
Package ‘flowQB’
October 12, 2016

Type Package

Title Automated Quadratic Characterization of Flow Cytometer
Instrument Sensitivity: Q, B and CV instrinsic calculations

Version 1.18.4

Author Josef Spidlen, Faysal El Khettabi, Wayne Moore, David Parks,
Ryan Brinkman

Maintainer Josef Spidlen <jspidlen@bccrc.ca>

Description flowQB is a fully automated R Bioconductor package to calculate
automatically the detector efficiency (Q), optical background (B)
and intrinsic CV of the beads.

Imports methods, flowCore (>= 1.32.0), stats, extremevalues

License Artistic-2.0

Suggests FlowRepositoryR, xlsx, RUnit, BiocGenerics

biocViews FlowCytometry, Regression, PeakDetection, QualityControl,
MultiChannel, OneChannel

LazyLoad yes

Collate helper_functions.R fitted_ellipse_gate.R split_in_two.R
peak_gate.R pick_parameters.R calc_mean_sd_functions.R
fit_functions.R

NeedsCompilation no

R topics documented:
calc_mean_sd_197 . 2
calc_mean_sd_background . 4
calc_mean_sd_capture . 6
calc_mean_sd_capture_all . 7
calc_mean_sd_duke . 9
find_peak . 11
fitted_ellipse_gate . 12
fit_beads . 14
fit_led . 18

1

2 calc_mean_sd_197

get_results_for_dyes . 22
peak_gate . 23
pick_parameters . 25
qb_from_fits . 26
split_in_two . 28

Index 30

calc_mean_sd_197 Calculate the mean and the standard deviation of Standford’s "197
calibration beads".

Description

This method calculated the mean and the standard deviation from peaks identified in date generated
by running Stanford’s "197 calibration beads". Back in 1993, Spherotech pruduced calibration
beads for Stanford and these are the 197th bead sample that Spherotech sent to Stanford. These
have then been used at Stanford until 2013. Later on, Spherotech sent a new batch of similar 3
micron single-level multi-dye bead lot called "RCP-30-5A LotAE01", but, since the FACS Facility
users were used to looking for 197 beads, these were simply called 197B. These beads were used
as one of the reference particles in the 23 instrument multi-site instrument comparison that flowQB
was originally designed to analyze. These beads provides a convenient stable single peak reference
with reasonable signal levels on all of the usual fluorescence channels. Unfortunately, the amount
of 197B available was small, so in 2014, Spherotech sent a new batch, which was later called 197C
at Stanford.

Usage

calc_mean_sd_197(fcs_file_path, scatter_channels, ignore_channels)

Arguments

fcs_file_path A character string specifying the file path to the FCS file with the acquired bead
data.

scatter_channels

A vector of 2 short channel names (values of the $PnN keywords) specifying the
2 channels that should not be used to gate the main bead population. The first
channel should be a forward scatter channel, the second one should be a side
scatter channel.

ignore_channels

A vector of short channel names (values of the $PnN keywords) specifying chan-
nels that should not be considered for the fitting procedure. Normally, those
should be all non-fluorescence channels, such as the time and the (forward and
side) scatter channels.

calc_mean_sd_197 3

Details

The method fits an ellipse gate on the 2 specified scatter channels and then locates the peak of that
populations in each of the fluorescence channels and finally uses the getOutliers method from the
extremevalues package in order to calculate the mean and the standard deviation of the result for
each of the fluorescence channels.

Value

The result is a data frame with columns corresponding to short channel names of channels from
the input FCS file except those specified by the ignore_channels parameter. The rows include the
total number of events, the number of events in the FSC/SSC ellipse gate, the number of events
in the peak gate (which can vary slighly among the different channels), the mean and the standard
deviation.

Author(s)

Wayne Moore, Faysal El Khettabi, Josef Spidlen

See Also

fitted_ellipse_gate, calc_mean_sd_duke,

Examples

library(flowCore)
library(xlsx)
library(flowQBData)
flowQBData is available since BioConductor 3.4, please install it
manually in order to be able to these examples

inst_xlsx_path <- system.file("extdata",
"140126_InstEval_Stanford_LSRIIA2.xlsx", package="flowQBData")
xlsx <- read.xlsx(inst_xlsx_path, 1, headers=FALSE, stringsAsFactors=FALSE)
#
ignore_channels_row <- 9
ignore_channels <- vector()
i <- 1
while(!is.na(xlsx[[i+4]][[ignore_channels_row]])) {
ignore_channels[[i]] <- xlsx[[i+4]][[ignore_channels_row]]
i <- i + 1
}
#
instrument_folder_row <- 9
instrument_folder_col <- 2
instrument_folder <- xlsx[[instrument_folder_col]][[instrument_folder_row]]
#
test_column <- 14
test_row <- 14
folder <- xlsx[[test_column]][[test_row]]
beads_file_name <- xlsx[[test_column]][[test_row+1]]
scatter_channels <- c(

4 calc_mean_sd_background

xlsx[[test_column]][[test_row+2]],
xlsx[[test_column]][[test_row+3]])
#
fcs_path <- system.file("extdata", instrument_folder,
folder, beads_file_name, package="flowQBData")
#
results <- calc_mean_sd_197(fcs_path, scatter_channels, ignore_channels)
#
Same thing as above with providing the arguments directly without
parsing it from the spreadsheet.
fcs_path <- system.file("extdata", "SSFF_LSRII", "Other_Tests",
"933743.fcs", package="flowQBData")
scatter_channels <- c("FSC-A", "SSC-A")
ignore_channels <- c(
"Time", "FSC-A", "FSC-W", "FSC-H", "SSC-A", "SSC-W", "SSC-H")
results <- calc_mean_sd_197(fcs_path, scatter_channels, ignore_channels)

calc_mean_sd_background

Calculate the mean and the standard deviation.

Description

This method looks at all channels except those specified in the ignore_channel list and calculated
the mean and the standard deviation for those channels.

Usage

calc_mean_sd_background(fcs_file_path, ignore_channels)

Arguments

fcs_file_path A character string specifying the file path to the FCS file with the acquired bead
data.

ignore_channels

A vector of short channel names (values of the $PnN keywords) specifying chan-
nels that should not be considered for the fitting procedure. Normally, those
should be all non-fluorescence channels, such as the time and the (forward and
side) scatter channels.

Details

The getOutliers method from the extremevalues package is used to calculate the mean and the
standard deviation values for all the FCS channels in the file except those specified in the ignore
channels list.

calc_mean_sd_background 5

Value

The result is a data frame with columns corresponding to short channel names of channels from the
input FCS file except those specified by the ignore_channels parameter. The rows include the total
number of events, the mean and the standard deviation.

