
Package ‘AneuFinder’
October 11, 2016

Type Package

Title Analysis of Copy Number Variation in Single-Cell-Sequencing Data

Version 1.0.3

Date 2016-05

Author Aaron Taudt, Bjorn Bakker, David Porubsky

Maintainer Aaron Taudt <aaron.taudt@gmail.com>

Description This package implements functions for CNV calling, plotting, export
and analysis from whole-genome single cell sequencing data.

Depends R (>= 3.3.0), GenomicRanges, cowplot, AneuFinderData

Imports utils, grDevices, graphics, stats, foreach, doParallel,
BiocGenerics, S4Vectors, GenomeInfoDb, IRanges, Rsamtools,
Biostrings, GenomicAlignments, preseqR, ggplot2, reshape2,
ggdendro, ReorderCluster, mclust

Suggests knitr, testthat, BSgenome.Hsapiens.UCSC.hg19,
BSgenome.Mmusculus.UCSC.mm10

License Artistic-2.0

LazyLoad yes

VignetteBuilder knitr

biocViews Software, CopyNumberVariation, GenomicVariation,
HiddenMarkovModel, WholeGenome

URL https://github.com/ataudt/aneufinder.git

RoxygenNote 5.0.1

NeedsCompilation yes

R topics documented:
AneuFinder-package . 3
aneuBiHMM . 3
Aneufinder . 4
aneuHMM . 7

1

https://github.com/ataudt/aneufinder.git

2 R topics documented:

bam2GRanges . 8
bed2GRanges . 9
binned.data . 10
binning . 10
binReads . 10
bivariate.findCNVs . 12
blacklist . 14
clusterByQuality . 15
collapseBins . 16
colors . 17
correctGC . 18
correctMappability . 19
deltaWCalculator . 20
estimateComplexity . 21
export . 21
filterSegments . 23
findCNVs . 24
findSCEs . 26
fixedWidthBins . 28
getSCEcoordinates . 29
getSegments . 30
heatmapAneuploidies . 30
heatmapGenomewide . 31
hotspotter . 32
importBed . 33
initializeStates . 33
karyotypeMeasures . 34
loadGRangesFromFiles . 35
loadHmmsFromFiles . 36
plot.aneuBiHMM . 36
plot.aneuHMM . 37
plot.character . 38
plot.GRanges . 38
plotBinnedDataHistogram . 39
plotKaryogram . 39
plotProfile . 40
plotUnivariateHistogram . 40
qualityControl . 41
readConfig . 42
simulateReads . 42
subsetByCNVprofile . 43
transCoord . 44
univariate.findCNVs . 45
variableWidthBins . 46
writeConfig . 47
zinbinom . 48

Index 50

AneuFinder-package 3

AneuFinder-package Copy-number detection in WGSCS and Strand-Seq data

Description

CNV detection in whole-genome single cell sequencing (WGSCS) and Strand-seq data using a Hid-
den Markov Model. The package implements CNV detection, commonly used plotting functions,
export to BED format for upload to genome browsers, and measures for assessment of karyotype
heterogeneity and quality metrics.

Details

The main function of this package is Aneufinder and produces several plots and browser files. If
you want to have more fine-grained control over the different steps (binning, GC-correction, HMM,
plotting) check the vignette Introduction to AneuFinder.

Author(s)

Aaron Taudt, David Porubsky

aneuBiHMM Bivariate Hidden Markov Model

Description

The aneuBiHMM object is output of the function findSCEs and is basically a list with various entries.
The class() attribute of this list was set to "aneuBiHMM". For a given hmm, the entries can be
accessed with the list operators ’hmm[[]]’ and ’hmm$’.

Value

ID An identifier that is used in various AneuFinder functions.

bins A GRanges object containing the genomic bin coordinates, their read count and
state classification.

segments A GRanges object containing regions and their state classification.

weights Weight for each component.
transitionProbs

Matrix of transition probabilities from each state (row) into each state (column).
transitionProbs.initial

Initial transitionProbs at the beginning of the Baum-Welch.

startProbs Probabilities for the first bin
startProbs.initial

Initial startProbs at the beginning of the Baum-Welch.

4 Aneufinder

distributions Estimated parameters of the emission distributions.
distributions.initial

Distribution parameters at the beginning of the Baum-Welch.
convergenceInfo

Contains information about the convergence of the Baum-Welch algorithm.
convergenceInfo$eps

Convergence threshold for the Baum-Welch.
convergenceInfo$loglik

Final loglikelihood after the last iteration.
convergenceInfo$loglik.delta

Change in loglikelihood after the last iteration (should be smaller than eps)
convergenceInfo$num.iterations

Number of iterations that the Baum-Welch needed to converge to the desired
eps.

convergenceInfo$time.sec

Time in seconds that the Baum-Welch needed to converge to the desired eps.

See Also

findSCEs

Aneufinder Wrapper function for the AneuFinder package

Description

This function is an easy-to-use wrapper to bin the data, find copy-number-variations, find sister-
chromatid-exchange events, plot genomewide heatmaps, distributions, profiles and karyograms.

