c(3, 10) is equivalent

mailto:luo_weijun@yahoo.com
http://bioconductor.org/packages/release/bioc/vignettes/gage/inst/doc/RNA-seqWorkflow.pdf
http://bioconductor.org/packages/release/bioc/vignettes/gage/inst/doc/RNA-seqWorkflow.pdf
http://bioinformatics.oxfordjournals.org/content/29/14/1830.full
http://bioconductor.org/packages/release/bioc/vignettes/gage/inst/doc/dataPrep.pdf
http://pathview.uncc.edu/

to bins=list(gene=3, cpd=10) etc. This would makes pathview easier to use.
Pathview (> 1.1.6) can plot/integrate/compare multiple states or samples in the same graph (Subsection ?7).

Pathview (> 1.2.4) work with all KEGG species (about 3000) plus KEGG Orthology (with species="ko")
(Subsection ?7).

4 QOverview

Pathview (?) is a stand-alone software package for pathway based data integration and visualization. This
package can be divided into four functional modules: the Downloader, Parser, Mapper and Viewer. Mostly
importantly, pathview maps and renders user data on relevant pathway graphs.

Pathview generates both native KEGG view (like Figure ?? in PNG format) and Graphviz view (like Figure
?? in PDF format) for pathways (Section ??). KEGG view keeps all the meta-data on pathways, spacial and
temporal information, tissue/cell types, inputs, outputs and connections. This is important for human reading
and interpretation of pathway biology. Graphviz view provides better control of node and edge attributes,
better view of pathway topology, better understanding of the pathway analysis statistics. Currently only KEGG
pathways are implemented. Hopefully, pathways from Reactome, NCI and other databases will be supported
in the future. Notice that KEGG requires subscription for FTP access since May 2011. However, Pathview
downloads individual pathway graphs and data files through API or HTTP access, which is freely available (for
academic and non-commerical uses). Pathview uses KEGGgraph (?7) when parsing KEGG xml data files.

Pathview provides strong support for data integration (Section ??). It works with: 1) essentially all types
of biological data mappable to pathways, 2) over 10 types of gene or protein IDs, and 20 types of compound or
metabolite IDs, 3) pathways for about 3000 species as well as KEGG orthology, 4) varoius data attributes and
formats, i.e. continuous/discrete data, matrices/vectors, single/multiple samples etc.

Pathview is open source, fully automated and error-resistant. Therefore, it seamlessly integrates with
pathway or gene set (enrichment) analysis tools. In Section 7?7, we will show an integrated analysis using
pathview with anothr the Bioconductor gage package (?), available from the Bioconductor website.

Note that although we use microarray data as example gene data in this vignette, Pathview is equally
applicable to RNA-Seq data and other types of gene/protein centered high throughput data. The secondary
vignette in gage package, "RNA-Seq Data Pathway and Gene-set Analysis Workflows”, demonstrates such
applications.

This vignette is written by assuming the user has minimal R/Bioconductor knowledge. Some descriptions
and code chunks cover very basic usage of R. The more experienced users may simply omit these parts.

5 Installation

Assume R and Bioconductor have been correctly installed and accessible under current directory. Otherwise,
please contact your system admin or follow the instructions on R website and Bioconductor website. Here I
would strongly recommend users to install or upgrade to the latest verison of R (3.0.2+)/Bioconductor (2.14+)
for simpler installation and better use of Pathview. You may need to update your biocLite too if you upgrade
R/Biocondutor under Windows.

Start R: from Linux/Unix command line, type R (Enter); for Mac or Windows GUI, double click the R
application icon to enter R console.

End R: type in q() when you are finished with the analysis using R, but not now.

Two options:

Simple way: install with Bioconductor installation script biocLite directly (this included all dependencies
automatically too):

www.bioconductor.org/packages/release/bioc/html/gage.html
http://bioconductor.org/packages/release/bioc/vignettes/gage/inst/doc/RNA-seqWorkflow.pdf
http://www.r-project.org/
http://www.bioconductor.org/install/

> source("http://bioconductor.org/biocLite.R")
> biocLite("pathview")

Or a bit more complexer: install through R-forge or manually, but require dependence packages to be
installed using Bioconductor first:

> source("http://bioconductor.org/biocLite.R")
> biocLite(c("Rgraphviz", "png", "KEGGgraph", "org.Hs.eg.db"))

Then install pathview through R-forge.
> install.packages("pathview",repos="http://R-Forge.R-project.org")

Or install manually: download pathview package (from R-forge or Bioconductor, make sure with proper
version number and zip format) and save to /your/local/directory/.

> install.packages("/your/local/directory/pathview_1.0.0.tar.gz",
+ repos = NULL, type = "source")

Note that there might be problems when installing Rgraphviz or XML (KEG Ggraph dependency) package
with outdated R/Biocondutor. Rgraphviz installation is a bit complicate with R 2.5 (Biocondutor 2.10) or
earlier versions. Please check this Readme file on Rgraphviz. On Windows systems, XML frequently needs to be
installed manually. Its windows binary can be downloaded from [CRAN| and then:

> install.packages("/your/local/directory/XML_3.95-0.2.zip", repos = NULL)

6 Get Started
Under R, first we load the pathview package:
> library(pathview)

To see a brief overview of the package:
> library(help=pathview)

To get help on any function (say the main function, pathview), use the help command in either one of the
following two forms:

> help(pathview)
> 7pathview

7 Common uses for data visualization

Pathview is primarily used for visualizing data on pathway graphs. pathview generates both native KEGG view
(like Figure ??) and Graphviz view (like Figure ??). The former render user data on native KEGG pathway
graphs, hence is natural and more readable for human. The latter layouts pathway graph using Graphviz engine,
hence provides better control of node or edge attributes and pathway topology.

We load and look at the demo microarray data first. This is a breast cancer dataset. Here we would like to
view the pair-wise gene expression changes between DCIS (disease) and HN (control) samples. Note that the
microarray data are log2 transformed. Hence expression changes are log2 ratios.

> data(gse16873.d)

http://pathview.r-forge.r-project.org/Rgraphviz.README
http://cran.r-project.org/web/packages/XML/index.html

Here we assume that the input data are already read in R. If not, you may use R functions read.delim,
read.table etc to read in your data. For example, you may read in a truncated version of gsel6873 and process

it as below.

> filename=system.file("extdata/gsel16873.demo", package = "pathview")
> gsel6873=read.delim(filename, row.names=1)
> gsel6873.d=gsel6873[,2*(1:6)]-gsel16873[,2%(1:6)-1]

We also load the demo pathway related data, which includes 3 pathway ids and related plotting parameters.

> data(demo.paths)

We may also check the full list of KEGG pathway ID/names if needed. We provide human pathway IDs (in
the form of hsa+5 digits) mapping to pathway names. It is almost the same for other species, excpet for the 3
or 4 letter species code. Please check Subsection 7?7 for KEGG species code.

