This tutorials originates from 2016 Cancer Genomics Cloud Hackathon R workshop I prepared, and it’s recommended for beginner to read and run through all examples here yourself in your R IDE like Rstudio. Then try to make your own app.
In this tutorial, you will learn
This tutorial doesn’t require you to be an advanced R user, everything you need is R or even better, a cool IDE like Rstudio (or Emacs+ESS), then just open this Rmarkdown in Rstudio. It’s easy to learn!
Suggest learning for all users: docker.
Now we are ready to go!
First download the R markdown file of this page, so you can load it to yoru Rstudio or your favorite IDE to run through all examples and tweak setup.
This package sevenbridges is already on Bioconductor devel branch, the release day is going to be May 4th, 2016. Please check the detailed release schedule. It’s also synced on github page
For now I recommend you to install the latest version of ‘sevenbridges’ from github directly by running the script:
if(!require("devtools", quietly = TRUE)){
install.packages("devtools")
}
source("http://bioconductor.org/biocLite.R")
library(devtools)
install_github("sbg/sevenbridges-r", build_vignettes=TRUE,
repos=BiocInstaller::biocinstallRepos(),
dependencies=TRUE)
After the installation you can always browser vignette
browseVignettes(package = 'sevenbridges')
You can find login/registration on NCI Cancer Genomics Cloud homepage http://www.cancergenomicscloud.org/, follow up the signup tutorial if you have ERA Commons.
After you login, you can get your authentication under your account setting and ‘developer’ tab ([tutorial])(http://docs.cancergenomicscloud.org/docs/get-your-authentication-token)
In this tutorial, if you want to try to deploy the application automatically on shiny server like shinyapps.io, please visit http://www.shinyapps.io/ register and login.
Get you token and secret ready to deploy
This package is under active development, will bring many new features as well, at any moment, if you have questions or problem about this R package, please file issue on github issue page here
If you have question about the cancer genomics cloud platform or other seven bridges platform, we have a different channel for each platform, for example, cancer genomics cloud have lots documentation and a forum
Please, feedback is always welcomed!
The final goal is make a workflow that
The final workflow looks like this, it’s composed of two tools: RNA-seq analysis tool and reporting tool.
The shiny app report with ggvis module on the shinyapps.io server looks like this
A ggvis interactive scatter plot
A differential expression table
A full html report included, it’s also output from the first tool, in this way, you can orchestrate many tools output into single report for your task.
Now let’s start building tools
I know, we can always do it via graphic user interface, but let’s have fun with the ‘sevenbridges’ packages you just installed.
For complete API tutorial and reference manual, please read another tutorial
vignette("api", package = "sevenbridges")
Now let’s do some simple steps, first thing to do is to create an Auth object, almost everything started from this object. Our API client follow a style like this “Auth\(properties\)action”. On the platform, Auth is your account, and it contains projects, billing groups, users, project contains tasks, apps, files etc, so it’s easy to imagine your API call.
To create Auth, just pass token and url, by default url is set to CGC. Good news you can use ‘sevenbridges’ package to access any seven bridges platform with V2 API.
This is the main way to create an Auth object, replace “fake_token” wit your own token.
a <- Auth(token = "fake_token", url = "https://cgc-api.sbgenomics.com/v2/")
Alternatively you can save your authentication cross different platforms in a configuration file called “.sbg.auth.yml” at home folder. This allow you to manage multiple users on multiple platforms.
us:
url: https://api.sbgenomics.com/v2/
user:
tengfei:
token: fake_token
yintengfei:
token: fake_token
cgc:
url: https://cgc-api.sbgenomics.com/
user:
tengfei:
token: fake_token
gcp:
url: https://gcp-api.sbgenomics.com/v2/
user:
tengfei:
token: fake_token
When you load ‘sevenbridges’ package, it will read the configuration files, so you only need to provide platform name and username.
a <- Auth(user = "tengfei", platform = "cgc")
## remove old project
## a$project(id = "tengfei/hackathon")$delete()
To create a project, you need to know your billing group id, cost related to this project will be charged from this billing group, now play with your free credit.
(b <- a$billing())
## a single billing group is showing
Now let’s create a new project called “hackathon”, save it to a ‘p’ object for convenient usage for any call related to this project.
(p <- a$project_new("hackathon",
billing_group_id = b$id,
description = "This project is for CGC hackathon"))
Now check it on CGC, you will see a fresh new project is created.
To delete it, just call, but I will suggest you keep it for following tutorial : )
## p$delete()
To demonstrate I will use a RNA-seq workfow from Bioconductor, when you open this link, you will notice a full example written in markdown I want to make it into an app and allow you to input new files and generate new report base on this template.
Before you build any tool, you have to have a plan in mind
First thing first, let’s define our tool first, here is a diagram generated with Seven Bridges’ graphical user interface.