Usage

Aneufinder(inputfolder, outputfolder, format, configfile = NULL, numCPU = 1,
reuse.existing.files = TRUE, binsizes = 1e+06,
variable.width.reference = NULL, reads.per.bin = NULL,
pairedEndReads = FALSE, stepsize = NULL, assembly = NULL,
chromosomes = NULL, remove.duplicate.reads = TRUE, min.mapq = 10,
blacklist = NULL, correction.method = NULL, GC.BSgenome = NULL,
mappability.reference = NULL, method = "univariate", eps = 0.1,
max.time = 60, max.iter = 5000, num.trials = 15,
states = c("zero-inflation", paste0(0:10, "-somy")),
most.frequent.state.univariate = "2-somy",
most.frequent.state.bivariate = "1-somy", resolution = c(3, 6),
min.segwidth = 2, min.reads = 50, bw = 4 * binsizes[1], pval = 1e-08,
cluster.plots = TRUE)

Aneufinder 5

Arguments

inputfolder Folder with either BAM or BED files.

outputfolder Folder to output the results. If it does not exist it will be created.

format Either ’bam’ or ’bed’, depending if your inputfolder contains files in BAM or
BED format.

configfile A file specifying the parameters of this function (without inputfolder, outputfolder
and configfile). Having the parameters in a file can be handy if many samples
with the same parameter settings are to be run. If a configfile is specified, it
will take priority over the command line parameters.

numCPU The numbers of CPUs that are used. Should not be more than available on your
machine.

reuse.existing.files

A logical indicating whether or not existing files in outputfolder should be
reused.

binsizes An integer vector with bin sizes. If more than one value is given, output files
will be produced for each bin size.

variable.width.reference

A BAM file that is used as reference to produce variable width bins. See variableWidthBins
for details.

reads.per.bin Approximate number of desired reads per bin. The bin size will be selected
accordingly. Output files are produced for each value.

pairedEndReads Set to TRUE if you have paired-end reads in your BAM files (not implemented
for BED files).

stepsize Fraction of the binsize that the sliding window is offset at each step. Exam-
ple: If stepsize=0.1 and binsizes=c(200000,500000), the actual stepsize in
basepairs is 20000 and 50000, respectively.

assembly Please see fetchExtendedChromInfoFromUCSC for available assemblies. Only
necessary when importing BED files. BAM files are handled automatically.
Alternatively a data.frame generated by fetchExtendedChromInfoFromUCSC.

chromosomes If only a subset of the chromosomes should be imported, specify them here.
remove.duplicate.reads

A logical indicating whether or not duplicate reads should be removed.

min.mapq Minimum mapping quality when importing from BAM files. Set min.mapq=NULL
to keep all reads.

blacklist A GRanges or a bed(.gz) file with blacklisted regions. Reads falling into those
regions will be discarded.

correction.method

Correction methods to be used for the binned read counts. Currently any com-
bination of c('GC','mappability').

GC.BSgenome A BSgenome object which contains the DNA sequence that is used for the GC
correction.

mappability.reference

A file that serves as reference for mappability correction. Has to be the same
format as specified by format.

6 Aneufinder

method Any combination of c('univariate','bivariate'). Option 'univariate'
treats both strands as one, while option 'bivariate' treats both strands sepa-
rately. NOTE: SCEs can only be called when method='bivariate'.

eps Convergence threshold for the Baum-Welch algorithm.

max.time The maximum running time in seconds for the Baum-Welch algorithm. If this
time is reached, the Baum-Welch will terminate after the current iteration fin-
ishes. The default -1 is no limit.

max.iter The maximum number of iterations for the Baum-Welch algorithm. The default
-1 is no limit.

num.trials The number of trials to find a fit where state most.frequent.state is most
frequent. Each time, the HMM is seeded with different random initial values.

states A subset or all of c("zero-inflation","0-somy","1-somy","2-somy","3-somy","4-somy",...).
This vector defines the states that are used in the Hidden Markov Model. The
order of the entries must not be changed.

most.frequent.state.univariate

One of the states that were given in states. The specified state is assumed to
be the most frequent one when running the univariate HMM. This can help the
fitting procedure to converge into the correct fit. Default is ’2-somy’.

most.frequent.state.bivariate

One of the states that were given in states. The specified state is assumed to
be the most frequent one when running the bivariate HMM. This can help the
fitting procedure to converge into the correct fit. Default is ’1-somy’.

resolution An integer vector specifying the resolution at bin level at which to scan for SCE
events.

min.segwidth Minimum segment length in bins when scanning for SCE events.

min.reads Minimum number of reads required for SCE refinement.

bw Bandwidth for SCE hotspot detection (see hotspotter for further details).

pval P-value for SCE hotspot detection (see hotspotter for further details).

cluster.plots A logical indicating whether plots should be clustered by similarity.

Value

NULL

Author(s)

Aaron Taudt

Examples

Not run:
The following call produces plots and genome browser files for all BAM files in "my-data-folder"
Aneufinder(inputfolder="my-data-folder", outputfolder="my-output-folder", format='bam')
End(Not run)

aneuHMM 7

aneuHMM Hidden Markov Model

Description

The aneuHMM object is output of the function findCNVs and is basically a list with various entries.
The class() attribute of this list was set to "aneuHMM". For a given hmm, the entries can be accessed
with the list operators ’hmm[[]]’ and ’hmm$’.