> data(paths.hsa)
> head(paths.hsa, 3)

hsa00010 hsa00020
"Glycolysis / Gluconeogenesis" "Citrate cycle (TCA cycle)"
hsa00030

"Pentose phosphate pathway"

First, we view the exprssion changes of a single sample (pair) on a typical signaling pathway, ”"Cell Cycle”,
by specifying the gene.data and pathway.id (Figure ??7). The microarray was done on human tissue, hence
species = "hsa". Note that such native KEGG view was outupt as a raster image in a PNG file in your

working directory.

> i <=1

> pv.out <- pathview(gene.data = gsel16873.d[, 1], pathway.id = demo.paths$sel.paths[i],

+

species

= "hsa", out.suffix = "gsel6873", kegg.native = T)

> list.files(pattern="hsa04110", full.names=T)

[1] "./hsa04110.gse16873.png" "./hsa04110.png"

[3] "./hsa04110.xml"

> str(pv.out)

List of 2
$ plot.data.gene:'data.frame': 92 obs. of 10 variables:
..$ kegg.names: chr [1:92] "1029" "51343" "4171" "4998"
..$ labels : chr [1:92] "CDKN2A" "FZR1" "MCM2" "ORC1"
..$ all.mapped: chr [1:92] "1029" "51343" "4171,4172,4173,4174,4175,4176" "4998,4999,5000,5001,23¢
..$ type : chr [1:92] "gene" "gene" "gene" "gene"
.8 x : num [1:92] 532 919 553 494 919 919 188 432 123 77 ...
Sy : num [1:92] 124 536 556 556 297 519 519 191 704 687 ...
..$ width : num [1:92] 46 46 46 46 46 46 46 46 46 46 ...
..$ height :num [1:92] 17 17 17 17 17 17 17 17 17 17 ...
..$ mol.data : num [1:92] 0.129 -0.404 -0.42 0.986 1.181 ...
.$ mol.col : Factor w/ 10 levels "#O0OFFO00","#30EF30",..: 6339999956 ...

$ plot.data.cpd : NULL

> head(pv.out$plot.data.gene)

kegg.names labels all.mapped type x y width

1 1029 CDKN2A 1029 gene 532 124 46

2 51343 FZR1 51343 gene 919 536 46

3 4171 MCM2 4171,4172,4173,4174,4175,4176 gene 553 556 46

4 4998 ORC1 4998,4999,5000,5001,23594,23595 gene 494 556 46

5 996 CDC27 996,8697,8881,10393,25847,29882,51433 gene 919 297 46

6 996 CDC27 996,8697,8881,10393,25847,29882,51433 gene 919 519 46
height mol.data mol.col

1 17 0.1291987 #BEBEBE

2 17 -0.4043256 #5FDF5F

3 17 -0.4202181 #5FDF5F

4 17 0.9864873 #FF0000

5 17 1.1811525 #FF0000

6 17 1.1811525 #FF0000

Graph from the first example above has a single layer. Node colors were modified on the original graph
layer, and original KEGG node labels (node names) were kept intact. This way the output file size is as small
as the original KEGG PNG file, but the computing time is relative long. If we want a fast view and do not
mind doubling the output file size, we may do a two-layer graph with same.layer = F (Figure ??7). This way
node colors and labels are added on an extra layer above the original KEGG graph. Notice that the original
KEGG gene labels (or EC numbers) were replaced by official gene symbols.

> pv.out <- pathview(gene.data = gsel16873.d[, 1], pathway.id = demo.paths$sel.paths[i],
+ species = "hsa'", out.suffix = "gsel6873.2layer", kegg.native = T,
+ same.layer = F)

In the above two examples, we view the data on native KEGG pathway graph. This view we get all notes
and meta-data on the KEGG graphs, hence the data is more readable and interpretable. However, the output
graph is a raster image in PNG format. We may also view the data with a de novo pathway graph layout using
Graphviz engine (Figure ?7?). The graph has the same set of nodes and edges, but with a different layout. We
get more controls over the nodes and edge attributes and look. Importantly, the graph is a vector image in
PDF format in your working directory.

> pv.out <- pathview(gene.data = gsel16873.d[, 1], pathway.id = demo.paths$sel.paths[i],
+ species = "hsa", out.suffix = "gsel6873", kegg.native = F,

+ sign.pos = demo.paths$spos[i])

> #pv.out remains the same

> dim(pv.out$plot.data.gene)

[1] 92 10

> head(pv.out$plot.data.gene)

kegg.names labels all.mapped type x y width
1 1029 CDKN2A 1029 gene 532 124 46
2 51343 FZR1 51343 gene 919 536 46
3 4171 MCM2 4171,4172,4173,4174,4175,4176 gene 553 556 46
4 4998 ORC1 4998,4999,5000,5001,23594,23595 gene 494 556 46
5 996 CDC27 996,8697,8881,10393,25847,29882,51433 gene 919 297 46
6 996 CDC27 996,8697,8881,10393,25847,29882,51433 gene 919 519 46

height mol.data mol.col
17 0.1291987 #BEBEBE

[y

0 -
;

Growrth factor Gmwth factor DH A damage checkpoint
| ‘ AN Sl
| | PN
|
| v Cabesin
| GSK3
|
Sepan
MAEPK PTTG | Secwrin
signaling +u
‘pathwsy
pl3 pli pl9 27,57 p2l
Inkda Coveas Inl(dc [tnwaa | hl Cipl |
|
|
|
|
|
! mediate
I proteolys]s
|
L oint
(STRRT)
E2F45 | EFFL23 b
(O MO (Ilin-Chromosome
R.ecogmtmn go@n?p]ex) Mainterance) coraplex O—— - phﬁse proteins,
D& o———— - DN Abinsymthesis
[t | Wem2 DHE
Tvlcrmd
WMot
Gl 8 G2 M

Data on KEGG graph
Rendered by Pathview

RRRRRRS
40 1

SMC3
Cohesin

CELL CYCLE

Growth factor Gmwth factor TGFB1 DMNA& darmage checkpoint
AN
AN

ESPL1| Separin
MAPE PTTG1]| Secmin
&1
‘pathway L u
plé pls plg pig 2757 pal
CoknzAboknzeEDKN2dbDKNZ h £okn14
L 1L |
|
|
I
TUbiguitin
| megated
I proteclysis
|
L oint %\ccmll
— M ook
ORC (O NCH (W ini-Chroraosore
Rﬁcngj\)tm%é]dg]r;lp]ex) Maml(enance):nmplax o—— ™ %gchﬁse prateins,
S TR DiTA Dg;,,,,, DIF & hinsymthesis
MCM4_MCM5
MCME_MCM7
Gl 8 G2 M

Data on KEGG graph
Rendered by Pathview

Figure 1: Example native KEGG view on gene data with the (a) default settings; or (b) same.layer=F.
6

Edge types

o)+ rer— =2 FEFTLL P
-/' 10 1

compound _—
hidden compound

activation _—)

0 g inhibition %

expression - - -----)
repression - ------ I
indirect effect < eeeeaens)

state change ~ -----oooeeenns

ﬁ binding/association @~ - ------.