Building a development environment is essential for developing your command line interface and your app. There are some principles
Official R Docker images is called “Rocker” project and is on github, please visit the page to find more details and Dockerfile.
Image | Description |
---|---|
rocker/r-base | base package to build from |
rocker/r-devel | base plus R-devel from SVN |
rocker/rstudio | base plus RStudio Server |
rocker/hadleyverse | rstudio + Hadley’s packages, LaTeX |
rocker/ropensci | hadleyverse + rOpenSci packages |
rocker/r-devel-san | base, SVN’s R-devel and SAN |
Bioconductor have a nice page about the official docker images, please read for more details.
Image |
---|
bioconductor/devel_base |
bioconductor/devel_core |
bioconductor/devel_flow |
bioconductor/devel_microarray |
bioconductor/devel_proteomics |
bioconductor/devel_sequencing |
bioconductor/release_base |
bioconductor/release_core |
bioconductor/release_flow |
bioconductor/release_microarray |
bioconductor/release_proteomics |
bioconductor/release_sequencing |
For example, you know there is ‘runif’ function in rocker/r-base container, you can just do something like this. Please read another tutorial called “Describe CWL Tools/Workflows in R and Execution”, it introduces you a simpler example with random number generator.
rbx <- Tool(id = "runif",
label = "runif",
hints = requirements(docker(pull = "rocker/r-base"),
cpu(1), mem(2000)),
baseCommand = "Rscript -e 'runif(100)'",
stdout = "output.txt",
outputs = output(id = "random", glob = "*.txt"))
rbx$toJSON(pretty = TRUE)
{
"sbg:id": "runif",
"id": "#runif",
"inputs": [],
"outputs": [
{
"type": ["null", "File"],
"label": "",
"description": "",
"streamable": false,
"default": "",
"id": "#random",
"outputBinding": {
"glob": "*.txt"
}
}
],
"requirements": [],
"hints": [
{
"class": "DockerRequirement",
"dockerPull": "rocker/r-base"
},
{
"class": "sbg:CPURequirement",
"value": 1
},
{
"class": "sbg:MemRequirement",
"value": 2000
}
],
"label": "runif",
"class": "CommandLineTool",
"baseCommand": [
"Rscript -e 'runif(100)'"
],
"arguments": [],
"stdout": "output.txt"
}
You can directly follow this tutorial paste your json into your tool editor by click “import”. Then “save” and “run”, you will be able to run your first application on CGC with no parameters and input files.
## provide scripts
## Make a new script file
fd <- fileDef(name = "runif.R",
content = "sed.seed(1)
runif(100)")
rbx <- Tool(id = "runif",
label = "runif",
hints = requirements(docker(pull = "rocker/r-base"),
cpu(1), mem(2000)),
requirements = requirements(fd),
baseCommand = "Rscript runif.R", ## run script you created.
stdout = "output.txt",
outputs = output(id = "random", glob = "*.txt"))
Note: in the above example, I made a mistake on purpose, so try to debug on the platform if the task fails : )
I will introduce “Tool” function, in the later section, don’t worry.
Here is Dockerfile I used to generate the workflow I need
fl <- system.file("docker/rnaseqGene", "Dockerfile",
package = "sevenbridges")
Here is the current content of Dockerfile
cat(readLines(fl), sep = '\n')
FROM rocker/hadleyverse
MAINTAINER "Tengfei Yin" yintengfei@gmail.com
RUN Rscript -e 'source("http://bioconductor.org/workflows.R"); workflowInstall("rnaseqGene")'
ADD src/performDE.R /usr/local/bin/
RUN mkdir /report
ADD report/rnaseqGene.Rmd /report/
RUN chmod a+x /usr/local/bin/performDE.R \
&& chmod -R a+x /report
I does couple things
In next section, I will show you how to create command line interface
In this step, I am going to
Here is the command line I am using it’s called “performDE.R”
fl <- system.file("docker/rnaseqGene/src", "performDE.R",
package = "sevenbridges")
Here is the current content of Dockerfile
cat(readLines(fl), sep = '\n')
#!/usr/bin/Rscript
"usage: performDE.R [options]
options:
--bamfiles=<file> bamfiles
--design=<file> design data frame
--gtffile=<file> gene feature file
--format=<string> pdf or html. [default: html]
" -> doc
library(docopt)
opts <- docopt(doc)
.design <- opts$design
if(is.null(.design))
.design <- system.file("extdata/sample_table.csv", package="airway")
.bamfiles <- opts$bamfiles
if(is.null(.bamfiles)){
.bamfiles <- list.files(system.file("extdata", package="airway"), "*.bam",
full.names = TRUE)
}else{
.bamfiles <- strsplit(opts$bamfiles, ",")[[1]]
}
.gtffile <- opts$gtffile
if(is.null(.gtffile))
.gtffile <- system.file("extdata/Homo_sapiens.GRCh37.75_subset.gtf",
package="airway")
## create param list
lst <- list(design = normalizePath(.design),
gtffile = normalizePath(.gtffile),
bamfiles = normalizePath(.bamfiles),
currentPath = normalizePath("."))