Author(s)

Josef Spidlen, Wayne Moore, Faysal El Khettabi

See Also

calc_mean_sd_197, calc_mean_sd_duke, calc_mean_sd_capture, calc_mean_sd_capture_all

Examples

library(flowCore)
library(xlsx)
library(flowQBData)
flowQBData is available since BioConductor 3.4, please install it
manually in order to be able to these examples

inst_xlsx_path <- system.file("extdata",
"140126_InstEval_Stanford_LSRIIA2.xlsx", package="flowQBData")
xlsx <- read.xlsx(inst_xlsx_path, 1, headers=FALSE, stringsAsFactors=FALSE)
#
ignore_channels_row <- 9
ignore_channels <- vector()
i <- 1
while(!is.na(xlsx[[i+4]][[ignore_channels_row]])) {
ignore_channels[[i]] <- xlsx[[i+4]][[ignore_channels_row]]
i <- i + 1
}
#
instrument_folder_row <- 9
instrument_folder_col <- 2
instrument_folder <- xlsx[[instrument_folder_col]][[instrument_folder_row]]
#
test_column <- 15
test_row <- 14
folder <- xlsx[[test_column]][[test_row]]
file_name <- xlsx[[test_column]][[test_row+1]]
#
fcs_path <- system.file("extdata",
instrument_folder, folder, file_name, package="flowQBData")
#
results <- calc_mean_sd_background(fcs_path, ignore_channels)
#
Same thing as above with providing the arguments directly without
parsing it from the spreadsheet.
fcs_path <- system.file("extdata", "SSFF_LSRII", "Other_Tests",
"935319.fcs", package="flowQBData")
ignore_channels <- c(

6 calc_mean_sd_capture

"Time", "FSC-A", "FSC-W", "FSC-H", "SSC-A", "SSC-W", "SSC-H")
results <- calc_mean_sd_background(fcs_path, ignore_channels)

calc_mean_sd_capture Calculate the mean and the standard deviation for the stained and
unstained population of a specified channel in an FCS file.

Description

This function calculates the mean and the standard deviation of two populations - one unstaned (low)
and one stained (high) for a specified channel (specified by the value of the detector parameter).
These populations are derived by first fitting an ellipse gate on the 2 specified scatter channels and
then splitting for low and high based on the specified detector.

Usage

calc_mean_sd_capture(fcs_file_path, scatter_channels, detector, dye)

Arguments

fcs_file_path A character string specifying the file path to the FCS file with the acquired bead
data.

scatter_channels

A vector of 2 short channel names (values of the $PnN keywords) specifying the
2 channels that should not be used to gate the main bead population. The first
channel should be a forward scatter channel, the second one should be a side
scatter channel.

detector A character string specifying which channel to split for the low/high gate, which
is also the channel that we calculate the mean and the standard deviation for.

dye A character string specifying the desired column heading of the result.

Details

This function first fits an ellipse gate on the 2 specified scatter channels. This scatter gated popula-
tion is then split to 2 (low=unstained and high=stained) in each of the fluorescence channels, and a
peak gate is applied in order to isolate the high and the low peaks. Finally, the getOutliers method
from the extremevalues package is used in order to calculate the mean and the standard deviation
of both the stained and unstained population of each of the fluorescence channels. The value of the
detector argument is used to determine which channel to work with, the value of the dye argument
is only used to specify the column name of the result. These shall correspond to each other, e.g.,
"FITC-A" may be the value of the detector, which shall correspond to the short channel name of a
channel in the FCS file. FITC may then be the desidered dye name, which will end be used for the
column heading.

calc_mean_sd_capture_all 7

Value

The result is a data frame with a single column, the heading of the column corresponds to the value
of the dye argument. The rows include the total number of events, the number of events in the
FSC/SSC ellipse gate, the number of events in the high peak gate and low peak gate, the stained
mean and stained standard deviation (based on the high peak gate), and finally the unstained mean
and unstained standard deviation (based on the low peak gate).

Author(s)

Wayne Moore, Faysal El Khettabi, Josef Spidlen

See Also

calc_mean_sd_capture_all

Examples

library(flowCore)
library(flowQBData)
flowQBData is available since BioConductor 3.4, please install it
manually in order to be able to these examples

fcs_file_path <- system.file("extdata", "SSFF_LSRII", "SU_2B",
"933723.fcs", package="flowQBData")
#
scatter_channels <- c("FSC-A", "SSC-A")
detector <- "APC-A"
dye <- "APC"
#
results <- calc_mean_sd_capture(
fcs_file_path, scatter_channels, detector, dye)

calc_mean_sd_capture_all

Calculate the mean and the standard deviation for the stained and
unstained population of specified channels in specified FCS files.

Description

This methods performs the calc_mean_sd_capture function on a list of FCS files, list of scatter
channel pairs, list of detectors and a list of dyes, and collates the results. The order of the arguments
in the input lists matters, i.e., the first FCS file will be matched with the first pair of FSC/SSC
channel names, the first detector name and the first dye name.

Usage

calc_mean_sd_capture_all(fcs_file_path_list, scatter_channels_list,
detector_list, dye_list)

8 calc_mean_sd_capture_all

Arguments

fcs_file_path_list

A list of n FCS files, one for each detector.
scatter_channels_list

A list of n pairs of forward and side scatter channel names.

detector_list A list of n detector names; those shall correspond to specific detector in the n
specified FCS files.

dye_list A list of n dye names; those will be used to name the columns of the resulting
data frame.

Details

This method assumes that each of the FCS files have useful data only in the specified channel.
Therefore, we perform the calc_mean_sd_capture on all these FCS files separatelly and then put
the results together into a single data frame.

Value

The result is a data frame with n columns, the headings of the columns correspond to the values in
the list provided by the dye_list argument. The rows include the total number of events, the number
of events in the FSC/SSC ellipse gate, the number of events in the high peak gate and low peak
gate, the stained mean and stained standard deviation (based on the high peak gate), and finally the
unstained mean and unstained standard deviation (based on the low peak gate).

