
GeneExpressionSignature: Computing pairwise

distances between different biological states

Yang Cao, Lu Han, Fei Li, Xiaochen Bo

October 17, 2016

Contents

1 Introduction

The GeneExpressionSignature package utilizes gene expression profiles to mea-
sure the similarity between different biological states. It provides two algorithms
for similarity measurement: the GSEA algorithm which is mentioned in (?) and
the PGSEA algorithm in PGSEA R package. A further description of the mea-
surement methods based on gene expression signature can be found in Lamb(?),
Hu(?) and Iorio(?).

This manual is a brief introduction to structure, functions and usage of
GeneExpressionSignature package. It shows how the biological similarity is
determined through a series of calculation steps and how that information can
be used for further cluster analysis.

The current version of GeneExpressionSignature can be used only with data
coming from the same platform, examples are on the HG-U133A platform.

2 Getting Started

A complete analysis procedure accepts a set of gene expression profiles repre-
senting different biological states as input, and generates a similarity matrix as
output. It can be divided into three steps: 1)data ranking, 2)rank merging, and
3)similarity measuring.
First, we load the package by entering the following command in your R session:

> library(GeneExpressionSignature)

2.1 Data Ranking

Gene expression profiles should be properly preprocessed before analysis as pre-
requisite, including background correction, normalization and summarization.
Instead of the exact values, ranks of gene expression levels are used in the
following procedure. A ranked list of genes was obtained first by sorting the mi-
croarray probe-set identifiers according to the different expression values (count
or ratio). It should be noticed that there is no standard methods for data pre-
processing, and there is a function getRLs which takes the method in C-MAP

1



for data preprocessing just for reference. We can obtain ranked lists matrix by
calling getRLs.

Your experimental data could be used for analysing, or users can download
gene-expression profiles from the GEO database with R package GEOquery.
Users can see the doc in the package GEOquery for more details.

As an example, we download data from GEO database with package GEO-
query. Then combined the treatment expression values to form a treatment
matrix as well as the control expression values.

> # If you have network access

> #GSM118720 <- getGEO('GSM118720')
> # GSM118721 <- getGEO('GSM118721')
> if (require(GEOquery)){

+ #treatment gene-expression profiles

+ GSM118720 <- getGEO(filename=system.file("extdata/GSM118720.soft",package=

+ "GeneExpressionSignature"))

+ #control gene-expression profiles

+ GSM118721 <- getGEO(filename=system.file("extdata/GSM118721.soft",package=

+ "GeneExpressionSignature"))

+ #data ranking according to the different expression values

+ control <- as.matrix(as.numeric(Table(GSM118721)[,2]))

+ treatment <- as.matrix(as.numeric(Table(GSM118720)[,2]))

+ ranked_list <-getRLs(control,treatment)}

2.2 Rank Merging

By rank merging, multiple ranked lists are merging into a single ranked list,
referred as prototype ranked list (PRL), representing certain kind of biological
state. This procedure is mainly performed before similarity measuring, and
applied to specific situations that occur when multiple ranked list are assigned
to one single biological state with different cell types or experimental condition.

However, two different cases should be considered: 1) all ranked list with the
same biological state are treated eaually important; 2) each individual ranked
lists has its own ranked weights. This package provides two commonly employed
algorithms: one utilizes the Kruskal algorithm proposed by (?) for the former
case and another takes the average ranking technique a simple but ranther useful
method. Function RankMering is provided for aggregating the ranked lists into
one or many PRLs according their phenotypic data. All the things that we need
to do is construct a ExpressionSet object as input, with ranked lists as assay
data and corresponding biological states as phenotypic data.

For convenience, ranking data stored as ExpressionSet class in ‘eset‘ object
as input data, with ranked lists (obtained by calling getRLs) as assay data and
corresponding biological states as phenotypic data. As an example, we start
from loading cultured the exampleSet data, a subset of C-MAP Lamb(?) as
sample data, which is a large reference catalogue of gene expression data from
cultured human cells perturbed with many chemicals and genetic reagents. The
sub dataset is composed of 50 paired gene expression profiles involving 22283
genes. This profiles are obtained from cells treated 15 compounds respectively,
the values of which already converted to rank orders.