EZFA '
[RBLL | |

dissociation
T - - G phosphorylaton =~ ——*P
dephosphorylaton =~ ——2

glycosylation 0

ubiquitination _—

methylation —

~Data with KEGG pathway—
—-Rendered by Pathview—

others/unknown - ---"---)

Figure 2: Example Graphviz view on gene data with default settings. Note that legend is put on the same page
as main graph.

17 -0.4043256 #5FDF5F
17 -0.4202181 #5FDF5F
17 0.9864873 #FF0000
17 1.1811525 #FF0000
17 1.1811525 #FF0000

O WwN

In the example above, both main graph and legend were put in one layer (or page). We just list KEGG edge
types and ignore node types in legend as to save space. If we want the complete legend, we can do a Graphviz
view with two layers (Figure ??): page 1 is the main graph, page 2 is the legend. Note that for Graphviz view
(PDF file), the concept of “layer” is slightly different from native KEGG view (PNG file). In both cases, we set
argument same.layer=F for two-layer graph.

> pv.out <- pathview(gene.data = gsel16873.d[, 1], pathway.id = demo.paths$sel.paths[i],
+ species = "hsa", out.suffix = "gsel6873.2layer", kegg.native = F,
+ sign.pos = demo.paths$spos[i], same.layer = F)

In Graphviz view, we have more control over the graph layout. We may split the node groups into individual
detached nodes (Figure ?7). We may even expand the multiple-gene nodes into individual genes (Figure 77).
The split nodes or expanded genes may inherit the edges from the unsplit group or unexpanded nodes. This
way we tend to get a gene/protein-gene/protein interaction network. And we may better view the network
characteristics (modularity etc) and gene-wise (instead of node-wise) data. Note in native KEGG view, a gene
node may represent multiple genes/proteins with similar or redundant functional role. The number of member
genes range from 1 up to several tens. They are intentionally put together as a single node on pathway graphs
for better clarity and readability. Therefore, we do not split node and mark each member genes separately
by default. But rather we visualize the node-wise data by summarize gene-wise data, users may specify the
summarization method using node.sum arguement.

> pv.out <- pathview(gene.data = gse16873.d[, 1], pathway.id = demo.paths$sel.paths[il,
+ species = "hsa'", out.suffix = "gsel6873.split", kegg.native = F,

+ sign.pos = demo.paths$spos[i], split.group = T)

> dim(pv.out$plot.data.gene)

[1] 92 10

> head(pv.out$plot.data.gene)

kegg.names labels all.mapped type x y width
1 1029 CDKN2A 1029 gene 532 124 46
2 51343 FZR1 51343 gene 919 536 46
3 4171 MCM2 4171,4172,4173,4174,4175,4176 gene 553 556 46
4 4998 0ORC1 4998,4999,5000,5001,23594,23595 gene 494 556 46
5 996 CDC27 996,8697,8881,10393,25847,29882,51433 gene 919 297 46
6 996 CDC27 996,8697,8881,10393,25847,29882,51433 gene 919 519 46
height mol.data mol.col
1 17 0.1291987 #BEBEBE
2 17 -0.4043256 #5FDF5F
3 17 -0.4202181 #5FDF5F
4 17 0.9864873 #FF0000
5 17 1.1811525 #FF0000
6 17 1.1811525 #FF0000

BUBL |- - - -
AD1L

R

~Data with KEGG pathway—
-Rendered by Pathview—

Cocao] H -ESPLl

PV
-1 0 1

i

(a) page 1

KEGG diagram legend

Edge Types

compound

hidden compound
activation
inhibition
expression
repression

indirect effect
state change
binding/association
dissociation
phosphorylation
dephosphorylation
glycosylation
ubiquitination
methylation

others/unknown

Figure 3: Example Graphviz view on gene data with sape. layer=F. Note that legend is put on a different page

than main graph.

Node Types

gene
(protein/enzyme)

group
(complex)

compound
(metabolite/glycan)

-

map

(pathway) Pathway name

(b) page 2

P
-1 0 1

Edge types

compound _
‘ hidden compound
activation _—
inhibition %
expression = - ------)
repression - ------ I
indirect effect --.ooooiannn)
state change ~ -----eooooen
binding/association @ - -------
dissociation
phosphorylaton ~———*P
dephosphorylation =~ ——=2
glycosylaton =~ —>9
ubiquitination - +fu
! methylaton =~ —*M
"
:g:t\adg;ZK;Gsa?:crﬁi “\:_/, others/unknown ___2___ N
(a)
1T Fdge ypes
cl -1 0 1
m n _—
12% compound
S .
ISP hidden compound
\'1"‘ ‘,'i:‘s > L,L\‘:‘,::
e\ activaton @~ ——)
" inhibition %
L Q\\“’\’l LN expression = - - -----)
WXL _
e repression - - - ---- I
indirect effect ...l)
A state change ~ ---..ooilnnnn
'/&4‘\\&",!“;}{5@ binding/association - - - - - - - -
AN R
RN v dissociation
SRER . .
= phosphorylation -
dephosphorylation =~ ——=2
glycosylaton ~—>9
ubiquitination =~ ——34
methylaton =~ ——*M
Rendered by Pation others/unknown - - = 2— — -

Figure 4: Example Graphviz view on gene data Wit(}n (a) split.group = T; or (b) expand.node =

> pv.out <- pathview(gene.data = gsel6873.d[, 1], pathway.id = demo.paths$sel.paths[i],
+ species = "hsa'", out.suffix = "gsel6873.split.expanded", kegg.native = F,

+ sign.pos = demo.paths$spos[i], split.group = T, expand.node = T)

> dim(pv.out$plot.data.gene)

[1] 124 10
> head(pv.out$plot.data.gene)

kegg.names labels all.mapped type x y width height mol.data

hsa:1029 1029 CDKN2A 1029 gene 532 124 46 17 0.12919874

hsa:51343 51343 FZR1 51343 gene 919 536 46 17 -0.40432563

hsa:4171 4171 MCM2 4171 gene 553 556 46 17 0.17968149

hsa:4172 4172 MCM3 4172 gene 553 556 46 17 0.33149955

hsa:4173 4173 MCM4 4173 gene 553 556 46 17 0.06996779

hsa:4174 4174 MCM5 4174 gene 553 556 46 17 -0.42874682
mol.col

hsa:1029 #BEBEBE
hsa:51343 #5FDF5F
hsa:4171 #BEBEBE
hsa:4172 #CE8F8F
hsa:4173 #BEBEBE
hsa:4174 #5FDF5F

8 Data integration

Pathview provides strong support for data integration. It can be used to integrate, analyze and visualize a wide
variety of biological data (Subsection ?7): gene expression, protein expression, genetic association, metabolite,
genomic data, literature, and other data types mappable to pathways. Notebaly, it can be directly used for
metagenomic, microbiome or unknown species data when the data are mapped to KEGG ortholog pathways
(Subsection ??7). The integrated Mapper module maps a variety of gene/protein IDs and compound/metabolite
IDs to standard KEGG gene or compound IDs (Subsection ??). User data named with any of these different
ID types get accurately mapped to target KEGG pathways. Currently, pathview covers KEGG pathways for
about 3000 species (Subsection ?7), and species can be specified either as KEGG code, scientific name or comon
name. In addition, pathview works with different data attributes and formats, both continuous and discrete data
(Subsection ?7?), either in matrix or vector format, with single or multiple samples/experiments etc. Partcullary,
Pathview can now integrate and compare multiple samples or states into one graph (Subsection 77?).