Author(s)

Josef Spidlen, Wayne Moore, Faysal El Khettabi

See Also

calc_mean_sd_capture

Examples

library(flowCore)
library(flowQBData)
flowQBData is available since BioConductor 3.4, please install it
manually in order to be able to these examples

file_directory <- system.file("extdata", "SSFF_LSRII", "SU_2B",
package="flowQBData")
fcs_file_path_list <- as.list(file.path(
file_directory, c("933723.fcs","933725.fcs")))
scatter_channels_list <- list(c("FSC-A", "SSC-A"), c("FSC-A", "SSC-A"))
detector_list <- list("APC-A", "APC-Cy7-A")
dye_list <- list("APC", "APC-Cy7")
#
results <- calc_mean_sd_capture_all(
fcs_file_path_list,
scatter_channels_list,

calc_mean_sd_duke 9

detector_list,
dye_list
)
#
Now the same thing again, but we will show how to extract information
from the spreadsheet and run the appropriate calculations
library(xlsx)
xls_path <- system.file("extdata", "140126_InstEval_Stanford_LSRIIA2.xlsx",
package="flowQBData")
xls <- read.xlsx(xls_path, 1, headers=FALSE, stringsAsFactors=FALSE)
insfolder <- instrument.folder <- xls[[2]][[9]]
#
dyes <- list()
detectors <- list()
filepaths <- list()
scatters <- list()
#
for (i in 1:10)
{
folder <- xls[[i+2]][[14]]
filename <- xls[[i+2]][[15]]
#
if (is.na(filename)) next
filepath <- system.file("extdata", insfolder, folder, filename,
package="flowQBData")
Spreadsheet may describe additional FCS files not included
with the library, so skip if file doesn't exist
if (nchar(filepath) == 0) next
#
filepaths <- c(filepaths, filepath)
dyes <- c(dyes, xls[[i+2]][[11]])
detectors <- c(detectors, xls[[i+2]][[13]])
scatters[[length(scatters)+1]] <- c(xls[[i+2]][[16]], xls[[i+2]][[17]])
}
#
results2 <- calc_mean_sd_capture_all(filepaths, scatters, detectors, dyes)

calc_mean_sd_duke Calculate the mean and the standard deviation of calibration beads
from Duke.

Description

Currently, this is the same calculation as calc_mean_sd_197.

Usage

calc_mean_sd_duke(fcs_file_path, scatter_channels, ignore_channels)

10 calc_mean_sd_duke

Arguments

fcs_file_path A character string specifying the file path to the FCS file with the acquired bead
data.

scatter_channels

A vector of 2 short channel names (values of the $PnN keywords) specifying the
2 channels that should not be used to gate the main bead population. The first
channel should be a forward scatter channel, the second one should be a side
scatter channel.

ignore_channels

A vector of short channel names (values of the $PnN keywords) specifying chan-
nels that should not be considered for the fitting procedure. Normally, those
should be all non-fluorescence channels, such as the time and the (forward and
side) scatter channels.

Details

Currently, this is the same calculation as calc_mean_sd_197.

Value

The result is a data frame with columns corresponding to short channel names of channels from
the input FCS file except those specified by the ignore_channels parameter. The rows include the
total number of events, the number of events in the FSC/SSC ellipse gate, the number of events
in the peak gate (which can vary slighly among the different channels), the mean and the standard
deviation.

Author(s)

Wayne Moore, Faysal El Khettabi, Josef Spidlen

See Also

fitted_ellipse_gate, calc_mean_sd_197

Examples

library(flowCore)
library(xlsx)
library(flowQBData)
flowQBData is available since BioConductor 3.4, please install it
manually in order to be able to these examples

inst_xlsx_path <- system.file("extdata",
"140126_InstEval_Stanford_LSRIIA2.xlsx", package="flowQBData")
xlsx <- read.xlsx(inst_xlsx_path, 1, headers=FALSE, stringsAsFactors=FALSE)
#
ignore_channels_row <- 9
ignore_channels <- vector()
i <- 1
while(!is.na(xlsx[[i+4]][[ignore_channels_row]])) {

find_peak 11

ignore_channels[[i]] <- xlsx[[i+4]][[ignore_channels_row]]
i <- i + 1
}
#
instrument_folder_row <- 9
instrument_folder_col <- 2
instrument_folder <- xlsx[[instrument_folder_col]][[instrument_folder_row]]
#
test_column <- 13
test_row <- 14
folder <- xlsx[[test_column]][[test_row]]
beads_file_name <- xlsx[[test_column]][[test_row+1]]
scatter_channels <- c(
xlsx[[test_column]][[test_row+2]],
xlsx[[test_column]][[test_row+3]])
#
fcs_path <- system.file("extdata", instrument_folder, folder,
beads_file_name, package="flowQBData")
#
results <- calc_mean_sd_duke(fcs_path, scatter_channels, ignore_channels)

find_peak Find density peak in the provided vector of values

Description

Find a density peak in the provided vector of values and return the lower and upper bounds around
that peak.

Usage

find_peak(data, width=0.5, fraction=0.1)

Arguments

data Vector of numbers.

width The returned lower and upper bounds for the peak are calculated based on how
much larger is the difference between the values at the "i"" and "i + faction size"
index of sorted data is; i is itterated from the index of the most dense region to
the left (for lower bound) and to the right (for upper bound), which increases
the above mentioned difference as the region is becomming less dense. The
itteration is stopped when the difference gets larger than the minimum difference
times 1/width. This means, by default with width = 0.5, the difference can reach
double the minimum difference.

fraction How large is the proportion of values that we look at when distances as men-
tioned above. By default with fraction = 0.1, we look at 10% of values.

12 fitted_ellipse_gate

Details

This functions finds a density peak in the provided vector of values and returns the lower and upper
bounds around that peak. First, we sort the input data, let’s call it x, and look at a fraction of values
at a time. Say we have 1,000 values in our input vector and fraction is 0.1 (10%), meaning we look
at regions spanning 100 values. We will find the most dense region by itterating the possible starting
index from 1 to 899 and minimizing the difference between the sorted values at potential starting
index and corresponding ending index (100 values apart). Finding the minimum difference equals
to finding the most dense region. Next we find the lower and upper bounds for the peak based on
how much larger is the difference between the values at the "i"" and "i + faction size" index of
sorted data is; i is itterated from the index of the most dense region to the left (for lower bound)
and to the right (for upper bound), which increases the above mentioned difference as the region is
becomming less dense. The itteration is stopped when the difference gets larger than the minimum
difference times 1/width. This means, by default with width = 0.5, the difference can reach double
the minimum difference.

Value

A list with 2 components, "lo" and "hi", identifying the lower and the upper bounds for the peak.

Author(s)

Wayne Moore, Faysal El Khettabi, Josef Spidlen

See Also

fitted_ellipse_gate

Examples

my_peak_info <- find_peak(rnorm(1000, mean=5))

fitted_ellipse_gate Fit and apply an ellipse gate

Description

Fit an ellipse (or ellipsoid) gate on the most dense region of the selected channels of a flowFrame
object.