## render the report
.format <- switch(opts$format,
"pdf" = "pdf_document",
"html" = "html_document",
{"pdf_document"})
rmarkdown::render("/report/rnaseqGene.Rmd", .format,
output_dir = ".",
params = lst)
## For rabix execution in the cloud, this is now a workaround to move intermediate files
I am using docopt
package instead of commandArgs
because it allows you to create a formal interface. For example, you have ‘–help’ from command line for free. Feel free to use other methods like commandArgs() in R.
$./performDE.R --help
Loading required package: methods
usage: performDE.R [options]
options:
--bamfiles=<file> bamfiles
--design=<file> design data frame
--gtffile=<file> gene feature file
--format=<string> pdf or html. [default: html]
Sometime you want to produce a report, so in the end you will notice how I pass parameters from command line to a report.
As a developer, if you always have a fixed report template provided for you tool, you can hard-code your template into your docker container, like you noticed in the Dockerfile I created, I insert a report R markdown template. And in the command line interface, in the end, I pass it to rmarkdown::render
function as parameters ‘param’. In this way, you define your input in the header of R markdown. Examples like this, this template I used here, is exactly the same report on Bioconductor’s RNA-seq workflow website
fl <- system.file("docker/rnaseqGene/report", "rnaseqGene.Rmd",
package = "sevenbridges")
Here is the current content ( first 50 lines of the whole report) of the template
cat(readLines(fl, n = 50), sep = '\n')
---
title: "Uniform randome number generator example"
date: September 9, 2015
output:
pdf_document:
toc: true
toc_depth: 2
params:
bamfiles: ""
design: ""
gtffile: ""
currentPath: "."
---
# Acknowledgement
This RNA-seq test report is generated based on Biocondcutor workflow,
for experimental purpose, I tweaked the contents. Instead of a test
data, I am createing command line interface based on this document
that take new data and generate this report. It's experiments about
docker, cwl and rabix.
<script type="text/javascript"
src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
__original documentaion comes from__
# RNA-seq workflow: gene-level exploratory analysis and differential expression
Michael Love [1], Simon Anders [2,3], Vladislav Kim [3], Wolfgang Huber [3]
[1] Department of Biostatistics, Dana-Farber Cancer Institute and
Harvard School of Public Health, Boston, US;
[2] Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland;
[3] European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
```{r style, echo=FALSE, message=FALSE, warning=FALSE, results="asis"}
library("BiocStyle")
library("knitr")
library("rmarkdown")
options(width=100)
opts_knit$set(root.dir = params$currentPath)
opts_chunk$set(message = FALSE, error = FALSE, warning = FALSE, fig.width=5, fig.height=5)
```
# Contents
See the header, you will see ‘params’ which is passed from rmarkdown::render
, so you can use it directly in the report like params$bamfiles
.
Now you have
You are ready to build docker container and push it to the registry. You can choose to use registry like dockerhub or use CGC’s own docker registry (cgc-images.sbgenomics.com). To learn how to use CGC Image registry, please read out tutorial.
Finally it’s time to describe your tool in R (cwl format)!
Well, you are always encouraged to use graphical user interface like this
But it’s at the same time fun to learn how to do it in R, so you could script how you build it together, like what I did here, for every single tool json, I have a R script called generator.R in the same folder, so I can always trace back.
For example, you can see the same in my github page, under inst/docker, you will see three examples, 1. package docker 2. rna-seq tool 3. report tool, under each folder, you will see 1. one dockerfile, 2. src/ for command line 3. report/ for report template and 4. rabix a generator file and a json.
Tool is the simple basic unit of a workflow, you can put the whole flow in one container and one tool, it of course works, just make it hard to factorize components. This is the exact example, I can make one tool for DESeq2 and one tool for Rsamtools, I can also put everything I need in one tool and provide single functionality.
Note: you can use single docker image, but describe as many tools as you want if it contains what you need such as different command.
Follow the example to create Tool with Tool
function. It’s straightforward. Especially if you are familiar with Seven Bridges Tool editor already.