8.1 Compound and gene data

In examples above, we viewed gene data with canonical signaling pathways. We frequently want to look
at metabolic pathways too. Besides gene nodes, these pathways also have compound nodes. Therefore, we
may integrate or visualize both gene data and compound data with metabolic pathways. Here gene data
is a broad concept including genes, transcripts, protein , enzymes and their expression, modifications and
any measurable attributes. Same is compound data, including metabolites, drugs, their measurements and
attributes. Here we still use the breast cancer microarray dataset as gene data. We then generate simulated
compound or metabolomic data, and load proper compound ID types (with sufficient number of unique entries)
for demonstration.

> sim.cpd.data=sim.mol.data(mol.type="cpd", nmol=3000)
> data(cpd.simtypes)

11

We generate a native KEGG view graph with both gene data and compound data (Figure ?77).

Such

metabolic pathway graphs generated by pathview is the same as the original KEGG graphs, except that the
compound nodes are magnified for better view of the colors.

> i <- 3
> print(demo.paths$sel.paths[i])

[1]

> pv.out <- pathview(gene.data
pathway.id = demo.paths$sel.paths[i], species
kegg.native

+
+

"00640"

keys.align = "y",
> str(pv.out)

List of 2

$ plot.data.gene:'data.frame':
[1:

.. $

HF P H hH hH H H

.3

-$

kegg.names:
labels
all.mapped:
type

X

y

width
height
mol.data
mol.col

$ plot.data.cpd
..$

> head(pv.out$plot.data.cpd)

$
$
$
.8
..$
$
$
$
$

kegg.names

kegg.names:
labels
all.mapped:
type

X

y

width
height
mol.data
mol.col

chr

: chr

chr

: chr
: num
: num
: num
: num
: num

chr

: chr

chr

: chr
: num
: num
: num
: num
: num

26 C00222 C00222

27 C00804 C00804

28 C01013 C01013

29 C00099 C00099

31 C00083 C00083

79 C00109 C00109
mol.col

26 #BEBEBE

27 #BEBEBE

28 #FFFFFF

[1:
[1:
[1:
[1:
[1:
[1:
[1:
[1:
: Factor

24]
24]
24]
24]
24]
24]
24]
24]
24]

w/ 8 levels "#30EF30","#5FDF5F",..:
:'data.frame':
[1:
[1:
[1:
[1:
[1:
[1:
[1:
[1:
[1:
: Factor

48]
48]
48]
48]
48]
48]
48]
48]
48]

w/ 8 levels "#0OOOFF","#3030EF",..:

labels all.mapped

gsel16873.d[, 1], cpd.data
"hsa'", out.suffix

T, key.pos = demo.paths$kposi[i])

24 obs. of 10 variables:

"4329" "31" "23417" "18"

"ALDH6A1" "ACACA" "MLYCD" "ABAT"

"4329" "31,32" "23417" "18"

"gene" '"gene" "gene" "gene"

202 202 202 319 418 ...

325 252 204 378 327 402 494 390 390 229 ...
46 46 46 46 46 46 46 46 46 46 ...

17 17 17 17 17 17 17 17 17 17 ...

0.747 -0.483 -0.251 2.785 0.77 ...

48 obs.
"C00804"

of 10 variables:
"C01013" "CO0099"
"C00222" "C00804" "C01013" "CO0099"
"C00222" "CO0804" "" "CO0099"

"compound" "compound" "compound" "compound"
268 265 367 368 265 776 881 996 549 549 ...
327 449 327 388 228 105 105 105 157 228 ...
8888888888 ...

8888888888 ...

0.14 0.143 NA -0.638 1.053 ...

"C00222"

568277

type x y width height mol.data

C00222 compound 268 327 8 8 0.1397585
C00804 compound 265 449 8 8 0.1429100
compound 367 327 8 8 NA

C00099 compound 368 388 8 8 -0.6382880
C00083 compound 265 228 8 8 1.0532859
C00109 compound 776 105 8 8 0.8255747

12

sim.cpd.data,

"gsel6873.cpd"”,

6237668744 ...

4188 ...

29 #3030EF
31 #FFFFO0O
79 #FFFFOO

We also generate Graphviz view of the same pathway and data (Figure ?7). Graphviz view better shows
the hierarchical structure. For metabolic pathways, we need to parse the reaction entries from xml files and
convert it to relationships between gene and compound nodes. We use ellipses for compound nodes. The labels
are standard compound names, which are retrieved from CHEMBL database. KEGG does not provide it in
the pathway database files. Chemical names are long strings, we need to do word wrap to fit them to specified
width on the graph.

> pv.out <- pathview(gene.data = gsel6873.d[, 1], cpd.data = sim.cpd.data,

+ pathway.id = demo.paths$sel.paths[i], species = "hsa", out.suffix = "gsel6873.cpd",
+ keys.align = "y", kegg.native = F, key.pos = demo.paths$kpos2[i],
+ sign.pos = demo.paths$spos[i], cpd.lab.offset = demo.paths$offs[i])

8.2 Multiple states or samples

In all previous examples, we looked at single sample data, which are either vector or single-column matrix.
Pathview also handles multiple sample data, it used to generate graph for each sample. Since version 1.1.6,
Pathview can integrate and plot multiple samples or states into one graph (Figure 7?7 - 77).

Let’s simulate compound data with multiple replicate samples first.

> set.seed(10)
> sim.cpd.data2 = matrix(sample(sim.cpd.data, 18000,
+ replace = T), ncol = 6)
> rownames (sim.cpd.data2) = names(sim.cpd.data)
> colnames(sim.cpd.data2) = paste("exp", 1:6, sep = "")
> head(sim.cpd.data2, 3)
expl exp2 exp3 exp4 expb exp6

C02787 0.62355826 -0.1108793 1.069398 -0.9595403 1.653444849 1.360614
C08521 -1.23737070 0.4676360 -2.064253 -0.6593838 0.004274093 0.512765
C01043 -0.01768295 0.5472769 -0.592388 -0.1190882 0.950917578 -1.130288

In the following examples, gene.data has three samples while cpd.data has two. We may include all these
samples in one graph. We can do either native KEGG view (Figure ??) or Graphviz view (Figure ??)on such
multiple-sample data. In these graphs, we see that the gene nodes and compound nodes are sliced into multiple
pieces corresponding to different states or samples. Since the sample sizes are different for gene.data and
cpd.data, we can choose to match the data if samples in the two data types are actually paired, i.e. first
columns of for gene.data and cpd.data come from the same experiment/sample, and so on.