Usage

fitted_ellipse_gate(object, channels, R=1)

fitted_ellipse_gate 13

Arguments

object A flowFrame object that will be gated by an automatically fitted ellipse (or el-
lipsoid) gate.

channels A vector if indices or short channel names (valued of the \$PnN keywords) of
channels that shall be used to fit an ellipse (or ellipsoid) gate. Typically, these
would be the indeces or names of the forward and scatter channels in the input
flowFrame, which will then be gated by a 2D ellipse gate (since 2 channels were
provided). A multidimensional ellipsoid gate is fitted analogically if more than
2 channels are provided. A 1D "ellipsoid" gate (i.e., a range gate) is applied if
only a single channel is specified.

R An additional scaling factor for the radii of the ellipse/ellipsoid gate.

Details

First, events with negative values in the specified channels are removed. Next, the find_peak
function is called on log transformed values of each of the specified channels. The returned lower
and upper boundaries of each of the channels are used to fit an ellipse/ellipsoid gate. The radii of
this gate are scalled by the value of the provided R argument. A new flowFrame object with only
those events in this gate is returned.

Value

A flowFrame object gated by an automatically fitted ellipse or ellipsoid gate created in the specified
channels.

Author(s)

Wayne Moore, Faysal El Khettabi, Josef Spidlen

See Also

find_peak

Examples

library('flowCore')
library(flowQBData)
flowQBData is available since BioConductor 3.4, please install it
manually in order to be able to these examples

fcsFilePath <- system.file("extdata", "SSFF_LSRII", "Other_Tests",
"933745.fcs", package="flowQBData")
myFlowFrame <- read.FCS(fcsFilePath)
gatedFlowFrame <- fitted_ellipse_gate(myFlowFrame, c('FSC-H', 'SSC-H'))

14 fit_beads

fit_beads Fit multi-level bead data.

Description

Fit observed means and variances of data generated by a sample of multi-level beads to a quadratic
model involving the Poisson distribution expectations for the relation between them.

Usage

fit_beads(fcs_file_path, scatter_channels, ignore_channels,
N_peaks, dyes, detectors, bounds,
signal_type, instrument_name, minimum_useful_peaks = 3,
max_iterations = 10, logicle_width = 1.0, ...)

fit_spherotech(fcs_file_path, scatter_channels, ignore_channels,
dyes, detectors, bounds,
signal_type, instrument_name, minimum_useful_peaks = 3,
max_iterations = 10, logicle_width = 1.0, ...)

fit_thermo_fisher(fcs_file_path, scatter_channels, ignore_channels,
dyes, detectors, bounds,
signal_type, instrument_name, minimum_useful_peaks = 3,
max_iterations = 10, logicle_width = 1.0, ...)

Arguments

fcs_file_path A character string specifying the file path to the FCS file with the acquired bead
data.

scatter_channels

A vector of 2 short channel names (values of the $PnN keywords) specifying the
2 channels that should not be used to gate the main bead population. The first
channel should be a forward scatter channel, the second one should be a side
scatter channel.

ignore_channels

A vector of short channel names (values of the $PnN keywords) specifying chan-
nels that should not be considered for the fitting procedure. Normally, those
should be all non-fluorescence channels, such as the time and the (forward and
side) scatter channels.

N_peaks The number of peaks (different beads) to look for. This argument is applicable
to the fit_beads function only; the fit_spherotech and fit_thermo_fisher
functions have the number of peaks predefined to 8 and 6, resp.

dyes A vector of dye names. This value does not affect the fitting, but those dyes will
be “highlighted” in the provided results.

fit_beads 15

detectors A vector of short channel names (values of the $PnN keywords) specifying chan-
nels matching to the dyes specified above. The length of this vector shall corre-
spond to the length of the dyes vector. These channels should be all of the same
type as specified by the signal_type below, i.e., area, height or width of the
measured signal.

bounds On some instruments, the lowest LED peaks may be cut off at a data baseline
so that the peak statistics will not be valid. Therefore, peaks too close to the
baseline need to be excluded from the fitting. Also, many instruments do not
maintain good linearity to the full top of scale, so it is also important to specify
a maximum level for good linearity and, on each fluorescence channel, exclude
any peak that is above that maximum. The bounds argument shall provide a
list specifying the minimum and maximum value for the means of valid peaks;
peaks with means outsize of this range will be ignored for that particular chan-
nel.

signal_type he type of the signal specified as the "area", "height" or "width". This should
match to the signal type that is being captured by the channels specified in the de-
tectors argument. The signal type is being used in order to trigger type-specific
peak validity checks. Currently, if signal type equals to "height" then peaks with
a mean value lower than the lowest peak mean value are omitted from the fitting.
In addition, peaks that are not sufficiently narrow (i.e., exceeding a specific max-
imum CV) are also omitted from the fitting. Currently, the maximum allowed
CV is set to 0.65, but the code is designed to make this user-configurable and
signal type dependent eventually.

instrument_name

The make/model of the instrument. The purpose if this argument is to allow for
instrument-specific peak validity checks. At this point, if BD Accuri is passed
as the instrument type, then peaks with a mean value lower than the lowest peak
mean value are omitted from the fitting. Additional instrument-specific peak
validity checks may be implemented in the future.

minimum_useful_peaks

Different peaks may be omitted for different channels due to various validity
checks described above. This argument specifies the minimal number of valid
peaks required in order for the fitting procedure to be performed on a particular
fluorescence channel.

max_iterations The maximum number of iterations for the iterative fitting approach with appro-
priate weight recalculations.

logicle_width The width parameter for the Logicle transformation. The data clustering part is
performed on data transformed with the Logicle transformation. Generally, the
Logicle width (w parameter) of 1.0 has been working well for all our data, but
users can change the default by providing a different value.

... Additional arguments that will be passed to the get_peak_statistics function used
internally to calculate peak statistics, such as the maximum.cv.area and maxi-
mum.cv.height values.

Details

The fit_beads function performs quadratic fitting for multi-level, multi-dye bead sets. In addition,
the fit_spherotech function performs fitting for the Sph8 particle sets from Spherotech, and the

16 fit_beads

fit_thermo_fisher function performs fitting for the 6-level (TF6) Thermo Fisher set. Internally,
this is the same fit_beads function except that the number of expected peaks is predefined to 8 and
6, resp. The parameters for the bead data fitting functions are similar to those required for the LED
fitting. The main difference is that a single FCS file is expected because the bead sets are provided
as a mixture of the different populations and therefore, acquiring data from a single sample will
naturally result in all the peaks contained within a single FCS file. All the beads are expected to
have the same (or very similar) light scatter properties. Therefore, we perform automated gating on
the forward and side scatter channels in order to isolate the main population. In order to do that, the
method requires a scatter_channels argument that specifies which 2 channels shall be used for
the scatter gating. After the main population is isolated, we use K-means clustering to separate the
expression peaks generated by different beads. The number of clusters is pre-defined as 8 for the
fit_spherotech function, 6 for the fit_thermo_fisher function, and provided by the user in the
form of the N_peaks argument in case of the fit_beads function. This clustering is performed on
data transformed with the Logicle transformation.