Value

ID An identifier that is used in various AneuFinder functions.

bins A GRanges object containing the genomic bin coordinates, their read count and
state classification.

segments A GRanges object containing regions and their state classification.

weights Weight for each component.
transitionProbs

Matrix of transition probabilities from each state (row) into each state (column).
transitionProbs.initial

Initial transitionProbs at the beginning of the Baum-Welch.

startProbs Probabilities for the first bin
startProbs.initial

Initial startProbs at the beginning of the Baum-Welch.

distributions Estimated parameters of the emission distributions.
distributions.initial

Distribution parameters at the beginning of the Baum-Welch.
convergenceInfo

Contains information about the convergence of the Baum-Welch algorithm.
convergenceInfo$eps

Convergence threshold for the Baum-Welch.
convergenceInfo$loglik

Final loglikelihood after the last iteration.
convergenceInfo$loglik.delta

Change in loglikelihood after the last iteration (should be smaller than eps)
convergenceInfo$num.iterations

Number of iterations that the Baum-Welch needed to converge to the desired
eps.

convergenceInfo$time.sec

Time in seconds that the Baum-Welch needed to converge to the desired eps.

See Also

findCNVs

8 bam2GRanges

bam2GRanges Import BAM file into GRanges

Description

Import aligned reads from a BAM file into a GRanges object.

Usage

bam2GRanges(bamfile, bamindex = bamfile, chromosomes = NULL,
pairedEndReads = FALSE, remove.duplicate.reads = FALSE, min.mapq = 10,
max.fragment.width = 1000, blacklist = NULL, what = "mapq")

Arguments

bamfile A sorted BAM file.

bamindex BAM index file. Can be specified without the .bai ending. If the index file does
not exist it will be created and a warning is issued.

chromosomes If only a subset of the chromosomes should be imported, specify them here.

pairedEndReads Set to TRUE if you have paired-end reads in your BAM files (not implemented
for BED files).

remove.duplicate.reads

A logical indicating whether or not duplicate reads should be removed.

min.mapq Minimum mapping quality when importing from BAM files. Set min.mapq=NULL
to keep all reads.

max.fragment.width

Maximum allowed fragment length. This is to filter out erroneously wrong frag-
ments due to mapping errors of paired end reads.

blacklist A GRanges or a bed(.gz) file with blacklisted regions. Reads falling into those
regions will be discarded.

what A character vector of fields that are returned. Type scanBamWhat to see what is
available.

Value

A GRanges object containing the reads.

Examples

Get an example BAM file with single-cell-sequencing reads
bamfile <- system.file("extdata", "BB150803_IV_074.bam", package="AneuFinderData")
Read the file into a GRanges object
reads <- bam2GRanges(bamfile, chromosomes=c(1:19,'X','Y'), pairedEndReads=FALSE,

min.mapq=10, remove.duplicate.reads=TRUE)
print(reads)

bed2GRanges 9

bed2GRanges Import BED file into GRanges

Description

Import aligned reads from a BED file into a GRanges object.

Usage

bed2GRanges(bedfile, assembly, chromosomes = NULL,
remove.duplicate.reads = FALSE, min.mapq = 10,
max.fragment.width = 1000, blacklist = NULL)

Arguments

bedfile A file with aligned reads in BED format. The columns have to be c(’chromosome’,’start’,’end’,’description’,’mapq’,’strand’).

assembly Please see fetchExtendedChromInfoFromUCSC for available assemblies. Only
necessary when importing BED files. BAM files are handled automatically.
Alternatively a data.frame generated by fetchExtendedChromInfoFromUCSC.

chromosomes If only a subset of the chromosomes should be imported, specify them here.
remove.duplicate.reads

A logical indicating whether or not duplicate reads should be removed.

min.mapq Minimum mapping quality when importing from BAM files. Set min.mapq=NULL
to keep all reads.

max.fragment.width

Maximum allowed fragment length. This is to filter out erroneously wrong frag-
ments.

blacklist A GRanges or a bed(.gz) file with blacklisted regions. Reads falling into those
regions will be discarded.

Value

A GRanges object containing the reads.

Examples

Get an example BED file with single-cell-sequencing reads
bedfile <- system.file("extdata", "KK150311_VI_07.bam.bed.gz", package="AneuFinderData")
Read the file into a GRanges object
reads <- bed2GRanges(bedfile, assembly='mm10', chromosomes=c(1:19,'X','Y'),

min.mapq=10, remove.duplicate.reads=TRUE)
print(reads)

10 binReads

binned.data Binned read counts

Description

A GRanges object which contains binned read counts as meta data column reads. It is output of
the various binning functions.

binning Bin the genome

Description

Please see functions fixedWidthBins and variableWidthBins for further details.

binReads Convert aligned reads from various file formats into read counts in
equidistant bins

Description

Convert aligned reads in .bam or .bed(.gz) format into read counts in equidistant windows.