2



> data(exampleSet)

> show(exampleSet)

ExpressionSet (storageMode: lockedEnvironment)

assayData: 22283 features, 50 samples

element names: exprs

protocolData: none

phenoData

sampleNames: 1 2 ... 50 (50 total)

varLabels: state

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'
Annotation:

> exprs(exampleSet)[c(1:10),c(1:3)]

1 2 3

1 11264 14408 13919

2 12746 12365 3080

3 8267 5630 13060

4 2193 16694 16084

5 9556 6044 8294

6 279 5120 4826

7 15381 10225 10883

8 9452 10777 13359

9 6149 6213 6800

10 4943 12760 3444

> levels(as(phenoData(exampleSet),"data.frame")[,1])

[1] "alsterpaullone" "azacitidine" "camptothecin" "chrysin"

[5] "daunorubicin" "doxorubicin" "ellipticine" "etacrynic_acid"

[9] "fisetin" "harmine" "luteolin" "mitoxantrone"

[13] "parthenolide" "staurosporine" "thiostrepton"

Rank merging process will generate a mergingSet of 15 PRLs from 50 paired
expression profiles with each PRL corresponding one of 15 compounds respec-
tively.

> MergingSet <- RankMerging(exampleSet,"Spearman",weighted=TRUE)

> show(MergingSet)

ExpressionSet (storageMode: lockedEnvironment)

assayData: 22283 features, 15 samples

element names: exprs

protocolData: none

phenoData

sampleNames: alsterpaullone azacitidine ... thiostrepton (15 total)

varLabels: state

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'
Annotation:

3



2.3 Similarity Measuring

One single combined PRL for a state was obtained after rank merging procedure.
These PRLs are used to measure the similarity of the gene signature across dif-
ferent biological states by scoring functions ScoreGSEA and ScorePGSEA. Not
all the genes are involved in similarity measuring, but only a subset of genes
called gene signature whose combined expression pattern is uniquely character-
istic of the biological state. Generally the genes used as gene signatures in the
similarity scoring procedure are predefined by priori knowledge. Iorio(?) pro-
posed an ”optimal signature” approach by taking the most up-regulated genes
and the most down-regulated genes as gene signature.The size of gene signatures
need to be considered, which is taken as another parameter besides the PRLs
in similarity measuring. In most cases, the default size of gene signature is 250
for genome-wide expression profile.

Suppose N is the number of PRLs (also same as the number of biological
states), an N x N distance matrix is generated by similarity measurement. For
mergingSet, we will get a 15 x 15 matrix corresponding to the similarity distances
between these compounds.

> ds <- ScoreGSEA(MergingSet,250,"avg")

> ds[1:5,1:5]

alsterpaullone azacitidine camptothecin chrysin daunorubicin

alsterpaullone 0.0000000 0.6176992 0.4669311 0.6896005 0.5288110

azacitidine 0.6176992 0.0000000 0.6125031 0.8515960 0.6413233

camptothecin 0.4669311 0.6125031 0.0000000 0.7897938 0.5372661

chrysin 0.6896005 0.8515960 0.7897938 0.0000000 0.7443612

daunorubicin 0.5288110 0.6413233 0.5372661 0.7443612 0.0000000

2.4 Signature Distance

As we mentioned above, four algorithms implemented as functions getRLs,
RankMerging, ScoreGSEA and ScorePGSEA, one is for data preprocessing, one
called Iorio algorithm is for rank merging, the other two algorithms called GSEA
and PGSEA are for similarity measuring. Moreover, function SignatureDistance
is provided to serve as a single entry and easy access point to rank merging and
similarity measuring, which runs through the including rank merging and scor-
ing, and is recommended to use in most cases. Data ranking is not integration
into this funciton for no standard methods for data preprocessing and gene-
expression data types is uncertain. Furthermore, there is no effective method
to integrate data from different platforms. Function getRLs which takes the
method in C-MAP for data preprocessing just for reference.