Value

The value is a list, see the vignette for a detailed description.

Author(s)

Josef Spidlen, Wayne Moore, Faysal El Khettabi

See Also

fit_led

Examples

library(flowCore)
library(xlsx)
library(flowQBData)
flowQBData is available since BioConductor 3.4, please install it
manually in order to be able to these examples

inst_xlsx_path <- system.file("extdata",
"140126_InstEval_Stanford_LSRIIA2.xlsx", package="flowQBData")
xlsx <- read.xlsx(inst_xlsx_path, 1, headers=FALSE, stringsAsFactors=FALSE)
#
ignore_channels_row <- 9
ignore_channels <- vector()
i <- 1
while(!is.na(xlsx[[i+4]][[ignore_channels_row]])) {
ignore_channels[[i]] <- xlsx[[i+4]][[ignore_channels_row]]
i <- i + 1
}
#
instrument_folder_row <- 9
instrument_folder_col <- 2
instrument_folder <- xlsx[[instrument_folder_col]][[instrument_folder_row]]
#

fit_beads 17

folder_column <- 16
folder_row <- 14
folder <- xlsx[[folder_column]][[folder_row]]
filename <- xlsx[[folder_column]][[folder_row+1]]
scatter_channels <- c(
xlsx[[folder_column]][[folder_row+2]],
xlsx[[folder_column]][[folder_row+3]])
#
fcs_file_path <- system.file("extdata", instrument_folder, folder,
filename, package="flowQBData")
#
bounds_min_col <- 6
bounds_min_row <- 7
bounds_max_col <- 7
bounds_max_row <- 7
bounds <- list()
if (is.na(xlsx[[bounds_min_col]][[bounds_min_row]])) {
bounds$minimum <- -100
} else {
bounds$minimum <- as.numeric(xlsx[[bounds_min_col]][[bounds_min_row]])
}
if (is.na(xlsx[[bounds_max_col]][[bounds_max_row]])) {
bounds$maximum <- 100000
} else {
bounds$maximum <- as.numeric(xlsx[[bounds_max_col]][[bounds_max_row]])
}
signal_type_col <- 3
signal_type_row <- 19
signal_type <- xlsx[[signal_type_col]][[signal_type_row]]
#
instrument_name_col <- 2
instrument_name_row <- 5
instrument_name <- xlsx[[instrument_name_col]][[instrument_name_row]]
#
channel_cols <- 3:12
dye_row <- 11
detector_row <- 13
dyes <- as.character(xlsx[dye_row,channel_cols])
detectors <- as.character(xlsx[detector_row,channel_cols])
#
multipeak_results <- fit_spherotech(fcs_file_path, scatter_channels,
ignore_channels, dyes, detectors, bounds,
signal_type, instrument_name, minimum_useful_peaks = 3,
max_iterations = 10, logicle_width = 1.0)
#
The above is the same as this:
N_peaks <- 8
multipeak_results <- fit_beads(fcs_file_path, scatter_channels,
ignore_channels, N_peaks, dyes, detectors, bounds,
signal_type, instrument_name, minimum_useful_peaks = 3,
max_iterations = 10, logicle_width = 1.0)
#
plot(

18 fit_led

exprs(multipeak_results$transformed_data[,"FITC-A"]),
exprs(multipeak_results$transformed_data[,"Pacific Blue-A"]),
col=multipeak_results$peak_clusters$cluster, pch='.')
#
Thermo-Fisher Example:
folder_column <- 17
folder <- xlsx[[folder_column]][[folder_row]]
filename <- xlsx[[folder_column]][[folder_row+1]]
#
fcs_file_path <- system.file("extdata", instrument_folder, folder,
filename, package="flowQBData")
#
beads_results_tf <- fit_thermo_fisher(fcs_file_path, scatter_channels,
ignore_channels, dyes, detectors, bounds,
signal_type, instrument_name, minimum_useful_peaks = 3,
max_iterations = 10, logicle_width = 1.0)
#
The above is the same as this:
N_peaks <- 6
beads_results_tf <- fit_beads(fcs_file_path, scatter_channels,
ignore_channels, N_peaks, dyes, detectors, bounds,
signal_type, instrument_name, minimum_useful_peaks = 3,
max_iterations = 10, logicle_width = 1.0)
#
plot(
exprs(beads_results_tf$transformed_data[,"FITC-A"]),
exprs(beads_results_tf$transformed_data[,"Pacific Blue-A"]),
col=beads_results_tf$peak_clusters$cluster, pch='.')

fit_led Fit LED data.

Description

Fit observed means and variances of data generated by an LED pulser to a quadratic and a linear
model involving the Poisson distribution expectations for the relation between them. The function
assumes that data generated by different LED levels are provided as separate FCS files. These files
are passed to the function in the form of a vector of FCS file paths. In addition, house keeping
details about the data and the way the fitting procedure should be performed need to be provided,
see the description of the arguments below.

Usage

fit_led(fcs_file_path_list, ignore_channels, dyes, detectors,
signal_type, instrument_name,
bounds = list(minimum = -100, maximum = 100000),
minimum_useful_peaks = 3, max_iterations = 10, ...)

fit_led 19

Arguments

fcs_file_path_list

A vector of FCS file paths pointing to data generated by an LED pulser set to
a range of LED levels; different levels generated different FCS files, all data
coming from a single instrument.

ignore_channels

A vector of short channel names (values of the $PnN keywords) specifying chan-
nels that should not be considered for the fitting procedure. Normally, those
should be all non-fluorescence channels, such as the time and the (forward and
side) scatter channels.

dyes A vector of dye names that you would normally use with the detectors specified
below. This value does not affect the fitting, but those dyes will be “highlighted”
in the provided results.

detectors A vector of short channel names (values of the $PnN keywords) specifying chan-
nels matching to the dyes specified above. The length of this vector shall cor-
respond to the length of the dyes vector. These channels should be all of the
same type as specified by the signal_type below, i.e., area, height or width of the
measured signal.

signal_type The type of the signal specified as the “area”, “height” or “width”. This should
match to the signal type that is being captured by the channels specified in the de-
tectors argument. The signal type is being used in order to trigger type-specific
peak validity checks. Currently, if signal type equals to “height” then peaks with
a mean value lower than the lowest peak mean value are omitted from the fitting.
In addition, peaks that are not sufficiently narrow (i.e., exceeding a specific max-
imum CV) are also omitted from the fitting. Currently, the maximum allowed
CV is set to 0.65, but the code is designed to make this user-configurable and
signal type dependent eventually.