Hints: please pay attention to how I create
rbx <- Tool(id = "rnaseqGene",
label = "rnaseqgene",
description = "A RNA-seq Differiencial Expression Flow and Report",
hints = requirements(docker(pull = "tengfei/rnaseqgene"), cpu(1), mem(2000)),
baseCommand = "performDE.R",
inputs = list(
input(
id = "bamfiles", label = "bam files",
description = "a list of bam files",
type = "File...", ## or type = ItemArray("File")
prefix = "--bamfiles",
itemSeparator = ","
),
input(
id = "design", label = "design matrix",
type = "File",
prefix = "--design"
),
input(
id = "gtffile", label = "gene feature files",
type = "File",
prefix = "--gtffile"
),
input(
id = "format", label = "report foramt html or pdf",
type = enum("format", c("pdf", "html")),
prefix = "--format"
)
),
outputs = list(
output(id = "report", label = "report",
description = "A reproducible report created by Rmarkdown",
glob = Expression(engine = "#cwl-js-engine",
script = "x = $job[['inputs']][['format']];
if(x == 'undefined' || x == null){
x = 'html';
};
'rnaseqGene.' + x")),
output(id = "heatmap", label = "heatmap",
description = "A heatmap plot to show the Euclidean distance between samples",
glob = "heatmap.pdf"),
output(id = "count", label = "count",
description = "Reads counts matrix",
glob = "count.csv"),
output(id = "de", label = "Differential expression table",
description = "Differential expression table",
glob = "de.csv")
))
By default it output YAML, but you can print it into JSON as well.
rbx
sbg:id: rnaseqGene
id: '#rnaseqGene'
inputs:
- type:
- 'null'
- items: File
type: array
label: bam files
description: a list of bam files
streamable: no
default: ''
id: '#bamfiles'
inputBinding:
position: 0
prefix: --bamfiles
separate: yes
itemSeparator: ','
sbg:cmdInclude: yes
required: no
- type:
- 'null'
- File
label: design matrix
description: ''
streamable: no
default: ''
id: '#design'
inputBinding:
position: 0
prefix: --design
separate: yes
sbg:cmdInclude: yes
required: no
- type:
- 'null'
- File
label: gene feature files
description: ''
streamable: no
default: ''
id: '#gtffile'
inputBinding:
position: 0
prefix: --gtffile
separate: yes
sbg:cmdInclude: yes
required: no
- type:
- 'null'
- name: format
symbols:
- pdf
- html
type: enum
label: report foramt html or pdf
description: ''
streamable: no
default: ''
id: '#format'
inputBinding:
position: 0
prefix: --format
separate: yes
sbg:cmdInclude: yes
required: no
outputs:
- type:
- 'null'
- File
label: report
description: A reproducible report created by Rmarkdown
streamable: no
default: ''
id: '#report'
outputBinding:
glob:
engine: '#cwl-js-engine'
script: |-
x = $job[['inputs']][['format']];
if(x == 'undefined' || x == null){
x = 'html';
};
'rnaseqGene.' + x
class: Expression
- type:
- 'null'
- File
label: heatmap
description: A heatmap plot to show the Euclidean distance between samples
streamable: no
default: ''
id: '#heatmap'
outputBinding:
glob: heatmap.pdf
- type:
- 'null'
- File
label: count
description: Reads counts matrix
streamable: no
default: ''
id: '#count'
outputBinding:
glob: count.csv
- type:
- 'null'
- File
label: Differential expression table
description: Differential expression table
streamable: no
default: ''
id: '#de'
outputBinding:
glob: de.csv
requirements: []
hints:
- class: DockerRequirement
dockerPull: tengfei/rnaseqgene
- class: sbg:CPURequirement
value: 1
- class: sbg:MemRequirement
value: 2000
label: rnaseqgene
description: A RNA-seq Differiencial Expression Flow and Report
class: CommandLineTool
baseCommand:
- performDE.R
arguments: []
rbx$toJSON(pretty = TRUE)
{
"sbg:id": "rnaseqGene",
"id": "#rnaseqGene",
"inputs": [
{
"type": [
"null",
{
"items": "File",
"type": "array"
}
],
"label": "bam files",
"description": "a list of bam files",
"streamable": false,
"default": "",
"id": "#bamfiles",
"inputBinding": {
"position": 0,
"prefix": "--bamfiles",
"separate": true,
"itemSeparator": ",",
"sbg:cmdInclude": true
},
"required": false
},
{
"type": ["null", "File"],
"label": "design matrix",
"description": "",
"streamable": false,
"default": "",
"id": "#design",
"inputBinding": {
"position": 0,
"prefix": "--design",
"separate": true,
"sbg:cmdInclude": true
},
"required": false
},
{
"type": ["null", "File"],
"label": "gene feature files",
"description": "",
"streamable": false,
"default": "",
"id": "#gtffile",
"inputBinding": {
"position": 0,
"prefix": "--gtffile",
"separate": true,
"sbg:cmdInclude": true
},
"required": false
},
{