> SignatureDistance(exampleSet,SignatureLength=250,MergingDistance="Spearman",ScoringMethod="GSEA",ScoringDistance="avg",weighted=TRUE)

alsterpaullone azacitidine camptothecin chrysin daunorubicin

alsterpaullone 0.0000000 0.6176992 0.4669311 0.6896005 0.5288110

azacitidine 0.6176992 0.0000000 0.6125031 0.8515960 0.6413233

camptothecin 0.4669311 0.6125031 0.0000000 0.7897938 0.5372661

chrysin 0.6896005 0.8515960 0.7897938 0.0000000 0.7443612

daunorubicin 0.5288110 0.6413233 0.5372661 0.7443612 0.0000000

4



doxorubicin 0.4449537 0.6223770 0.5590938 0.8152383 0.4805674

ellipticine 0.6147176 0.6958627 0.6060621 0.8399921 0.6013995

etacrynic_acid 0.9546259 0.9625380 0.9150898 0.8846840 0.9174653

fisetin 0.6191321 0.7401457 0.7258576 0.9056164 0.7204894

harmine 0.7381854 0.9011707 0.8082408 0.6264392 0.7486181

luteolin 0.6601723 0.8357249 0.6559045 0.4627429 0.6882700

mitoxantrone 0.5351687 0.6326825 0.6586904 0.8367069 0.5450045

parthenolide 0.9183664 0.8581793 0.8943531 0.8865647 0.8487120

staurosporine 0.6984201 0.6982204 0.7120952 0.9037265 0.7625792

thiostrepton 0.9258501 0.8624173 0.8523135 0.9235488 0.8449146

doxorubicin ellipticine etacrynic_acid fisetin harmine

alsterpaullone 0.4449537 0.6147176 0.9546259 0.6191321 0.7381854

azacitidine 0.6223770 0.6958627 0.9625380 0.7401457 0.9011707

camptothecin 0.5590938 0.6060621 0.9150898 0.7258576 0.8082408

chrysin 0.8152383 0.8399921 0.8846840 0.9056164 0.6264392

daunorubicin 0.4805674 0.6013995 0.9174653 0.7204894 0.7486181

doxorubicin 0.0000000 0.5737439 0.9590589 0.6130763 0.8146797

ellipticine 0.5737439 0.0000000 0.9130729 0.8065379 0.6967980

etacrynic_acid 0.9590589 0.9130729 0.0000000 0.9558315 0.9745611

fisetin 0.6130763 0.8065379 0.9558315 0.0000000 0.9077328

harmine 0.8146797 0.6967980 0.9745611 0.9077328 0.0000000

luteolin 0.7326149 0.7415050 0.8413584 0.8872799 0.5954765

mitoxantrone 0.4266442 0.6073227 0.9880406 0.7107602 0.8455741

parthenolide 0.9058101 0.8260994 0.6586242 0.9955009 0.9361217

staurosporine 0.6729108 0.7785568 0.9677592 0.7667645 0.9525701

thiostrepton 0.8801426 0.8887309 0.7367122 0.9806517 0.9818760

luteolin mitoxantrone parthenolide staurosporine thiostrepton

alsterpaullone 0.6601723 0.5351687 0.9183664 0.6984201 0.9258501

azacitidine 0.8357249 0.6326825 0.8581793 0.6982204 0.8624173

camptothecin 0.6559045 0.6586904 0.8943531 0.7120952 0.8523135

chrysin 0.4627429 0.8367069 0.8865647 0.9037265 0.9235488

daunorubicin 0.6882700 0.5450045 0.8487120 0.7625792 0.8449146

doxorubicin 0.7326149 0.4266442 0.9058101 0.6729108 0.8801426

ellipticine 0.7415050 0.6073227 0.8260994 0.7785568 0.8887309

etacrynic_acid 0.8413584 0.9880406 0.6586242 0.9677592 0.7367122

fisetin 0.8872799 0.7107602 0.9955009 0.7667645 0.9806517

harmine 0.5954765 0.8455741 0.9361217 0.9525701 0.9818760

luteolin 0.0000000 0.7964905 0.8139365 0.9017486 0.8642047

mitoxantrone 0.7964905 0.0000000 0.9181195 0.7469812 0.8984673

parthenolide 0.8139365 0.9181195 0.0000000 0.9864220 0.6180173

staurosporine 0.9017486 0.7469812 0.9864220 0.0000000 0.9521839

thiostrepton 0.8642047 0.8984673 0.6180173 0.9521839 0.0000000

> ds[1:5,1:5]

alsterpaullone azacitidine camptothecin chrysin daunorubicin

