
Vignette for RTN : reconstruction of transcriptional networks

and analysis of master regulators.

Mauro AA Castro, Xin Wang, Michael NC Fletcher,
Florian Markowetz and Kerstin B Meyer ∗

kerstin.meyer@cancer.org.uk

October 17, 2016

Contents

∗Cancer Research UK - Cambridge Research Institute, Robinson Way Cambridge, CB2 0RE, UK.

1

1 Overview

The package RTN is designed for reconstruction and analysis of transcriptional networks (TN)
using mutual information [?]. It is implemented by S4 classes in R [?] and extends several methods
previously validated for assessing transcriptional regulatory units, or regulons (e.g. MRA [?],
GSEA [?], synergy and shadow [?]). The package computes the mutual information (MI) between
annotated transcription factors (TFs) and all potential targets using gene expression data. It is
tuned to deal with large gene expression datasets in order to build genome-wide transcriptional
networks centered on TFs and regulons. Using a robust statistical pipeline, RTN allows user to
set the stringency of the analysis in a stepwise process, including a boostrep routine designed to
remove unstable associations. Parallel computing is available for critical steps demanding high-
performance.

2 Quick start

2.1 Transcriptional network inference

• 1 - Load a sample dataset

The dt4rtn dataset consists of a list with 6 objects used for demonstration purposes only.
It was extracted, pre-processed and size-reduced from [?] and [?] and contains a named gene
expression matrix (gexp), a data frame of with gexp annotation (gexpIDs), a named numeric
vector with differential gene expression data (pheno), a data frame with pheno annotation
(phenoIDs), a character vector with genes differentially expressed (hits), and a named vector
with transcriptions factors (tfs).

> library(RTN)

> data(dt4rtn)

• 2 - Create a new TNI object and run pre-processing

Objects of class TNI provide a series of methods to do transcriptional network inference from
high-throughput gene expression data. In this 1st step, the generic function tni.preprocess is
used to run several checks on the input data.

> #Input 1: 'gexp', a named gene expression matrix (samples on cols)

> #Input 2: 'transcriptionFactors', a named vector with TF ids (3 TFs for quick demonstration!)

> #Input 3: 'gexpIDs', an optional data frame with gene annotation (it can be used to remove duplicated genes)

> rtni <- new("TNI", gexp=dt4rtn$gexp,

+ transcriptionFactors=dt4rtn$tfs[c("PTTG1","E2F2","FOXM1")]

+)

> rtni<-tni.preprocess(rtni,gexpIDs=dt4rtn$gexpIDs)

• 3 - Run permutation analysis

The tni.permutation function takes the pre-processed TNI object and returns a transcriptional
network inferred by mutual information (with multiple hypothesis testing corrections).

> rtni<-tni.permutation(rtni)

2

• 4 - Run bootstrap analysis

In an additional step, unstable interactions can be removed by bootstrap analysis using the
tni.bootstrap function, which creates a consensus bootstrap network (referred here as refnet).

> rtni<-tni.bootstrap(rtni)

• 5 - Run DPI filter

In the TN each target can be linked to multiple TFs and regulation can occur as a result
of both direct (TF-target) and indirect interactions (TF-TF-target). The Data Processing
Inequality (DPI) algorithm [?] is used to remove the weakest interaction in any triangle of
two TFs and a target gene, thus preserving the dominant TF-target pairs, resulting in the
filtered transcriptional network (referred here as tnet). The filtered TN has less complexity
and highlights the most significant interactions.

> rtni<-tni.dpi.filter(rtni)

• 6 - Get results

All results available in the TNI object can be retrieved using the tni.get function:

> tni.get(rtni,what="summary")

> refnet<-tni.get(rtni,what="refnet")

> tnet<-tni.get(rtni,what="tnet")

• 7 - Build a graph

The inferred transcriptional network can also be retrieved as an igraph [?] object using the
tni.graph function. The graph object includes some basic network attributes pre-formatted
for visualization in the R package RedeR [?].

> g<-tni.graph(rtni)

2.2 Transcriptional network analysis

• 1 - Create a new TNA object (and run TNI-to-TNA pre-processing)

Objects of class TNA provide a series of methods to do enrichment analysis on transcriptional
networks. In this 1st step, the generic function tni2tna.preprocess is used to convert the pre-
processed TNI object to TNA, also running several checks on the input data.