"type": [
"null",
{
"name": "format",
"symbols": ["pdf", "html"],
"type": "enum"
}
],
"label": "report foramt html or pdf",
"description": "",
"streamable": false,
"default": "",
"id": "#format",
"inputBinding": {
"position": 0,
"prefix": "--format",
"separate": true,
"sbg:cmdInclude": true
},
"required": false
}
],
"outputs": [
{
"type": ["null", "File"],
"label": "report",
"description": "A reproducible report created by Rmarkdown",
"streamable": false,
"default": "",
"id": "#report",
"outputBinding": {
"glob": {
"engine": "#cwl-js-engine",
"script": "x = $job[['inputs']][['format']];\n if(x == 'undefined' || x == null){\n x = 'html';\n };\n 'rnaseqGene.' + x",
"class": "Expression"
}
}
},
{
"type": ["null", "File"],
"label": "heatmap",
"description": "A heatmap plot to show the Euclidean distance between samples",
"streamable": false,
"default": "",
"id": "#heatmap",
"outputBinding": {
"glob": "heatmap.pdf"
}
},
{
"type": ["null", "File"],
"label": "count",
"description": "Reads counts matrix",
"streamable": false,
"default": "",
"id": "#count",
"outputBinding": {
"glob": "count.csv"
}
},
{
"type": ["null", "File"],
"label": "Differential expression table",
"description": "Differential expression table",
"streamable": false,
"default": "",
"id": "#de",
"outputBinding": {
"glob": "de.csv"
}
}
],
"requirements": [],
"hints": [
{
"class": "DockerRequirement",
"dockerPull": "tengfei/rnaseqgene"
},
{
"class": "sbg:CPURequirement",
"value": 1
},
{
"class": "sbg:MemRequirement",
"value": 2000
}
],
"label": "rnaseqgene",
"description": "A RNA-seq Differiencial Expression Flow and Report",
"class": "CommandLineTool",
"baseCommand": [
"performDE.R"
],
"arguments": []
}
rbx$toJSON()
{"sbg:id":"rnaseqGene","id":"#rnaseqGene","inputs":[{"type":["null",{"items":"File","type":"array"}],"label":"bam files","description":"a list of bam files","streamable":false,"default":"","id":"#bamfiles","inputBinding":{"position":0,"prefix":"--bamfiles","separate":true,"itemSeparator":",","sbg:cmdInclude":true},"required":false},{"type":["null","File"],"label":"design matrix","description":"","streamable":false,"default":"","id":"#design","inputBinding":{"position":0,"prefix":"--design","separate":true,"sbg:cmdInclude":true},"required":false},{"type":["null","File"],"label":"gene feature files","description":"","streamable":false,"default":"","id":"#gtffile","inputBinding":{"position":0,"prefix":"--gtffile","separate":true,"sbg:cmdInclude":true},"required":false},{"type":["null",{"name":"format","symbols":["pdf","html"],"type":"enum"}],"label":"report foramt html or pdf","description":"","streamable":false,"default":"","id":"#format","inputBinding":{"position":0,"prefix":"--format","separate":true,"sbg:cmdInclude":true},"required":false}],"outputs":[{"type":["null","File"],"label":"report","description":"A reproducible report created by Rmarkdown","streamable":false,"default":"","id":"#report","outputBinding":{"glob":{"engine":"#cwl-js-engine","script":"x = $job[['inputs']][['format']];\n if(x == 'undefined' || x == null){\n x = 'html';\n };\n 'rnaseqGene.' + x","class":"Expression"}}},{"type":["null","File"],"label":"heatmap","description":"A heatmap plot to show the Euclidean distance between samples","streamable":false,"default":"","id":"#heatmap","outputBinding":{"glob":"heatmap.pdf"}},{"type":["null","File"],"label":"count","description":"Reads counts matrix","streamable":false,"default":"","id":"#count","outputBinding":{"glob":"count.csv"}},{"type":["null","File"],"label":"Differential expression table","description":"Differential expression table","streamable":false,"default":"","id":"#de","outputBinding":{"glob":"de.csv"}}],"requirements":[],"hints":[{"class":"DockerRequirement","dockerPull":"tengfei/rnaseqgene"},{"class":"sbg:CPURequirement","value":1},{"class":"sbg:MemRequirement","value":2000}],"label":"rnaseqgene","description":"A RNA-seq Differiencial Expression Flow and Report","class":"CommandLineTool","baseCommand":["performDE.R"],"arguments":[]}
## or write to external file
## fl <- "~/Downloads/rnaseqGene.json"
## write(rbx$toJSON(pretty = TRUE), fl)
Now you want to add app to your project ‘p’, by call ‘app_add’ method, the first argument is name, the second is either a cwl json file, or Tool object or Workflow object.
## add App you just created
(rna.app <- p$app_add("rnaseqgene", rbx))
Please go check your app in your project, check input output and how it maps to the UI.