Usage

binReads(file, format, assembly, ID = basename(file), bamindex = file,
chromosomes = NULL, pairedEndReads = FALSE, min.mapq = 10,
remove.duplicate.reads = TRUE, max.fragment.width = 1000,
blacklist = NULL, outputfolder.binned = "binned_data", binsizes = 1e+06,
reads.per.bin = NULL, bins = NULL, variable.width.reference = NULL,
stepsize = NULL, save.as.RData = FALSE, calc.complexity = TRUE,
call = match.call(), reads.store = FALSE, outputfolder.reads = "data",
reads.return = FALSE, reads.overwrite = FALSE, reads.only = FALSE)

Arguments

file A file with aligned reads. Alternatively a GRanges with aligned reads if format
is set to ’GRanges’.

format One of c('bam', 'bed', 'GRanges').

assembly Please see fetchExtendedChromInfoFromUCSC for available assemblies. Only
necessary when importing BED files. BAM files are handled automatically.
Alternatively a data.frame generated by fetchExtendedChromInfoFromUCSC.

binReads 11

ID An identifier that will be used to identify the file throughout the workflow and
in plotting.

bamindex BAM index file. Can be specified without the .bai ending. If the index file does
not exist it will be created and a warning is issued.

chromosomes If only a subset of the chromosomes should be binned, specify them here.

pairedEndReads Set to TRUE if you have paired-end reads in your BAM files (not implemented
for BED files).

min.mapq Minimum mapping quality when importing from BAM files. Set min.mapq=NULL
to keep all reads.

remove.duplicate.reads

A logical indicating whether or not duplicate reads should be removed.
max.fragment.width

Maximum allowed fragment length. This is to filter out erroneously wrong frag-
ments due to mapping errors of paired end reads.

blacklist A GRanges or a bed(.gz) file with blacklisted regions. Reads falling into those
regions will be discarded.

outputfolder.binned

Folder to which the binned data will be saved. If the specified folder does not
exist, it will be created.

binsizes An integer vector with bin sizes. If more than one value is given, output files
will be produced for each bin size.

reads.per.bin Approximate number of desired reads per bin. The bin size will be selected
accordingly. Output files are produced for each value.

bins A named list with GRanges containing precalculated bins produced by fixedWidthBins
or variableWidthBins. Names must correspond to the binsize.

variable.width.reference

A BAM file that is used as reference to produce variable width bins. See variableWidthBins
for details.

stepsize Fraction of the binsize that the sliding window is offset at each step. Exam-
ple: If stepsize=0.1 and binsizes=c(200000,500000), the actual stepsize in
basepairs is 20000 and 50000, respectively. NOT USED AT THE MOMENT.

save.as.RData If set to FALSE, no output file will be written. Instead, a GenomicRanges ob-
ject containing the binned data will be returned. Only the first binsize will be
processed in this case.

calc.complexity

A logical indicating whether or not to estimate library complexity.

call The match.call() of the parent function.

reads.store If TRUE processed read fragments will be saved to file. Reads are processed
according to min.mapq and remove.duplicate.reads. Paired end reads are
coerced to single end fragments.

outputfolder.reads

Folder to which the read fragments will be saved. If the specified folder does
not exist, it will be created.

12 bivariate.findCNVs

reads.return If TRUE no binning is done and instead, read fragments from the input file are
returned in GRanges format.

reads.overwrite

Whether or not an existing file with read fragments should be overwritten.

reads.only If TRUE only read fragments are stored and/or returned and no binning is done.

Details

Convert aligned reads from .bam or .bed(.gz) files into read counts in equidistant windows (bins).
This function uses countOverlaps to calculate the read counts.

Value

The function produces a list() of GRanges objects with one meta data column ’reads’ that contains
the read count. This binned data will be either written to file (save.as.RData=FALSE) or given as
return value (save.as.RData=FALSE).

See Also

binning

Examples

Get an example BED file with single-cell-sequencing reads
bedfile <- system.file("extdata", "KK150311_VI_07.bam.bed.gz", package="AneuFinderData")
Bin the BED file into bin size 1Mb
binned <- binReads(bedfile, format='bed', assembly='mm10', binsize=1e6,

chromosomes=c(1:19,'X','Y'))
print(binned)

bivariate.findCNVs Find copy number variations (bivariate)

Description

bivariate.findCNVs finds CNVs using read count information from both strands.

Usage

bivariate.findCNVs(binned.data, ID = NULL, eps = 0.1, init = "standard",
max.time = -1, max.iter = -1, num.trials = 1, eps.try = NULL,
num.threads = 1, count.cutoff.quantile = 0.999,
states = c("zero-inflation", paste0(0:10, "-somy")),
most.frequent.state = "1-somy", algorithm = "EM", initial.params = NULL)

bivariate.findCNVs 13

Arguments

binned.data A GRanges object with binned read counts.