> #KEGG view
> pv.out <- pathview(gene.data = gsel16873.d[, 1:3],

+ cpd.data = sim.cpd.data2[, 1:2], pathway.id = demo.paths$sel.paths[i],
+ species = "hsa'", out.suffix = "gsel6873.cpd.3-2s", keys.align = "y",
+ kegg.native = T, match.data = F, multi.state = T, same.layer = T)

> head(pv.out$plot.data.cpd)

kegg.names labels all.mapped type x y width height expl
26 C00222 C00222 C00222 compound 268 327 8 8 -0.1322799

13

PROPANOATE METABOLISM

Glyeerome-F - Methylgtvonl

Ivlethanol

Data on KEGG graph
Rendered by Pathview

2 Hydronybutanoatd

()
L Lactaldshyde

__ { Cysteine and methionine
wirtdbolism
|- ——{ Gly, Ser & Thr metabolist

Propanoyl.
phbpiate

RRRRRRS
- 0

1
]|
-1 0 1

Propann:

Fropignyl-

deulste
[2318][23122] | [e211 (62117
bie 5 Branched
olpoamide £ — | cifiasic acid wetasolism

I
|
|~ —{ p-Alanize metabolisra
11

Isolencine d dati

2 Methyl

cis-acoritate

 Methyl-
‘trans-aconitate

1-Fropamnl

Methylisocitrate

Hydracrylic acid

nyl-CoA

TS mm

Propenoyl-CoA

ECHST]

oxopropanoyl-CoA
— < [<
=3\

oxopropanoyl-CoA

Valine,

leucine and
isoleucine
degradation

C5-Branched
dibasic acid
metabolism

(O for\
ate semialdehyde

beta-Alanine
metabolism

Propionic acid

oo Ci5972

C15073

[rcacal—s

MaloryT-CoA
= 3-Chloroacrylic
o cozz ack
== [FeE] degradation
~~ A
Acetoacetyl-CoA Pyruvate
Pantothenate metabolism
and CoA

beta-Alanine biosynthesis

Figure 5: Example (a) KEGG view or (b) Graphviz

Node types

~Data with KEGG pathway—
~Rendered by Pathview-

gene
(protein/enzyme)

/

<«
Suc

Citrate cycle
(TCA cycle)

| DU
-/Em e nic

group
(complex)

C21017

compound
(metabolite/glycan)

O

Cysteine and
methionine
metabolism

acid

ic acid
map

(pathway) ~ Pathway name

c21018

aat AN
-1 0 1
P
-1 0 1

(b)

view on both gene data and compound data simultaneously.

14

27 C00804 C00804 C00804 compound 265 449 8 8 -0.1996916
28 C01013 C01013 compound 367 327 8 8 NA
29 C00099 C00099 C00099 compound 368 388 8 8 1.4532987
31 C00083 C00083 C00083 compound 265 228 8 8 0.6580861
79 C00109 C00109 C00109 compound 776 105 8 8 -0.9303826

exp2 expl.col exp2.col
26 0.1614143 #BEBEBE #BEBEBE
27 -1.0967526 #BEBEBE #0000FF
28 NA #FFFFFF #FFFFFF
29 -0.91565783 #FFFFOO #0000OFF
31 -0.3964395 #EFEF30 #8F8FCE
79 -1.5159213 #O000OOFF #0000FF

> #KEGG view with data match

> pv.out <- pathview(gene.data = gsel16873.d[, 1:3],

+ cpd.data = sim.cpd.data2[, 1:2], pathway.id = demo.paths$sel.paths[i],
species = "hsa", out.suffix = "gsel6873.cpd.3-2s.match",
keys.align = "y", kegg.native = T, match.data = T, multi.state = T,
same.layer = T)

#graphviz view

pv.out <- pathview(gene.data = gsel6873.d[, 1:3],
cpd.data = sim.cpd.data2[, 1:2], pathway.id = demo.paths$sel.paths[i],
species = "hsa", out.suffix = "gsel6873.cpd.3-2s", keys.align = "y",
kegg.native = F, match.data = F, multi.state = T, same.layer = T,
key.pos = demo.paths$kpos2[i], sign.pos = demo.paths$spos([i])

+ + + +VV + o+ o+

Again, we may choose to plot the samples separately, i.e. one sample per graph. Note that in this case, the
samples in gene.data and cpd.data has to be matched as to be assigned to the same graph. Hence, argument
match.data isn’t really effective here.

> #plot samples/states separately
> pv.out <- pathview(gene.data = gsel16873.d[, 1:3],

+ cpd.data = sim.cpd.data2[, 1:2], pathway.id = demo.paths$sel.paths[i],
+ species = "hsa", out.suffix = '"gsel6873.cpd.3-2s", keys.align = "y",
+ kegg.native = T, match.data = F, multi.state = F, same.layer = T)

As described above, KEGG views on the same layer may takes some time. Again, we can choose to do
KEGG view with two layers as to speed up the process if we don’t mind losing the original KEGG gene labels
(or EC numbers).

> pv.out <- pathview(gene.data = gsel16873.d[, 1:3],

+ cpd.data = sim.cpd.data2[, 1:2], pathway.id = demo.paths$sel.paths[i],
species = "hsa", out.suffix = "gsel6873.cpd.3-2s.2layer",

keys.align = "y", kegg.native = T, match.data = F, multi.state = T,
same.layer = F)

+ + +

8.3 Discrete data

So far, we have been dealing with continuous data. But we often work with discrete data too. For instance,
we select list of signficant genes or compound based on some statistics (p-value, fold change etc). The input
data can be named vector of two levels, either 1 or 0 (signficant or not), or it can be a shorter list of signficant
gene/compound names. In the next two examples, we made both gene.data and cpd.data or gene.data only
(Figure 7?) discrete.

15

——{Gmmr) p——
(o A0
-

|

-1 0

PROPANOATE METABOLISK 2 Hydroxgbtanoateff()

Propanoyl.
phiepiats

Propigmyl-
adenylate

231202] 62117

anoyl C5-Branched
diolipbamide-E ¢~ P ifasic acid metabalisr
|
|
|

3 Hyrdroy- - - —{ -Alanine metsholista
Propanoats e |
______________ £ & { Tsolensine degradation

5.2 Methyl
SR

ilethyk

2Methylk -
trans-aconitate

cis-acontate’

(R)-Methyl
ralonyl Cok

)
L-Lactaldehyde 1-Propancl

Inlethylghyoxal

Glyserone-P

Suceingl-Cok ?