instrument_name

The make/model of the instrument. The purpose if this argument is to allow for
instrument-specific peak validity checks. At this point, if “BD Accuri” is passed
as the instrument type, then peaks with a mean value lower than the lowest peak
mean value are omitted from the fitting. Additional instrument-specific peak
validity checks may be implemented in the future.

bounds On some instruments, the lowest LED peaks may be cut off at a data baseline
so that the peak statistics will not be valid. Therefore, peaks too close to the
baseline need to be excluded from the fitting. Also, many instruments do not
maintain good linearity to the full top of scale, so it is also important to specify
a maximum level for good linearity and, on each fluorescence channel, exclude
any peak that is above that maximum. The bounds argument shall provide a
list specifying the minimum and maximum value for the means of valid peaks;
peaks with means outsize of this range will be ignored for that particular chan-
nel.

minimum_useful_peaks

Different peaks may be omitted for different channels due to various validity
checks described above. This argument specifies the minimal number of valid
peaks required in order for the fitting procedure to be performed on a particular

20 fit_led

fluorescence channel. Generally, fitting the three quadratic parameters requires
three valid points to obtain a fit at all, and 4 or more points are needed to obtain
error estimates. Requiring higher values would exclude some of your data but
likely produce better results.

max_iterations The peaks have a wide range of variances, so unweighted least squares fitting is
not appropriate, and we need to apply appropriate weights in the fitting proce-
dure. In particular, the populations with lower variances get more weight since
having the fit miss them by any particular amount is worse than missing a high
variance population by the same amount. This argument specifies the maximum
number of iterations for the iterative fitting approach with appropriate weight
recalculations. In most cases, the fitting converges relatively fast. The iterating
stops when either the maximum of iterations is used or if none of the coefficients
of the model changed more than 0.00005. The default maximum of 10 iterations
seems to be enough in most cases. You can also explore your results in order to
see how many iterations were actually done for each of the all of the fitting.

... Additional arguments that will be passed to the get_peak_statistics function used
internally to calculate peak statistics, such as the maximum.cv.area and maxi-
mum.cv.height values.

Details

An LED light pulser is producing very uniform pulses at adjustable signal levels. White LEDs
provide some signal at all visible wavelengths, but the far-red emission is weak. A given LED pulse
level will generate quite different photoelectron signals on different detectors, so it is important to
collect data over a wide range of LED levels to assure that the measurement series on each detector
will include the low, middle and high level signals needed for optimal results in the fitting procedure.

Value

fit_led returns a list, see the vignette for a detailed description.

Author(s)

Josef Spidlen, Wayne Moore, Faysal El Khettabi

See Also

fit_beads

Examples

library(flowCore)
library(xlsx)
library(flowQBData)
flowQBData is available since BioConductor 3.4, please install it
manually in order to be able to these examples

inst_xlsx_path <- system.file("extdata",
"140126_InstEval_Stanford_LSRIIA2.xlsx", package="flowQBData")
xlsx <- read.xlsx(inst_xlsx_path, 1, headers=FALSE, stringsAsFactors=FALSE)

fit_led 21

#
ignore_channels_row <- 9
ignore_channels <- vector()
i <- 1
while(!is.na(xlsx[[i+4]][[ignore_channels_row]])) {
ignore_channels[[i]] <- xlsx[[i+4]][[ignore_channels_row]]
i <- i + 1
}
#
instrument_folder_row <- 9
instrument_folder_col <- 2
instrument_folder <- xlsx[[instrument_folder_col]][[instrument_folder_row]]
folder_column <- 18
folder_row <- 14
folder <- xlsx[[folder_column]][[folder_row]]
fcs_directory <- system.file("extdata", instrument_folder,
folder, package="flowQBData")
fcs_file_path_list <- list.files(fcs_directory, "*.fcs", full.names= TRUE)
#
bounds_min_col <- 6
bounds_min_row <- 7
bounds_max_col <- 7
bounds_max_row <- 7
bounds <- list()
if (is.na(xlsx[[bounds_min_col]][[bounds_min_row]])) {
bounds$minimum <- -100
} else {
bounds$minimum <- as.numeric(xlsx[[bounds_min_col]][[bounds_min_row]])
}
if (is.na(xlsx[[bounds_max_col]][[bounds_max_row]])) {
bounds$maximum <- 100000
} else {
bounds$maximum <- as.numeric(xlsx[[bounds_max_col]][[bounds_max_row]])
}
signal_type_col <- 3
signal_type_row <- 19
signal_type <- xlsx[[signal_type_col]][[signal_type_row]]
#
instrument_name_col <- 2
instrument_name_row <- 5
instrument_name <- xlsx[[instrument_name_col]][[instrument_name_row]]
#
channel_cols <- 3:12
dye_row <- 11
detector_row <- 13
dyes <- as.character(xlsx[dye_row,channel_cols])
detectors <- as.character(xlsx[detector_row,channel_cols])
#
led_results <- fit_led(fcs_file_path_list, ignore_channels, dyes,
detectors, signal_type, instrument_name, bounds = bounds,
minimum_useful_peaks = 3, max_iterations = 10)

22 get_results_for_dyes

get_results_for_dyes Extract dye results from a data frame with detector results.

Description

This function takes a data frame where columns are named based on detectors and extracts a subset
of the data frame it by selecting only specified detectors. In addition, the columns will be renamed
based on the specified dyes argument.

Usage

get_results_for_dyes(dyes, detectors, results)

Arguments

dyes A vector of n dye names which shall correspond to the dyes specified in the dyes
argument. These will be the column names of the resulting data frame. The
detector-dye mapping is done based on the order of values in the two vectors,
i.e., the first dye shall correspond to the first detector, etc.

detectors A vector of n detector names which shall correspond to the dyes specified in the
dyes argument. These shall correspond to the column names in the input data
frame. The detector-dye mapping is done based on the order of values in the two
vectors, i.e., the first dye shall correspond to the first detector, etc.

results An input data frame that shall contain columns corresponding to all the different
values specified by the detectors vector.

Details

This function is used to select a subset of columns from a data frame by specifying the columns
of interest (detectors). In addition, the columns will be renamed to dyes corresponding to those
detectors.

Value

A data frame with n columns, column names corresponding to the specified dyes and rows/values
extracted from the input data frame.