ID An identifier that will be used to identify this sample in various downstream
functions. Could be the file name of the binned.data for example.

eps Convergence threshold for the Baum-Welch algorithm.

init One of the following initialization procedures:

standard The negative binomial of state ’2-somy’ will be initialized with mean=mean(counts),
var=var(counts). This procedure usually gives good convergence.

random Mean and variance of the negative binomial of state ’2-somy’ will be
initialized with random values (in certain boundaries, see source code). Try
this if the standard procedure fails to produce a good fit.

max.time The maximum running time in seconds for the Baum-Welch algorithm. If this
time is reached, the Baum-Welch will terminate after the current iteration fin-
ishes. The default -1 is no limit.

max.iter The maximum number of iterations for the Baum-Welch algorithm. The default
-1 is no limit.

num.trials The number of trials to find a fit where state most.frequent.state is most
frequent. Each time, the HMM is seeded with different random initial values.

eps.try If code num.trials is set to greater than 1, eps.try is used for the trial runs. If
unset, eps is used.

num.threads Number of threads to use. Setting this to >1 may give increased performance.
count.cutoff.quantile

A quantile between 0 and 1. Should be near 1. Read counts above this quan-
tile will be set to the read count specified by this quantile. Filtering very high
read counts increases the performance of the Baum-Welch fitting procedure.
However, if your data contains very few peaks they might be filtered out. Set
count.cutoff.quantile=1 in this case.

states A subset or all of c("zero-inflation","0-somy","1-somy","2-somy","3-somy","4-somy",...).
This vector defines the states that are used in the Hidden Markov Model. The
order of the entries must not be changed.

most.frequent.state

One of the states that were given in states or ’none’. The specified state is
assumed to be the most frequent one. This can help the fitting procedure to
converge into the correct fit.

algorithm One of c('baumWelch','EM'). The expectation maximization ('EM') will find
the most likely states and fit the best parameters to the data, the 'baumWelch'
will find the most likely states using the initial parameters.

initial.params A aneuHMM object or file containing such an object from which initial starting
parameters will be extracted.

Value

An aneuBiHMM object.

14 blacklist

blacklist Make a blacklist for genomic regions

Description

Produce a blacklist of genomic regions with a high ratio of duplicate to unique reads. This blacklist
can be used to exclude reads for analysis in Aneufinder, bam2GRanges and bed2GRanges. This
function produces a pre-blacklist which has to manually filtered with a sensible cutoff. See the
examples section for details.

Usage

blacklist(files, format, assembly, bins, min.mapq = 10,
pairedEndReads = FALSE)

Arguments

files A list of either BAM or BED files.

format The format of files. Either ’bam’ or ’bed’.

assembly Please see fetchExtendedChromInfoFromUCSC for available assemblies. Only
necessary when importing BED files. BAM files are handled automatically.
Alternatively a data.frame generated by fetchExtendedChromInfoFromUCSC.

bins A list with one GRanges with binned read counts generated by fixedWidthBins.

min.mapq Minimum mapping quality when importing from BAM files. Set min.mapq=NULL
to keep all reads.

pairedEndReads Set to TRUE if you have paired-end reads in your BAM files (not implemented
for BED files).

Value

A GRanges with the same coordinates as bins with metadata columns ratio, duplicated counts and
deduplicated counts.

Examples

Get an example BAM file with single-cell-sequencing reads
bamfile <- system.file("extdata", "BB150803_IV_074.bam", package="AneuFinderData")
Prepare the blacklist
bins <- fixedWidthBins(assembly='mm10', binsizes=1e6, chromosome.format='NCBI')
pre.blacklist <- blacklist(bamfile, format='bam', bins=bins)
Plot a histogram to decide on a sensible cutoff
qplot(pre.blacklist$ratio, binwidth=0.1)
Make the blacklist with cutoff = 1.9
blacklist <- pre.blacklist[pre.blacklist$ratio > 1.9]

clusterByQuality 15

clusterByQuality Cluster based on quality variables

Description

This function uses the mclust package to cluster the input samples based on various quality mea-
sures.

Usage

clusterByQuality(hmms, G = 1:9, itmax = c(100, 100),
measures = c("spikiness", "entropy", "num.segments", "bhattacharyya",
"loglik"), orderBy = "spikiness", reverseOrder = FALSE)

Arguments

hmms A list of aneuHMM objects or a list of files that contain such objects.

G An integer vector specifying the number of clusters that are compared. See
Mclust for details.

itmax The maximum number of outer and inner iterations for the Mclust function. See
emControl for details.

measures The quality measures that are used for the clustering. Supported is any combina-
tion of c('spikiness','entropy','num.segments','bhattacharyya','loglik','complexity','avg.read.count','total.read.count','binsize').

orderBy The quality measure to order the clusters by. Default is 'spikiness'.

reverseOrder Logical indicating whether the ordering by orderBy is reversed.

Details

The employed quality measures are:

• Spikiness

• Entropy

• Number of segments

• Bhattacharrya distance

• Loglikelihood

Value

A list with the classification, parameters and the Mclust fit.

Author(s)

Aaron Taudt

16 collapseBins

Examples

Get a list of HMMs
folder <- system.file("extdata", "primary-lung", "hmms", package="AneuFinderData")
files <- list.files(folder, full.names=TRUE)
cl <- clusterByQuality(files)
Plot the clustering and print the parameters
plot(cl$Mclust, what='classification')
print(cl$parameters)
Select files from the best 2 clusters for further processing
best.files <- unlist(cl$classification[1:2])

collapseBins Collapse consecutive bins

Description

The function will collapse consecutive bins which have, for example, the same combinatorial state.