Now let’s create a task and execute it with example files. You need to pass unique file id as input, so the first thing is to get file id you need for that project.
Now let’s import some files to your project for this tutorial, you can also do it via our API client by call upload
function on project object. It supports
For example
fl <- system.file("extdata", "sample1.fastq", package = "sevenbridges")
(p <- a$project(id = "tengfei/quickstart"))
## by default load .meta for the file
p$upload(fl, overwrite = TRUE)
## pass metadata
p$upload(fl, overwrite = TRUE, metadata = list(library_id = "testid2", platform = "Illumina x11"))
## rename
p$upload(fl, overwrite = TRUE, name = "sample_new_name.fastq",
metadata = list(library_id = "new_id"))
## upload folder
dir.ext <- system.file("extdata", package = "sevenbridges")
p$upload(dir.ext, overwrite = TRUE)
## upload file list
fls <- list.files(dir.ext, recursive = TRUE, full.names = TRUE)
p$upload(fls, overwrite = TRUE)
For now try use our graphic user interface to import all files listed here:
download.fl <- system.file("extdata/download.txt", package = "sevenbridges")
cat(readLines(download.fl), sep = '\n')
Warning in readLines(download.fl): incomplete final line found on '/tmp/
RtmpONvHXF/Rinst62fe424537de/sevenbridges/extdata/download.txt'
https://raw.githubusercontent.com/tengfei/resource/master/2016/04-01-hackathon/data/example_report.Rmd
https://raw.githubusercontent.com/tengfei/resource/master/2016/04-01-hackathon/data/hello-markdown.Rmd
https://raw.githubusercontent.com/tengfei/resource/master/2016/04-01-hackathon/data/hello.tar
https://raw.githubusercontent.com/tengfei/resource/master/2016/04-01-hackathon/data/Homo_sapiens.GRCh37.75_subset.gtf
https://raw.githubusercontent.com/tengfei/resource/master/2016/04-01-hackathon/data/sample_table.csv
https://raw.githubusercontent.com/tengfei/resource/master/2016/04-01-hackathon/data/scatter_plot.tar
https://raw.githubusercontent.com/tengfei/resource/master/2016/04-01-hackathon/data/SRR1039508_subset.bam
https://raw.githubusercontent.com/tengfei/resource/master/2016/04-01-hackathon/data/SRR1039509_subset.bam
https://raw.githubusercontent.com/tengfei/resource/master/2016/04-01-hackathon/data/SRR1039512_subset.bam
https://raw.githubusercontent.com/tengfei/resource/master/2016/04-01-hackathon/data/SRR1039513_subset.bam
https://raw.githubusercontent.com/tengfei/resource/master/2016/04-01-hackathon/data/SRR1039516_subset.bam
https://raw.githubusercontent.com/tengfei/resource/master/2016/04-01-hackathon/data/SRR1039517_subset.bam
https://raw.githubusercontent.com/tengfei/resource/master/2016/04-01-hackathon/data/SRR1039520_subset.bam
https://raw.githubusercontent.com/tengfei/resource/master/2016/04-01-hackathon/data/SRR1039521_subset.bam
To use the API to uplaod, let’s download it to a folder and upload via API.
td <- tempfile()
dir.create(td)
for(f in readLines(download.fl)){
download.file(f, file.path(td, basename(f)))
}
## double check
list.files(td)
## upload to the project you created
p$upload(td)
Copy this list, and then in your project, click “add files”, and choose “import from ftp” (tutorial)
When it’s finished, refresh your file page, you will be able to see all of them. The cool thing is that you can search file by ‘name’ not by id, it support fuzz pattern match.
## get file id you need as inout
(bamfiles.in <- p$file(".bam"))
(design.in <- p$file("sample_table.csv"))
(gtf.in <- p$file("Homo_sapiens.GRCh37.75_subset.gtf"))
Note: you can also passed a list of files like this, to give exact file names
bam1 <- p$file("SRR1039516_subset.bam")
bam2 <- p$file("SRR1039512_subset.bam")
bamfiles.in2 <- list(bam1, bam2)
Now create a new draft task in your project, don’t forget to pass input.
## add a new Task
(tsk <- p$task_add(name = "RNA DE report new",
description = "RNA DE analysis report",
app = rna.app$id,
inputs = list(bamfiles = bamfiles.in,
design = design.in,
gtffile = gtf.in)))
## don't forget to run a draft task
tsk$run()
To monitor the task, run following command, it will tell you when it’s finished, but this is not running in the background now.