Author(s)

Wayne Moore, Faysal El Khettabi, Josef Spidlen

See Also

calc_mean_sd_duke

peak_gate 23

Examples

library(flowCore)
library(xlsx)
library(flowQBData)
flowQBData is available since BioConductor 3.4, please install it
manually in order to be able to these examples

inst_xlsx_path <- system.file("extdata",
"140126_InstEval_Stanford_LSRIIA2.xlsx", package="flowQBData")
xlsx <- read.xlsx(inst_xlsx_path, 1, headers=FALSE, stringsAsFactors=FALSE)
#
ignore_channels_row <- 9
ignore_channels <- vector()
i <- 1
while(!is.na(xlsx[[i+4]][[ignore_channels_row]])) {
ignore_channels[[i]] <- xlsx[[i+4]][[ignore_channels_row]]
i <- i + 1
}
#
instrument_folder_row <- 9
instrument_folder_col <- 2
instrument_folder <- xlsx[[instrument_folder_col]][[instrument_folder_row]]
#
test_column <- 13
test_row <- 14
folder <- xlsx[[test_column]][[test_row]]
beads_file_name <- xlsx[[test_column]][[test_row+1]]
scatter_channels <- c(
xlsx[[test_column]][[test_row+2]],
xlsx[[test_column]][[test_row+3]])
#
fcs_path <- system.file("extdata",
instrument_folder, folder, beads_file_name, package="flowQBData")
#
results <- calc_mean_sd_duke(fcs_path, scatter_channels, ignore_channels)
#
channel_cols <- 3:12
dye_row <- 11
detector_row <- 13
dyes <- as.character(xlsx[dye_row,channel_cols])
detectors <- as.character(xlsx[detector_row,channel_cols])
dye_results <- get_results_for_dyes(dyes, detectors, results)

peak_gate Gate a 1D density peak in the provided object

Description

This method finds a density peak in the provided object (which shall be either a matrix or flowCore’s
flowFrame object) and returns a vector of TRUE/FALSE depending on whether each of the events

24 peak_gate

(rows) are in the density peak. An FCS channel shall be specified if a flowFrame object with
multiple channels in provided on the input.

Usage

peak_gate(object, ...)

Arguments

object Object of class flowFrame or a matrix.

... Additional options, see the details section.

Details

Additional parameters of the method:

channel Which FCS channel shall be used in order to look for the density peak? This is applicable
if a flowFrame object with several channels is used on the input.

R The radius to be used when finding the peak; R=1 by default.

Value

A vector of TRUE/FALSE values depending on whether each of the events (rows) are located in the
identified density peak.

Author(s)

Wayne Moore, Faysal El Khettabi, Josef Spidlen

Examples

library('flowCore')
library(flowQBData)
flowQBData is available since BioConductor 3.4, please install it
manually in order to be able to these examples

fcsFilePath <- system.file("extdata", "SSFF_LSRII", "Other_Tests",
"933745.fcs", package="flowQBData")
#
myFlowFrame <- read.FCS(fcsFilePath)
r1 <- peak_gate(myFlowFrame, 'FSC-H')
r2 <- peak_gate(exprs(myFlowFrame[,'SSC-H']))
r3 will have more events than r2
r3 <- peak_gate(exprs(myFlowFrame[,'SSC-H']), R=1.5)

pick_parameters 25

pick_parameters Pick channel names

Description

Extract all channel names from a flowFrame object or column names from a matrix except those
specified in a provided ignore list.

Usage

pick_parameters(object, ignore)

Arguments

object Object of class flowFrame or a matrix.

ignore A vector of channel names that we want to ignore

Details

This method simply looks at all channel names in the provided flowFrame object or all column
names of a matrix, then subtracts those specified in the ignore list and returns the resulting vector
of channel/column names.

Value

A vector of character strings containing channel names of channels that were in the input flowFrame
object (or columns of the input matrix) but were not included in the provided ignore list.

Author(s)

Josef Spidlen, Wayne Moore, Faysal El Khettabi

Examples

library('flowCore')
library(flowQBData)
flowQBData is available since BioConductor 3.4, please install it
manually in order to be able to these examples

fcsFilePath <- system.file("extdata", "SSFF_LSRII", "Other_Tests",
"933745.fcs", package="flowQBData")
myFlowFrame <- read.FCS(fcsFilePath)
ignore <- c("Time", "FSC-H", "FSC-A", "FSC-W", "SSC-H", "SSC-A", "SSC-W")
fluorescences <- pick_parameters(myFlowFrame, ignore)

26 qb_from_fits

qb_from_fits Extract Q, B and the intrinsic CV0 from fitting results

Description

This function can be used to compute (1) flow cytometer’s detection efficiency (i.e., Q, the statistical
number of single photoelectrons (Spe) generated per unit of dye in the sample), (2) background
illumination (i.e., B, the background light in dye equivalents that sets the minimum variance that
underlies all measurements), and (3) the intrinsic CV0 (i.e, variance in the signal produced by the
variation in dye amount of beads containing a "fixed" level of dye plus the illumination variations
due to particles taking different flow paths through the laser beam) from fitting results produced
by either LED data fitting (fit_led function) or bead data fitting (fit_beads, fit_spherotech or
fit_thermo_fisher functions). One can calculate based on any of the fits (i.e, the fits, dye_fits,
iterated_fits or iterated_dye_fits items from the result list).

Usage

qb_from_fits(fits)

Arguments

fits Fitting results as produced by either LED data fitting (fit_led function) or bead
data fitting (fit_beads, fit_spherotech or fit_thermo_fisher functions).
One can calculate based on any of the fits provided as part of the results of these
functions, namely the fits, dye_fits, iterated_fits or iterated_dye_fits
items from the result list.

Details

As explained in our paper, this method calculats QI as 1/c1, BSpe = c0/c1^2 and CV0^2 = c2 from
the results of quadratic fit for the measured means and variances to a statistical model involving the
Poisson distribution expectations for the relation between them. For fitting results containing both,
a quadratic and a linear fit coeficients, (i.e, results of LED fitting), this method also includes QI and
BSpe from the linear model.

Value

The value is a matrix with columns corresponding to the columns of the input data frame (i.e., the
names of the dyes). The rows are as follows: q_QI as the QI from the fits of the quadratic model,
q_BSpe as the BSpe from the fits of the quadratic model, q_CV0sq as the CV0^2 from the fits of
the quadratic model, l_QI as the QI from the fits of the linear model (provided only if linear fit
coefficients are also present in the input data frame, i.e., for LED fits only), and l_BSpe as the BSpe
from the fits of the linear model (again, provided only if linear fit coefficients are also present in the
input data frame, i.e., for LED fits only)

Author(s)