Usage

collapseBins(data, column2collapseBy = NULL, columns2sumUp = NULL,
columns2average = NULL, columns2getMax = NULL, columns2drop = NULL)

Arguments

data A data.frame containing the genomic coordinates in the first three columns.
column2collapseBy

The number of the column which will be used to collapse all other inputs. If a set
of consecutive bins has the same value in this column, they will be aggregated
into one bin with adjusted genomic coordinates. If NULL directly adjacent bins
will be collapsed.

columns2sumUp Column numbers that will be summed during the aggregation process.
columns2average

Column numbers that will be averaged during the aggregation process.

columns2getMax Column numbers where the maximum will be chosen during the aggregation
process.

columns2drop Column numbers that will be dropped after the aggregation process.

Details

The following tables illustrate the principle of the collapsing:

Input data:

seqnames start end column2collapseBy moreColumns columns2sumUp
chr1 0 199 2 1 10 1 3

colors 17

chr1 200 399 2 2 11 0 3
chr1 400 599 2 3 12 1 3
chr1 600 799 1 4 13 0 3
chr1 800 999 1 5 14 1 3

Output data:

seqnames start end column2collapseBy moreColumns columns2sumUp
chr1 0 599 2 1 10 2 9
chr1 600 999 1 4 13 1 6

Value

A data.frame.

Author(s)

Aaron Taudt

Examples

Get an example BED file with single-cell-sequencing reads
bedfile <- system.file("extdata", "KK150311_VI_07.bam.bed.gz", package="AneuFinderData")
Bin the BAM file into bin size 1Mp
binned <- binReads(bedfile, format='bed', assembly='mm10', binsize=1e6,

chromosomes=c(1:19,'X','Y'))
Collapse the bins by chromosome and get average, summed and maximum read count
df <- as.data.frame(binned[[1]])
Remove one bin for illustration purposes
df <- df[-3,]
head(df)
collapseBins(df, column2collapseBy='seqnames', columns2sumUp=c('width','counts'),

columns2average='counts', columns2getMax='counts',
columns2drop=c('mcounts','pcounts'))

collapseBins(df, column2collapseBy=NULL, columns2sumUp=c('width','counts'),
columns2average='counts', columns2getMax='counts',
columns2drop=c('mcounts','pcounts'))

colors AneuFinder color scheme

Description

Get the color schemes that are used in the AneuFinder plots.

18 correctGC

Usage

stateColors(states = c("zero-inflation", paste0(0:10, "-somy"), "total"))

strandColors(strands = c("+", "-"))

Arguments

states A character vector with states whose color should be returned.

strands A character vector with strands whose color should be returned. Any combina-
tion of c('+','-','*').

Value

A character vector with colors.

Functions

• stateColors: Colors that are used for the states.

• strandColors: Colors that are used to distinguish strands.

Examples

Make a nice pie chart with the AneuFinder state color scheme
statecolors <- stateColors()
pie(rep(1,length(statecolors)), labels=names(statecolors), col=statecolors)

Make a nice pie chart with the AneuFinder strand color scheme
strandcolors <- strandColors()
pie(rep(1,length(strandcolors)), labels=names(strandcolors), col=strandcolors)

correctGC GC correction

Description

Correct a list of binned.data by GC content.

Usage

correctGC(binned.data.list, GC.BSgenome, same.binsize = FALSE)

correctMappability 19

Arguments

binned.data.list

A list with binned.data objects or a list of filenames containing such objects.

GC.BSgenome A BSgenome object which contains the DNA sequence that is used for the GC
correction.

same.binsize If TRUE the GC content will only be calculated once. Set this to TRUE if all
binned.data objects describe the same genome at the same binsize.

Value

A list with binned.data objects with adjusted read counts.

Author(s)

Aaron Taudt

Examples

Get a BED file, bin it and run GC correction
bedfile <- system.file("extdata", "KK150311_VI_07.bam.bed.gz", package="AneuFinderData")
binned <- binReads(bedfile, format='bed', assembly='mm10', binsize=1e6,

chromosomes=c(1:19,'X','Y'))
plot(binned[[1]], type=1)
if (require(BSgenome.Mmusculus.UCSC.mm10)) {
binned.GC <- correctGC(list(binned[[1]]), GC.BSgenome=BSgenome.Mmusculus.UCSC.mm10)
plot(binned.GC[[1]], type=1)

}

correctMappability Mappability correction

Description

Correct a list of binned.data by mappability.