## monitor the task
## tsk$monitor()
A better way is to use the Task hook function, it’s flexible, you can hook any function to a task status. For example, when it’s complete download the files. Now try to send your self a text message : )
setTaskHook("completed", function(){
tsk$download("~/Downloads")
})
tsk$monitor()
To download all files from a completed tasks
tsk$download("~/Downloads")
To run task in batch mode, (check ?batch
) for more details, here is an mock running
## batch by items
(tsk <- p$task_add(name = "RNA DE report new batch 2",
description = "RNA DE analysis report",
app = rna.app$id,
batch = batch(input = "bamfiles"),
inputs = list(bamfiles = bamfiles.in,
design = design.in,
gtffile = gtf.in)))
## batch by metadata, input files has to have metadata fields specified
(tsk <- p$task_add(name = "RNA DE report new batch 3",
description = "RNA DE analysis report",
app = rna.app$id,
batch = batch(input = "fastq",
c("metadata.sample_id", "metadata.library_id")),
inputs = list(bamfiles = bamfiles.in,
design = design.in,
gtffile = gtf.in)))
For more details, check R API tutorial.
In our last section, we demonstrate how to hardcode a R report template into your docker container and your command line will output a new report with new input files.
But how about this, instead of coding template into docker, I want to
Here I am developing a report tool to support all these in a single tool and it uses two different engines to provide isolated environment to generate report, because each report has different dependencies.
Requirement for your report template
this is how it works
If you are interest, you can still read my dockerfile, command line, tool generator and json.
I will suggest you directly copy the json into your project. just to try add an app in different way.
fl <- system.file("docker/reporttool/rabix/reporttool.json",
package = "sevenbridges")
cat(readLines(fl), sep= "\n")
{
"sbg:id": "reporttool",
"id": "#reporttool",
"inputs": [
{
"type": [
"null",
{
"items": "File",
"type": "array"
}
],
"label": "",
"description": "Shinay app template as zipped(.zip) or tar(tar.gz) file.",
"streamable": false,
"default": "",
"id": "#shinyTemplate",
"inputBinding": {
"position": 0,
"prefix": "--shinyTemplate",
"separate": true,
"itemSeparator": ",",
"sbg:cmdInclude": true
}
},
{
"type": [
"null",
{
"items": "File",
"type": "array"
}
],
"label": "",
"description": "Rmarkdown file template will be rendered by knitr",
"streamable": false,
"default": "",
"id": "#knitrTemplate",
"inputBinding": {
"position": 0,
"prefix": "--knitrTemplate",
"separate": true,
"itemSeparator": ",",
"sbg:cmdInclude": true
}
},
{
"type": [
"null",
{
"items": "File",
"type": "array"
}
],
"label": "",
"description": "Files to be included in data folder of app",
"streamable": false,
"default": "",
"id": "#data",
"inputBinding": {
"position": 0,
"prefix": "--data",
"separate": true,
"itemSeparator": ",",
"sbg:cmdInclude": true
}
},
{
"type": [
"null",
{
"items": "File",
"type": "array"
}
],
"label": "",
"description": "Files to be included in www folder of app",
"streamable": false,
"default": "",
"id": "#www",
"inputBinding": {
"position": 0,
"prefix": "--www",
"separate": true,
"itemSeparator": ",",
"sbg:cmdInclude": true
}
},
{
"type": [
"null",
{
"items": "File",
"type": "array"
}
],
"label": "",
"description": "Files to be included in src folder of app",
"streamable": false,
"default": "",
"id": "#src",
"inputBinding": {
"position": 0,
"prefix": "--src",
"separate": true,
"sbg:cmdInclude": true
}
},
{
"type": [
"null",
{
"items": "File",
"type": "array"
}
],
"label": "",
"description": "Files to be included in root of app folder",
"streamable": false,
"default": "",
"id": "#appFiles",
"inputBinding": {
"position": 0,
"prefix": "--appFiles",
"separate": true,
"itemSeparator": ",",
"sbg:cmdInclude": true
}
},
{
"type": ["null", "string"],
"label": "",
"description": "Name of account to save or remove, check shinyapps::setAccountInfo",
"streamable": false,
"default": "",
"id": "#name",
"inputBinding": {
"position": 0,
"prefix": "--name",
"separate": true,
"sbg:cmdInclude": true
}
},
{
"type": ["null", "string"],
"label": "",
"description": "User token for the account, check shinyapps::setAccountInfo",
"streamable": false,
"default": "",
"id": "#token",
"inputBinding": {
"position": 0,
"prefix": "--token",
"separate": true,
"sbg:cmdInclude": true
}
},
{
"type": ["null", "string"],
"label": "",
"description": "User secret for the account, check shinyapps::setAccountInfo",
"streamable": false,
"default": "",