alsterpaullone 0.0000000 0.6176992 0.4669311 0.6896005 0.5288110

azacitidine 0.6176992 0.0000000 0.6125031 0.8515960 0.6413233

camptothecin 0.4669311 0.6125031 0.0000000 0.7897938 0.5372661

chrysin 0.6896005 0.8515960 0.7897938 0.0000000 0.7443612

daunorubicin 0.5288110 0.6413233 0.5372661 0.7443612 0.0000000

5



3 Implementation Details

3.1 Adaptively Weighted Rank Merging

The Iorio’s rank merging algorithm utilizes Kruskal algorithm (?) to merge
the ranked lists which corresponding to a same biological state. The distance of
these ranked lists must be calculated first, a measure of the distance between two
ranked lists is computed using Spearman algorithm or Kendall tau algorithm.
It should be noticed that is rank merging with Kendall tau distance is time
consuming, so we recommend selecting the Spearman distance. Next, merge
the two or more ranked lists with the same biological state using Borda merging
algorithm.

According to the Kruskal algorithm method (?), this rank merging algorithm
searches for the two ranked lists with the smallest Spearman’s Footrule distance
first, and then merges them using the Borda Merging method, obtaining a new
ranked list. Finally, the new list replaces the two unmerged lists. This process
won’t terminate until only one list remains.

For convenience, users can directly obtain a PRL for each state by the func-
tion Iorio.RankMerging, which uses Sprearman, BordaMerging, and Kruskal al-
gorithms to aggregate the ranked lists obtained with the same biological state.
For instance, we will merge the sample data which with 50 samples into 15
samples.

> MergingSet <- RankMerging(exampleSet,"Spearman",weighted=TRUE)

> show(MergingSet)

ExpressionSet (storageMode: lockedEnvironment)

assayData: 22283 features, 15 samples

element names: exprs

protocolData: none

phenoData

sampleNames: alsterpaullone azacitidine ... thiostrepton (15 total)

varLabels: state

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'
Annotation:

3.2 Eqully Weighted Rank Merging

A simple but rather useful method for this problem is the average ranking tech-
nique. The technique is a two step process when we are under the assumption
that importance is equally weighted for each ranked list. First step is to calcu-
late average rank for each ranked list and then the second step is to construct
their final rankings.

3.3 Similarity Measuring

Once ranked lists with same biological states are merged to one single PRL,
Gene Set Enrichment Analysis (GSEA) and Parametric Gene Set Enrichment
Analysis (PGSEA) are adopted to measure the similarity among these PRLs.

6



GSEA algorithm(?) is a nonparametric, rank-based method for similarity
measuring to determine whether a priori defined set of genes shows statistically
significant, concordant differences between two biological states. PGSEA algo-
rithm is a modified gene set enrichment analysis method based on a parametric
statistical analysis model, and we use the functions in R package PGSEA for
similarity measuring. Both of these two functions gives the corresponding p
value, function ScoreGSEA calcutes the empirical p values from Monte Carlo
Procedures(?).