Usage

correctMappability(binned.data.list, same.binsize, reference, format, assembly,
pairedEndReads = FALSE, min.mapq = 10, remove.duplicate.reads = TRUE,
max.fragment.width = 1000)

20 deltaWCalculator

Arguments

binned.data.list

A list with binned.data objects or a list of filenames containing such objects.

same.binsize If TRUE the mappability correction will only be calculated once. Set this to TRUE
if all binned.data objects describe the same genome at the same binsize.

reference A file or GRanges with aligned reads.

format Format of the reference, one of c('bam','bed','GRanges').

assembly Please see fetchExtendedChromInfoFromUCSC for available assemblies. Only
necessary when importing BED files. BAM files are handled automatically.
Alternatively a data.frame generated by fetchExtendedChromInfoFromUCSC.

pairedEndReads Set to TRUE if you have paired-end reads in your BAM files (not implemented
for BED files).

min.mapq Minimum mapping quality when importing from BAM files. Set min.mapq=NULL
to keep all reads.

remove.duplicate.reads

A logical indicating whether or not duplicate reads should be removed.
max.fragment.width

Maximum allowed fragment length. This is to filter out erroneously wrong frag-
ments due to mapping errors of paired end reads.

Value

A list with binned.data objects with adjusted read counts.

Author(s)

Aaron Taudt

deltaWCalculator Calculate deltaWs

Description

This function will calculate deltaWs from a GRanges object with read fragments.

Usage

deltaWCalculator(frags, reads.per.window = 10)

Arguments

frags A GRanges with read fragments (see bam2GRanges).
reads.per.window

Number of reads in each dynamic window.

estimateComplexity 21

Value

The input frags with additional meta-data columns.

Author(s)

Aaron Taudt, David Porubsky, Ashley Sanders

estimateComplexity Estimate library complexity

Description

Estimate library complexity using a very simple "Michaelis-Menten" approach and the sophisticated
approach from the preseqR package.

Usage

estimateComplexity(reads)

Arguments

reads A GRanges object with read fragments. NOTE: Complexity estimation relies on
duplicate reads and therefore the duplicates have to be present in the input.

Value

A list with estimated complexity values and plots.

export Export genome browser viewable files

Description

Export copy-number-variation state or read counts as genome browser viewable file

Usage

exportCNVs(hmms, filename, cluster = TRUE, export.CNV = TRUE,
export.SCE = TRUE)

exportReadCounts(hmms, filename)

exportGRanges(gr, filename, header = TRUE, trackname = NULL, score = NULL,
priority = NULL, append = FALSE, chromosome.format = "UCSC")

22 export

Arguments

hmms A list of aneuHMM objects or files that contain such objects.

filename The name of the file that will be written. The appropriate ending will be ap-
pended, either ".bed.gz" for CNV-state or ".wig.gz" for read counts. Any exist-
ing file will be overwritten.

cluster If TRUE, the samples will be clustered by similarity in their CNV-state.

export.CNV A logical, indicating whether the CNV-state shall be exported.

export.SCE A logical, indicating whether the SCE events shall be exported.

gr A GRanges object.

header A logical indicating whether the output file will have a heading track line (TRUE)
or not (FALSE).

trackname The name that will be used as track name and description in the header.

score A vector of the same length as gr, which will be used for the ’score’ column in
the BED file.

priority Priority of the track for display in the genome browser.

append Append to filename.

chromosome.format

A character specifying the format of the chromosomes if assembly is specified.
Either ’NCBI’ for (1,2,3 ...) or ’UCSC’ for (chr1,chr2,chr3 ...).#’ @importFrom
utils write.table

Details

Use exportCNVs to export the copy-number-variation state from an aneuHMM object in BED format.
Use exportReadCounts to export the binned read counts from an aneuHMM object in WIGGLE
format. Use exportGRanges to export a GRanges object in BED format.

Value

NULL

Functions

• exportCNVs: Export CNV-state as .bed.gz file

• exportReadCounts: Export binned read counts as .wig.gz file

• exportGRanges: Export GRanges object as BED file.

Author(s)

Aaron Taudt

filterSegments 23

Examples

Not run:
Get results from a small-cell-lung-cancer
folder <- system.file("extdata", "primary-lung", "hmms", package="AneuFinderData")
files <- list.files(folder, full.names=TRUE)
Export the CNV states for upload to the UCSC genome browser
exportCNVs(files, filename='upload-me-to-a-genome-browser', cluster=TRUE)
End(Not run)

filterSegments Filter segments by minimal size

Description

filterSegments filters out segments below a specified minimal segment size. This can be useful
to get rid of boundary effects from the Hidden Markov approach.

Usage

filterSegments(segments, min.seg.width)

Arguments

segments A GRanges object.

min.seg.width The minimum segment width in base-pairs.

Value

The input model with adjusted segments.

Author(s)

Aaron Taudt

Examples

Load an HMM
file <- list.files(system.file("extdata", "primary-lung", "hmms",

package="AneuFinderData"), full.names=TRUE)
hmm <- loadHmmsFromFiles(file)[[1]]
Check number of segments before and after filtering
length(hmm$segments)
hmm$segments <- filterSegments(hmm$segments, min.seg.width=2*width(hmm$bins)[1])
length(hmm$segments)

24 findCNVs

findCNVs Find copy number variations

Description

findCNVs classifies the binned read counts into several states which represent copy-number-variation.

Usage

findCNVs(binned.data, ID = NULL, eps = 0.1, init = "standard",
max.time = -1, max.iter = 1000, num.trials = 15, eps.try = 10 * eps,
num.threads = 1, count.cutoff.quantile = 0.999, strand = "*",
states = c("zero-inflation", paste0(0:10, "-somy")),
most.frequent.state = "2-somy", method = "univariate", algorithm = "EM",
initial.params = NULL)

Arguments

binned.data A GRanges object with binned read counts.