Josef Spidlen, Wayne Moore, Faysal El Khettabi

qb_from_fits 27

See Also

fit_led, fit_beads, fit_spherotech, fit_thermo_fisher

Examples

library(flowCore)
Example is based on LED data from the flowQBData package
library(flowQBData)
flowQBData is available since BioConductor 3.4, please install it
manually in order to be able to these examples
#
fcs_directory <- system.file("extdata", "SSFF_LSRII", "LED_Series",
package="flowQBData")
fcs_file_path_list <- list.files(fcs_directory, "*.fcs", full.names= TRUE)
We are working with these FCS files:
basename(fcs_file_path_list)
#
Various house keeping information
- Which channels should be ignored, typically the non-fluorescence
channels, such as the time and the scatter channels
ignore_channels <- c("Time",
"FSC-A", "FSC-W", "FSC-H",
"SSC-A", "SSC-W", "SSC-H")
- Which dyes would you typically use with the detectors
dyes <- c("APC", "APC-Cy7", "APC-H7", "FITC", "PE", "PE-Cy7", "PerCP",
"PerCP-Cy55", "V450", "V500-C")
- What are the corresponding detectors, provide a vector of short channel
names, i.e., values of the $PnN FCS keywords.
detectors <- c("APC-A", "APC-Cy7-A", "APC-Cy7-A", "FITC-A", "PE-A",
"PE-Cy7-A",
"PerCP-Cy5-5-A", "PerCP-Cy5-5-A", "Pacific Blue-A", "Aqua Amine-A")
- The signal type that you are looking at (Area, Height or Width)
signal_type <- "Area"
- The instrument make/model
instrument_name <- 'LSRII'
- Set the minimum and maximum values, peaks with mean outsize of this range
will be ignored
bounds <- list(minimum = -100, maximum = 100000)
- The minimum number of usable peaks (represented by different FCS files
in case of an LED pulser) required in order for a fluorescence channel
to be included in the fitting. Peaks with mean expression outside of the
bounds specified above are omitted and therefore not considered useful
minimum_fcs_files <- 3 # The default 3 seems to be work well in typical cases
- What is the maximum number of iterations for iterative fitting with
weight adjustments
max_iterations <- 10 # The default 10 seems to be enough in typical cases
#
Now, let's calculate the fitting
led_results <- fit_led(fcs_file_path_list, ignore_channels, dyes,
detectors, signal_type, instrument_name, bounds = bounds,
minimum_useful_peaks = minimum_fcs_files, max_iterations = max_iterations)
#

28 split_in_two

qb_from_fits(led_results$iterated_dye_fits)

split_in_two Split an object in a low density region

Description

This method finds a split in the low density region of the provided object (which shall be either
a matrix or flowCore’s flowFrame object) and returns a vector of TRUE/FALSE depending on
whether each of the events (rows) are left or righ (i.e, lower or higher) than density peak. An
FCS channel shall be specified if a flowFrame object with multiple channels in provided on the
input. If matrix is the input then it shall contain one column only. This method is designed to work
well for 2 level beads, such as stained and unstained, but will not provide meaningful results for
multi-level beads or other data in general.

Usage

split_in_two(object, ...)

Arguments

object Object of class flowFrame or a matrix.

... Additional options, see the details section.

Details

Additional parameter of the method:

channel Which FCS channel shall be used in order to look for the split in the data? This is appli-
cable if a flowFrame object with several channels is used on the input.

Value

A vector of TRUE/FALSE values depending on whether each of the events (rows) are below or
above the identified split value.

Author(s)

Wayne Moore, Faysal El Khettabi, Josef Spidlen

split_in_two 29

Examples

library('flowCore')
library(flowQBData)
flowQBData is available since BioConductor 3.4, please install it
manually in order to be able to these examples

fcsFilePath <- system.file("extdata", "SSFF_LSRII", "Other_Tests",
"933745.fcs", package="flowQBData")
myFlowFrame <- read.FCS(fcsFilePath)
Note that this is just to demonstrate the syntax, but doing this on the
FSC and SSC channels of this particular FCS file is not very meaningful
r1 <- split_in_two(myFlowFrame, 'FSC-H')
r2 <- split_in_two(exprs(myFlowFrame[,'SSC-H']))

Index

∗Topic functions
calc_mean_sd_197, 2
calc_mean_sd_background, 4
calc_mean_sd_capture, 6
calc_mean_sd_capture_all, 7
calc_mean_sd_duke, 9
find_peak, 11
fit_beads, 14
fit_led, 18
fitted_ellipse_gate, 12
get_results_for_dyes, 22
qb_from_fits, 26

∗Topic helper functions
find_peak, 11
fitted_ellipse_gate, 12
get_results_for_dyes, 22

∗Topic methods
peak_gate, 23
pick_parameters, 25
split_in_two, 28

calc_mean_sd_197, 2, 5, 10
calc_mean_sd_background, 4
calc_mean_sd_capture, 5, 6, 8
calc_mean_sd_capture_all, 5, 7, 7
calc_mean_sd_duke, 3, 5, 9, 22

find_peak, 11, 13
fit_beads, 14, 20, 27
fit_led, 16, 18, 27
fit_spherotech, 27
fit_spherotech (fit_beads), 14
fit_thermo_fisher, 27
fit_thermo_fisher (fit_beads), 14
fitted_ellipse_gate, 3, 10, 12, 12
fitted_ellipse_gate,flowFrame,ANY-method

(fitted_ellipse_gate), 12
fitted_ellipse_gate,flowFrame,fitted_ellipse_gate-method

(fitted_ellipse_gate), 12

fitted_ellipse_gate,flowFrame-method
(fitted_ellipse_gate), 12

flowFrame, 24, 25, 28

get_results_for_dyes, 22

peak_gate, 23
peak_gate,flowFrame,ANY-method

(peak_gate), 23
peak_gate,flowFrame,peak_gate-method

(peak_gate), 23
peak_gate,flowFrame-method (peak_gate),

23
peak_gate,matrix,ANY-method

(peak_gate), 23
peak_gate,matrix,peak_gate-method

(peak_gate), 23
peak_gate,matrix-method (peak_gate), 23
pick_parameters, 25
pick_parameters,flowFrame,ANY-method

(pick_parameters), 25
pick_parameters,flowFrame,pick_parameters-method

(pick_parameters), 25
pick_parameters,flowFrame-method

(pick_parameters), 25

qb_from_fits, 26

split_in_two, 28
split_in_two,flowFrame,ANY-method

(split_in_two), 28
split_in_two,flowFrame,split_in_two-method

(split_in_two), 28
split_in_two,flowFrame-method

(split_in_two), 28
split_in_two,matrix,ANY-method

(split_in_two), 28
split_in_two,matrix,split_in_two-method

(split_in_two), 28
split_in_two,matrix-method

(split_in_two), 28

30

	calc_mean_sd_197
	calc_mean_sd_background
	calc_mean_sd_capture
	calc_mean_sd_capture_all
	calc_mean_sd_duke
	find_peak
	fitted_ellipse_gate
	fit_beads
	fit_led
	get_results_for_dyes
	peak_gate
	pick_parameters
	qb_from_fits
	split_in_two
	Index