> ds <- ScoreGSEA(MergingSet,250,"avg")

> ds[1:5,1:5]

alsterpaullone azacitidine camptothecin chrysin daunorubicin

alsterpaullone 0.0000000 0.6176992 0.4669311 0.6896005 0.5288110

azacitidine 0.6176992 0.0000000 0.6125031 0.8515960 0.6413233

camptothecin 0.4669311 0.6125031 0.0000000 0.7897938 0.5372661

chrysin 0.6896005 0.8515960 0.7897938 0.0000000 0.7443612

daunorubicin 0.5288110 0.6413233 0.5372661 0.7443612 0.0000000

> ds <- ScorePGSEA(MergingSet,250,"avg")

> ds[1:5,1:5]

alsterpaullone azacitidine camptothecin chrysin daunorubicin

alsterpaullone 0.0000000 0.5477505 0.4136914 0.6340643 0.4182223

azacitidine 0.5477505 0.0000000 0.5646674 0.8402056 0.5478599

camptothecin 0.4136914 0.5646674 0.0000000 0.7438953 0.4305080

chrysin 0.6340643 0.8402056 0.7438953 0.0000000 0.7067854

daunorubicin 0.4182223 0.5478599 0.4305080 0.7067854 0.0000000

4 Futher Analysis

To illustrate how to use GeneExpressionSignature in analysis of gene expression
signatures, affinity propagation clustering can be used to group these biological
states by the similarity of gene signature. Affinity propagation cluster algorithm
iteratively searches for optimal clustering by maximizing an objective function
called net similarity. Here, we use function in R apcluster package to classify
the 15 biological states into 3 groups. In this step, R package apcluster should
also be installed on your computer.

> if (require(apcluster)){

+ library(apcluster)

+ clusterResult <- apcluster(1-ds)

+ show(clusterResult)

+ }

APResult object

Number of samples = 15

Number of iterations = 122

Input preference = 0.2561047

Sum of similarities = 6.432731

7



Sum of preferences = 0.768314

Net similarity = 7.201045

Number of clusters = 3

Exemplars:

doxorubicin luteolin parthenolide

Clusters:

Cluster 1, exemplar doxorubicin:

alsterpaullone azacitidine camptothecin daunorubicin doxorubicin

ellipticine fisetin mitoxantrone staurosporine

Cluster 2, exemplar luteolin:

chrysin harmine luteolin

Cluster 3, exemplar parthenolide:

etacrynic_acid parthenolide thiostrepton

Cytoscape is used to visualize the result of clustering. In the network, nodes
denotes different compounds (cell states treated with different compounds), and
the edge means the similarity distance between these two compounds is lower
than a threshold, which is 0.68 here. Different colors denote different groups, as
the classification of compounds. We note that the largest group is numbered 9
nodes, and the other two consist of 3 nodes for each group.

Session Information

The version number of R and packages loaded for generating the vignette were:

R version 3.3.1 (2016-06-21)

Platform: x86_64-apple-darwin13.4.0 (64-bit)

Running under: OS X 10.9.5 (Mavericks)

locale:

[1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

8



attached base packages:

[1] stats4 parallel stats graphics grDevices utils datasets

[8] methods base

other attached packages:

[1] apcluster_1.4.3 GEOquery_2.40.0

[3] GeneExpressionSignature_1.20.0 PGSEA_1.48.0

[5] annaffy_1.46.0 KEGG.db_3.2.3

[7] GO.db_3.4.0 AnnotationDbi_1.36.0

[9] IRanges_2.8.0 S4Vectors_0.12.0

[11] Biobase_2.34.0 BiocGenerics_0.20.0

loaded via a namespace (and not attached):

[1] Rcpp_0.12.7 lattice_0.20-34 XML_3.98-1.4 bitops_1.0-6

[5] grid_3.3.1 R6_2.2.0 DBI_0.5-1 RSQLite_1.0.0

[9] httr_1.2.1 Matrix_1.2-7.1 tools_3.3.1 RCurl_1.95-4.8

9