Acetatd) Methylisocitrate
O
Methanol
Data on KEGG graph
Rendered by Pathview
= gt e FEETTT I —m
ER— R G B o 1
|
-
-1 0 1

Propanoyl.
phbpiate

Fropignyl-
deulste

[2318[23122] | [e211 (62047

anoyl- C5-Branched
diobpoaride-E ¢ 7 7 dhasic acid metabolist
|
|~ —{ p-Alanine metabolism
11

Methyl-

2 Methyl
‘trans-aconitate

cis-acoritate’

(R)-Methyk
rylCo

Glyvolysis

@
L Dacteldshpds 1-Pxopanol

Glyeerome-F - Methylgtvonl

Methylisocitrate

Ivlethanol

Data on KEGG graph
Rendered by Pathview

(b)

Figure 6: Example KEGG view on multiple states of both gene data and compound data simultaneously (a)

without or (b) with matching the samples.

16

Propenoyi-Con
~

C O

Valine,
leucine and
isoleucine

degradation

(S)-Methylmalon\

ate sef f dehyde

Propanol/CoA

C5-Branched
dibasic acid
metabolism

beta-Alanine
metabolism

Propionyladenyl\

< [Acsss]

Propionic acid

C15973

4./(:) 2-Methyl-3-\

MCEE oxopropanoyl-CoA
= g

<« [wut] eq-

(S)-2-Methyl-3-\

Succinyl- CcA

—Data with KEGG pathway-
-Rendered by Pathview-

Ethylenesuccinic

- gene

(protein/fenzyme)

Citrate cycle
(TCA cycle)

group

&> —mm

2-Oxobutanoic

Acetyl-Cop

C00222

Bres—

Er e
S peta-Aanine
O_) Pantothenate
and CoA
biosynthesis

Figure 7: Example Graphviz view on multiple states of both gene data and compound data simultaneously.

L/A:emacety\ -Coy

Malonyl-CoA

3-Chloroacrylic

degradation

Pyruvate
metabolism

17

2-Hydroxybutano\

(complex)
Cc21017
compound
remorine. (metabolite/glycan)
metabolism

map
(pathway)

aaatliiN
-1 0 1
P
-1 0 1

Node types

-,

Pathway name

PROPAMNOATE METABOLISM

3. Chloroacrylic acid
Gegradation

i
Y

Glyeerone-F

Ivlethanol

Data on KEGG graph
Rendered by Pathview

p Pantothenate and | Hyrdrozy-
mmm Cof biosymthesis | acztone

Methylglyorl

_ _ { Cysteine and methionine
‘r wietabolisn
‘V— —{ Gly, Ser & Thr metabolisr

2 Hyborybutanoatd

[6211]

o
Progionyl-Cod

e S]] |

ls2117]

Propiquyl-
deulste

|-
0 5

1 0 1

[e211 |5

2117

{
I
|

C5-Branched
7| diasic acid wetabolism.
| p-Ailaning metabolism
Tsoleucine degradati

5

1

B-Alanyl-Coh

1,2-Propanediol

2 Methyl

cis-acoritate

L] %, &
L-Lactaldshypds 1-Fropanol

<1 14

Citrate cyele Pymuvate

[4217]

[az1117]

 Methyl-
trans-aconitate

Figure 8: Example native KEGG view on discrete gene data and continuous compound data simultaneously.

> require(org.Hs.eg.db)

> gsel6873.t <- apply(gsel16873.d, 1
+ alternative = "two.sided")$p.
> sel.genes <- names(gsel6873.t) [gs
> sel.cpds <- names(sim.cpd.data) [a
> pv.out <- pathview(gene.data = se
+

keys.align = "y", kegg.native
limit = list(gene = 5, cpd
na.col = "gray", discrete =1
pv.out <- pathview(gene.data = se
pathway.id = demo.paths$sel.p
keys.align = "y", kegg.native
limit = list(gene = 5, cpd =
na.col = "gray", discrete =1

+ + + + VvV + + o+

8.4 ID mapping

, function(x) t.test(x,
value)

el16873.t < 0.1]
bs(sim.cpd.data) > 0.5]
l.genes, cpd.data = sel.cpds,

pathway.id = demo.paths$sel.paths[i], species = "hsa", out.suffix

= T, key.pos = demo.paths$kpos1[i],

= 2), bins = list(gene = 5, cpd = 2),

T, cpd = T))

1l.genes, cpd.data = sim.cpd.data,
aths[i], species "hsa",
T, key.pos = demo.paths$kposi[i],
1), bins = list(gene = 5, cpd = 10),
ist(gene = T, cpd = F))

ist(gene =

out.suffix

"sel.genes.sel.cpd",

"sel.genes.cpd",

A distinguished feature of pathview is its strong ID mapping capability. The integrated Mapper module maps
over 10 types of gene or protein IDs, and 20 types of compound or metabolite IDs to standard KEGG gene or
compound IDs, and also maps between these external IDs. In other words, user data named with any of these
different ID types get accurately mapped to target KEGG pathways. Pathview applies to pathways for about
3000 species, and species can be specified in multiple formats: KEGG code, scientific name or comon name.
The following example makes use of the integrated mapper to map external ID types to standard KEGG IDs
automatically (Figure ??7). We only need to specify the external ID types using gene.idtype and cpd.idtype
arguments. Note that automatic mapping is limited to certain ID types. For details check: gene.idtype.list

and data(rn.list); names(rn.list).

18

_ _ { Cysteine and ruethionine
‘r wirtdbolism

PROPANOATE METABOLISIM 2-Hydrorybutanoat]_) |~ — —{ Gly, Ser & Thr metabolist
|
2721 Progmoate
@ i
S Gyl |- — AP actate
§§§‘°‘”1,§' -
| nylate
ety aiis ok o 2534 62113
A Cok propignyl-Ca
‘, (2131]—>C @) (Lastoyl-Coh (312 |31z | [e21 |EE0E
Lo _ o C3 Branched
¢~ 5| s scid wstabolism
[12.17] I
|~ p-Alenize metabolisra
pmpannae I
anEl () Tsoleurine degradt

5

2 Methyl

fristitl .

 Methyl-
trans aconitate

2 &
] Mat}\y]g]ynx-a] L Lactaldshyde 1-Fiopancl

Glyeerone-F

) : Sis] e M .
7 -
L) \II\!

Data on KEGG graph
Rendered by Pathview 3

Figure 9: Example native KEGG view on gene data and compound data with other ID types.