> #Input 1: 'object', a TNI object with a pre-processed transcripional network

> #Input 2: 'phenotype', a named numeric vector of phenotypes

> #Input 3: 'hits', a character vector of gene ids considered as hits

> #Input 4: 'phenoIDs', an optional data frame with anottation used to aggregate genes in the phenotype

> rtna<-tni2tna.preprocess(object=rtni,

+ phenotype=dt4rtn$pheno,

+ hits=dt4rtn$hits,

+ phenoIDs=dt4rtn$phenoIDs

+)

3

• 3 - Run MRA analysis pipeline

The tna.mra function takes the TNA object and returns the results of the Master Regula-
tor Analysis (RMA) [?] over a list of regulons from a transcriptional network (with multiple
hypothesis testing corrections). The MRA computes the overlap between the transcriptional
regulatory unities (regulons) and the input signature genes using the hypergeometric distri-
bution (with multiple hypothesis testing corrections).

> rtna<-tna.mra(rtna)

• 4 - Run overlap analysis pipeline

A simple overlap among all regulons can also be tested using the tna.overlap function:

> rtna<-tna.overlap(rtna)

• 5 - Run GSEA analysis pipeline

Alternatively, the gene set enrichment analysis (GSEA) can be used to assess if a given tran-
scriptional regulatory unit is enriched for genes that are differentially expressed among 2
classes of microarrays (i.e. a differentially expressed phenotype). The GSEA uses a rank-
based scoring metric in order to test the association between gene sets and the ranked pheno-
typic difference. Here regulons are treated as gene sets, an extension of the GSEA statistics
as previously described [?].

> rtna<-tna.gsea1(rtna)

• 6 - Get results

All results available in the TNA object can be retrieved using the tna.get function:

> tna.get(rtna,what="summary")

> tna.get(rtna,what="mra")

> tna.get(rtna,what="overlap")

> tna.get(rtna,what="gsea1")

• 7 - Plot GSEA

To visualize the GSEA distributions, the user can apply the tna.plot.gsea1 function that plots
the one-tailed GSEA results for individual regulons:

> tna.plot.gsea1(rtna, file="tna_test", width=6, height=4,

+ heightPanels=c(1,0.7,3),

+ ylimPanels=c(0,3.5,0,0.8))

4

P
he

no
ty

pe
0
1
2
3
4

− tna

R
eg

ul
on

FOXM1

PTTG1

E2F2

E
nr

ic
hm

en
t s

co
re

Position in the ranked list of genes

0 5000 10000 15000 20000

0.0

0.2

0.4

0.6

0.8
−
−
−

Regulon

E2F2 (adj.p < 1e−03)
PTTG1 (adj.p < 1e−03)
FOXM1 (adj.p < 1e−03)

Figure 1: GSEA analysis showing genes in each regulon (as hits) ranked by their differential ex-
pression (as phenotype). This toy example illustrates the output from the TNA pipeline evaluated
by the tna.gsea1 method.

5

3 Session information

R version 3.3.1 (2016-06-21)

Platform: x86_64-apple-darwin13.4.0 (64-bit)

Running under: OS X 10.9.5 (Mavericks)

attached base packages:

[1] stats graphics grDevices utils datasets methods

[7] base

other attached packages:

[1] RTN_1.12.0 igraph_1.0.1

loaded via a namespace (and not attached):

[1] Rcpp_0.12.7 magrittr_1.5 splines_3.3.1

[4] BiocGenerics_0.20.0 MASS_7.3-45 IRanges_2.8.0

[7] bit_1.1-12 lattice_0.20-34 minqa_1.2.4

[10] car_2.1-3 tools_3.3.1 nnet_7.3-12

[13] parallel_3.3.1 pbkrtest_0.4-6 grid_3.3.1

[16] nlme_3.1-128 data.table_1.9.6 mgcv_1.8-15

[19] ff_2.2-13 quantreg_5.29 snow_0.4-2

[22] MatrixModels_0.4-1 lme4_1.1-12 Matrix_1.2-7.1

[25] nloptr_1.0.4 RedeR_1.22.0 S4Vectors_0.12.0

[28] bitops_1.0-6 RCurl_1.95-4.8 limma_3.30.0

[31] pvclust_2.0-0 minet_3.32.0 stats4_3.3.1

[34] XML_3.98-1.4 SparseM_1.72 chron_2.3-47

6