"id": "#secret",
"inputBinding": {
"position": 0,
"prefix": "--secret",
"separate": true,
"sbg:cmdInclude": true
}
},
{
"type": ["null", "string"],
"label": "",
"description": "Optional; the kind of content being deployed (e.g. 'plot', 'document', or 'application').",
"streamable": false,
"default": "",
"id": "#contentCategory",
"inputBinding": {
"position": 0,
"prefix": "--contentCategory",
"separate": true,
"sbg:cmdInclude": true
}
},
{
"type": ["null", "string"],
"label": "",
"description": "Account to deploy application to. This parameter is only required for the initial deployment of an application when there are multiple accounts configured on the system (see accounts).",
"streamable": false,
"default": "",
"id": "#account",
"inputBinding": {
"position": 0,
"prefix": "--account",
"separate": true,
"sbg:cmdInclude": true
}
},
{
"type": ["null", "string"],
"label": "",
"description": "Server name. Required only if you use the same account name on multiple servers.",
"streamable": false,
"default": "",
"id": "#server",
"inputBinding": {
"position": 0,
"prefix": "--server",
"separate": true,
"sbg:cmdInclude": true
}
},
{
"type": ["null", "boolean"],
"label": "",
"description": "Request that no status information be printed to the console during the deployment.",
"streamable": false,
"default": "",
"id": "#quiet",
"inputBinding": {
"position": 0,
"prefix": "--quiet",
"separate": true,
"sbg:cmdInclude": true
}
},
{
"type": [
"null",
{
"name": "engine",
"symbols": ["packrat", "liftr"],
"type": "enum"
}
],
"label": "",
"description": "packrat or liftr (docker in docker) or NA [default: packrat]",
"streamable": false,
"default": "",
"id": "#engine",
"inputBinding": {
"position": 0,
"prefix": "--engine",
"separate": true,
"sbg:cmdInclude": true
}
}
],
"outputs": [
{
"type": [
"null",
{
"items": "File",
"type": "array"
}
],
"label": "",
"description": "compressed shiny app folder",
"streamable": false,
"default": "",
"id": "#shinyapp",
"outputBinding": {
"glob": "*.tar"
}
},
{
"type": [
"null",
{
"items": "File",
"type": "array"
}
],
"label": "",
"description": "report rendered as html from knitr template",
"streamable": false,
"default": "",
"id": "#html_report",
"outputBinding": {
"glob": "*.html"
}
},
{
"type": [
"null",
{
"items": "File",
"type": "array"
}
],
"label": "",
"description": "report rendered as pdf from knitr template",
"streamable": false,
"default": "",
"id": "#pdf_report",
"outputBinding": {
"glob": "*.pdf"
}
}
],
"requirements": [],
"hints": [
{
"class": "DockerRequirement",
"dockerPull": "tengfei/reporttool",
"dockerLoad": "",
"dockerFile": "",
"dockerImageId": "",
"dockerOutputDirectory": ""
}
],
"label": "reporttool",
"description": "Reporiting tools support you pass shiny app and knitr Rmakrdown template",
"class": "CommandLineTool",
"baseCommand": [
"report.R"
],
"arguments": [],
"context": ""
}
Or just use API to add the raw JSON file
## directly add json file
p <- a$project(id = "tengfei/hackathon")
(report.app <- p$app_add("report-tool", fl))
Checkout the dockerfile
fl <- system.file("docker/reporttool/Dockerfile",
package = "sevenbridges")
cat(readLines(fl), sep= "\n")
FROM rocker/hadleyverse
MAINTAINER "Tengfei Yin" yintengfei@gmail.com
RUN rm -f /var/lib/dpkg/available \
&& rm -rf /var/cache/apt/* \
&& apt-get update \
&& apt-get install -y libssl-dev
RUN R -e "install.packages(c('packrat', 'devtools', 'rsconnect', 'shiny', 'rmarkdown'), repos='https://cran.rstudio.com/')"
RUN R -e "devtools::install_github('road2stat/liftr', ref = 'devel')"
ADD src/report.R /usr/local/bin/
RUN chmod a+x /usr/local/bin/report.R
Checkout the command line
fl <- system.file("docker/reporttool/src/report.R",
package = "sevenbriges")
cat(readLines(fl), sep= "\n")
Checkout the tool generator
fl <- system.file("docker/reporttool/rabix/generator.R",
package = "sevenbriges")
cat(readLines(fl), sep= "\n")
Even though in R with ‘sevenbridges’ package you can use %>>%
to connect two Tool object, but this only works for linear simple flow. For complicated flow, we recommend you to use graphic user interface, it’s lot fun.
Now connect your RNA-seq tool with the report tool you just add it to your project, follow the tutorial here, then make a workflow like this:
And next run a task on the platform via UI like this:
Now use either graphic user interface or R to describe your tool, your workflow, write report template for your tool (hard coded) and then share your flow with your friends.
After you install the package
browseVignettes("sevenbridges")
or on Bioconductor devel branch sevenbridges page