> cpd.cas <- sim.mol.data(mol.type = "cpd", id.type = cpd.simtypes[2],

+ nmol = 10000)

> gene.ensprot <- sim.mol.data(mol.type = "gene", id.type = gene.idtype.list[4],
+ nmol = 50000)

> pv.out <- pathview(gene.data = gene.ensprot, cpd.data = cpd.cas,

+ gene.idtype = gene.idtype.list[4], cpd.idtype = cpd.simtypes[2],

+ pathway.id = demo.paths$sel.paths[i], species = "hsa", same.layer = T,

+

+

+

out.suffix = "gene.ensprot.cpd.cas", keys.align = "y", kegg.native = T,
key.pos = demo.paths$kpos2[i], sign.pos = demo.paths$spos[i],
limit = list(gene = 3, cpd = 3), bins = list(gene = 6, cpd = 6))

For external IDs not in the auto-mapping lists, we may make use of the mol.sum function (also part of the
Mapper module) to do the ID and data mapping explicitly. Here we need to provide id.map, the mapping matrix
between external ID and KEGG standard ID. We use ID mapping functions including id2eg and cpdidmap
etc to get id.map matrix. Note that these ID mapping functions can be used independent of pathview main
function. The following example use this route with the simulated gene.ensprot and cpd.kc data above, and
we get the same results (Figure not shown).

> id.map.cas <- cpdidmap(in.ids = names(cpd.cas), in.type = cpd.simtypes[2],
+ out.type = "KEGG COMPOUND accession")

> cpd.kc <- mol.sum(mol.data = cpd.cas, id.map = id.map.cas)

> id.map.ensprot <- id2eg(ids = names(gene.ensprot),

+ category = gene.idtype.list[4], org = "Hs")

> gene.entrez <- mol.sum(mol.data = gene.ensprot, id.map = id.map.ensprot)
> pv.out <- pathview(gene.data = gene.entrez, cpd.data = cpd.kc,

+ pathway.id = demo.paths$sel.paths[i], species = "hsa", same.layer = T,
+ out.suffix = '"gene.entrez.cpd.kc", keys.align = "y", kegg.native = T,
+ key.pos = demo.paths$kpos2[i], sign.pos = demo.paths$spos[i],

19

+ limit = list(gene = 3, cpd = 3), bins = list(gene = 6, cpd = 6))

8.5 Working with species

Species is a tricky yet important issue when working with KEGG. KEGG has its own dedicated nomenclature
and database for species, which includes about 3000 organisms with complete genomes. In other words, gene
data for any of these organisms can be mapped, visualized and analyzed using pathview. This comprehensive
species coverage is a prominent feature of pathview’s data integration capacity. However, KEGG does not treat
all of these organisms/genomes the same way. KEGG use NCBI GenelD (or Entrez Gene) as the default ID for
the most common model animals, including human, mouse, rat etc and a few crops, e.g. soybean, wine grape
and maize. On the other hand, KEGG uses Locus tag and other IDs for all others organisms, including animals,
plants, fungi, protists, as well as bacteria and archaea.

Pathview carries a data matrix korg, which includes a complete list of supported KEGG species and default
gene IDs. Let’s explore korg data matrix as to have some idea on KEGG species and its Gene 1D usage.

> data(korg)
> head (korg)

kegg.code scientific.name common .name

[1,] "hsa" "Homo sapiens" "human"

[2,] "ptr" "Pan troglodytes" "chimpanzee"

[3,1 "pps" "Pan paniscus" "bonobo"

[4,] "ggo" "Gorilla gorilla gorilla" "western lowland gorilla"

(5,1 "pon" "Pongo abelii" "Sumatran orangutan"

[6,] "mcc" "Macaca mulatta" "rhesus monkey"
entrez.gnodes kegg.geneid ncbi.geneid

(1,7 "1" "100" "100"

2,7 "1" "100533953" "100533953"

(3,7 "1" "100967419" "100967419"

(4,7 "1" "101123859" "101123859"

(5,1 "1" "100169736" "100169736"

(6,1 "1" "100301991" "100301991"

> #number of species which use Entrez Gene as the default ID
> sum(korgl[, "entrez.gnodes"]=="1",na.rm=T)

[1] 81

> #number of species which use other ID types or none as the default ID
> sum(korgl, "entrez.gnodes"]=="0",na.rm=T)

[1] 2969

> #species which do not have Entrez Gene annotation at all
> na.idx=is.na(korgl, "ncbi.geneid"])
> korg[na.idx,]

kegg.code scientific.name

[1,] "dosa" "Oryza sativa japonica"

[2,] "pfh" "Plasmodium falciparum HB3"

(3,1 "pfa" "Plasmodium falciparum Dd42"

[4,] "send" "Salmonella enterica subsp. enterica serovar Typhimurium DT104"

20

[5,] "sens" "Salmonella enterica subsp. enterica serovar Agona 24249"

6,] "senb" "Salmonella enterica subsp. enterica serovar Bovismorbificans"
7,] "kpr" "Klebsiella pneumoniae subsp. rhinoscleromatis SB3432"
common .name entrez.gnodes kegg.geneid ncbi.geneid

[1,] "Japanese rice" "O" "0s01t0183400-00" NA

2,1 " "o" "PFHG_00076" NA

(3,1 "" "o" "PFDG_00003" NA

(4,1 " "o" "DT104_00921" NA

(5,1 "" "o" "Q786_00430" NA

6,1 " "o "BN855_10520" NA

(7,1 "" "o" "KPR_0002" NA

From the exploration of korg above, we see that out of the 3000 KEGG species, only a few don’t have
NCBI (Entrez) Gene ID or any gene ID (annotation) at all. Almost all of them have both default KEGG
gene ID (often Locus tag) and Entrez Gene ID annotation. Therefore, pathview accepts gene.idtype="kegg"
or "Entrez" (case insensitive) for all these species. The users need to make sure the right gene.idtype is
specified because KEGG and Entrez Gene IDs are not the same except for 35 common species. For 19 species,
Bioconductor provides gene annotation packages. The users have the freedom to input gene.data with other
gene.idtype’s. For a list of these Bioconductor annotated species and extra Gene ID types allowed:

> data(bods)

> bods
package species kegg code id.type
[1,] "org.Ag.eg.db" "Anopheles" "aga" "eg"
[2,] "org.At.tair.db" "Arabidopsis" "ath" "tair"
[3,] "org.Bt.eg.db" "Bovine" "bta" "eg"
[4,] "org.Ce.eg.db" "Worm" ncel" "eg"
[5,] "org.Cf.eg.db" "Canine" "cfa" "eg"
[6,] "org.Dm.eg.db” "F]_y” "dme" "eg"
[7,] "org.Dr.eg.db" "Zebrafish" "dre" "eg"
[8,] "org.EcK12.eg.db" "E coli strain K12" "eco" "eg"
[9,] "org.EcSakai.eg.db" "E coli strain Sakai" "ecs" "eg"
[10,] "org.Gg.eg.db" "Chicken" "gga neg"
[11,] "org.Hs.eg.db" "Human" "hea Neg"
[12,] "org.Mm.eg.db" "Mouse" - Mg
[13,] "org.Mmu.eg.db" "Rhesus" "mee" Neg"
[14,] "org.Pf.plasmo.db" "Malaria" "pfa" "orf"
[15,] "org.Pt.eg.db" "Chimp" "ptr" Meg"
[16,] "org.Rn.eg.db" "Rat" "rno" "eg"
[17,] "org.Sc.sgd.db" "Yeast" "sce" "orf"
[18,] "org.Ss.eg.db" "Pig" "ssc" "eg"
[19,] "org.Xl.eg.db" "Xenopus" "xla" "eg"

> data(gene.idtype.list)
> gene.idtype.list

(1] "SyMBOL" "GENENAME" "ENSEMBL" "ENSEMBLPROT" "UNIGENE"
[6] "UNIPROT" "ACCNUM" "ENSEMBLTRANS" "REFSEQ" "ENZYME"
[11] "TAIR" "PROSITE" "ORF"

21

All previous examples show human data, where Entrez Gene is KEGG’s default gene ID. Pathview now
(since version 1.1.5) explicitly handles species which use Locus tag or other gene IDs as the KEGG default ID.
Below are an couple of examples with E coli strain K12 data. First, we work on gene data with the default
KEGG ID (Locus tag) for E coli K12.

> eco.dat.kegg <- sim.mol.data(mol.type="gene",id.type="kegg",species="eco",nmol=3000)
> head(eco.dat.kegg)

b1447 b1206 b2579 b0264 b2197 b2267
-1.15259948 0.46416071 0.72893247 0.41061745 -1.46114720 -0.01890809

> pv.out <- pathview(gene.data = eco.dat.kegg, gene.idtype="kegg",
+ pathway.id = "00640", species = "eco", out.suffix = "eco.kegg",
+ kegg.native = T, same.layer=T)

We may also work on gene data with Entrez Gene ID for E coli K12 the same way as for human.

> eco.dat.entrez <- sim.mol.data(mol.type="gene",id.type="entrez",species="eco",nmol1=3000)
> head(eco.dat.entrez)

946172 945943 947303 945003 946915 946983
-1.15259948 0.46416071 0.72893247 0.41061745 -1.46114720 -0.01890809

> pv.out <- pathview(gene.data = eco.dat.entrez, gene.idtype="entrez",
+ pathway.id = "00640", species = '"eco", out.suffix = "eco.entrez",
+ kegg.native = T, same.layer=T)

Based on the bods data described above, E coli K12 is an Bioconductor annotated species. Hence we may
further work on its gene data with other ID types, for example, official gene symbols. When calling pathview,
such data need to be mapped to Entrez Gene ID first (if not yet), then to default KEGG ID (Locus tag).
Therefore, it takes longer time than the last example.

egid.eco=eg2id(names (eco.dat.entrez), category="symbol", pkg="org.EcK12.eg.db")
eco.dat.symbol <- eco.dat.entrez
names (eco.dat.symbol) <- egid.ecol,2]
head(eco.dat.kegg)
pv.out <- pathview(gene.data = eco.dat.symbol, gene.idtype="symbol",
pathway.id = "00640", species = '"eco", out.suffix = "eco.symbol.2layer",
kegg.native = T, same.layer=F)

+ + VvV VvV Vv VvV

Importantly, pathview can be directly used for metagenomic or microbiome data when the data are mapped
to KEGG ortholog pathways. And data from any new species that has not been annotated and included
in KEGG (non-KEGG species) can also been analyzed and visualized using pathview by mapping to KEGG
ortholog pathways the same way. In the next example, we simulate the mapped KEGG ortholog gene data first.
Then the data is input as gene.data with species="ko". Check pathview function for details.

> ko.data=sim.mol.data(mol.type="gene.ko", nmol=5000)
> pv.out <- pathview(gene.data = ko.data, pathway.id = "04112",
+ species = "ko", out.suffix = "ko.data", kegg.native = T)

22

9 Integrated workflow with pathway analysis

Although built as a stand alone program, Pathview may seamlessly integrate with pathway and functional anal-
ysis tools for large-scale and fully automated analysis pipeline. The next example shows how to connect common
pathway analysis to results rendering with pathview. The pathway analysis was done using another Bioconduc-
tor package gage (?), and the selected signficant pathways plus the expression data were then piped to pathview
for auomated results visualization (Figure not shown). In gage package, vignette "RNA-Seq Data Pathway and
Gene-set Analysis Workflows” demonstrates GAGE /Pathview workflows on RNA-seq (and microarray) pathway
analysis.

library(gage)

data(gse16873)

cn <- colnames(gsel6873)

hn <- grep('HN',cn, ignore.case =TRUE)

dcis <- grep('DCIS',cn, ignore.case =TRUE)

data(kegg.gs)

#pathway analysis using gage

gsel6873.kegg.p <- gage(gsel6873, gsets = kegg.gs,
ref = hn, samp = dcis)

#prepare the differential expression data

gsel16873.d <- gagePrep(gse16873, ref = hn, samp = dcis)

#equivalently, you can do simple subtraction for paired samples

gsel6873.d <- gsel6873[,dcis]-gsel16873[,hn]

#select significant pathways and extract their IDs

sel <- gsel6873.kegg.p$greater[, "q.val"] < 0.1 & !is.na(gsel6873.kegg.p$greater|,
"g.val"])

path.ids <- rownames(gsel6873.kegg.pbgreater) [sell

path.ids2 <- substr(path.ids[c(1, 2, 7)1, 1, 8)

#pathview visualization

pv.out.list <- sapply(path.ids2, function(pid) pathview(gene.data = gsel6873.d[,
1:2], pathway.id = pid, species = "hsa"))

+ VVVYV +VVVVVV +VVVVYVVVYV

10 Common Errors

e mismatch between the IDs for gene.data (or cpd.data) and gene.idtype (or cpd.idtype). For example,
gene.data or cpd.data uses some extern ID types, while gene.idtype = "entrez" and cpd.idtype =
"kegg" (default).

e mismatch between gene.data (or cpd.data) and species. For example, gene.data come from "mouse”,
while species="hsa".

e pathway.id wrong or wrong format, right format should be a five digit number, like 04110, 00620 etc.

e any of limit, bins, both.dir, trans.fun, discrete, low, mid, high arguments is specified as a
vector of length 1 or 2, instead of a list of 2 elements. Correct format should be like 1imit = list(gene
=1, cpd = 1.

e key.pos or sign.pos not good, hence the color key or signature overlaps with pathway main graph.

e Special Note: some KEGG xml data files are incomplete, inconsistent with corresponding png image or
inaccurate/incorrect on some parts. These issues may cause inaccuracy, incosistency, or error messages
although pathview tries the best to accommodate them. For instance, we may see inconistence between

23

http://bioconductor.org/packages/release/bioc/vignettes/gage/inst/doc/RNA-seqWorkflow.pdf
http://bioconductor.org/packages/release/bioc/vignettes/gage/inst/doc/RNA-seqWorkflow.pdf

KEGG view and Graphviz view. As in the latter case, the pathway layout is generated based on data
from xml file.

24