ID An identifier that will be used to identify this sample in various downstream
functions. Could be the file name of the binned.data for example.

eps Convergence threshold for the Baum-Welch algorithm.

init One of the following initialization procedures:

standard The negative binomial of state ’2-somy’ will be initialized with mean=mean(counts),
var=var(counts). This procedure usually gives good convergence.

random Mean and variance of the negative binomial of state ’2-somy’ will be
initialized with random values (in certain boundaries, see source code). Try
this if the standard procedure fails to produce a good fit.

max.time The maximum running time in seconds for the Baum-Welch algorithm. If this
time is reached, the Baum-Welch will terminate after the current iteration fin-
ishes. The default -1 is no limit.

max.iter The maximum number of iterations for the Baum-Welch algorithm. The default
-1 is no limit.

num.trials The number of trials to find a fit where state most.frequent.state is most
frequent. Each time, the HMM is seeded with different random initial values.

eps.try If code num.trials is set to greater than 1, eps.try is used for the trial runs. If
unset, eps is used.

num.threads Number of threads to use. Setting this to >1 may give increased performance.
count.cutoff.quantile

A quantile between 0 and 1. Should be near 1. Read counts above this quan-
tile will be set to the read count specified by this quantile. Filtering very high
read counts increases the performance of the Baum-Welch fitting procedure.
However, if your data contains very few peaks they might be filtered out. Set
count.cutoff.quantile=1 in this case.

findCNVs 25

strand Run the HMM only for the specified strand. One of c('+', '-', '*').

states A subset or all of c("zero-inflation","0-somy","1-somy","2-somy","3-somy","4-somy",...).
This vector defines the states that are used in the Hidden Markov Model. The
order of the entries must not be changed.

most.frequent.state

One of the states that were given in states or ’none’. The specified state is
assumed to be the most frequent one. This can help the fitting procedure to
converge into the correct fit.

method One of c('univariate','bivariate'). In the univariate case strand informa-
tion is discarded, while in the bivariate case strand information is used for the
fitting.

algorithm One of c('baumWelch','EM'). The expectation maximization ('EM') will find
the most likely states and fit the best parameters to the data, the 'baumWelch'
will find the most likely states using the initial parameters.

initial.params A aneuHMM object or file containing such an object from which initial starting
parameters will be extracted.

Details

findCNVs uses a 6-state Hidden Markov Model to classify the binned read counts: state ’0-somy’
with a delta function as emission densitiy (only zero read counts), ’1-somy’,’2-somy’,’3-somy’,’4-
somy’, etc. with negative binomials (see dnbinom) as emission densities. A Baum-Welch algorithm
is employed to estimate the parameters of the distributions. See our paper citation("AneuFinder")
for a detailed description of the method.

Value

An aneuHMM object.

Author(s)

Aaron Taudt

Examples

Get an example BED file with single-cell-sequencing reads
bedfile <- system.file("extdata", "KK150311_VI_07.bam.bed.gz", package="AneuFinderData")
Bin the BAM file into bin size 1Mp
binned <- binReads(bedfile, format='bed', assembly='mm10', binsize=1e6,

chromosomes=c(1:19,'X','Y'))
Fit the Hidden Markov Model
model <- findCNVs(binned[[1]], eps=0.1, max.time=60)
Check the fit
plot(model, type='histogram')

26 findSCEs

findSCEs Find sister chromatid exchanges

Description

findSCEs classifies the binned read counts into several states which represent the number of chro-
matids on each strand.

Usage

findSCEs(binned.data, ID = NULL, eps = 0.1, init = "standard",
max.time = -1, max.iter = 1000, num.trials = 5, eps.try = 10 * eps,
num.threads = 1, count.cutoff.quantile = 0.999, strand = "*",
states = c("zero-inflation", paste0(0:10, "-somy")),
most.frequent.state = "1-somy", algorithm = "EM", initial.params = NULL)

Arguments

binned.data A GRanges object with binned read counts.

ID An identifier that will be used to identify this sample in various downstream
functions. Could be the file name of the binned.data for example.

eps Convergence threshold for the Baum-Welch algorithm.

init One of the following initialization procedures:

standard The negative binomial of state ’2-somy’ will be initialized with mean=mean(counts),
var=var(counts). This procedure usually gives good convergence.

random Mean and variance of the negative binomial of state ’2-somy’ will be
initialized with random values (in certain boundaries, see source code). Try
this if the standard procedure fails to produce a good fit.

max.time The maximum running time in seconds for the Baum-Welch algorithm. If this
time is reached, the Baum-Welch will terminate after the current iteration fin-
ishes. The default -1 is no limit.

max.iter The maximum number of iterations for the Baum-Welch algorithm. The default
-1 is no limit.

num.trials The number of trials to find a fit where state most.frequent.state is most
frequent. Each time, the HMM is seeded with different random initial values.

eps.try If code num.trials is set to greater than 1, eps.try is used for the trial runs. If
unset, eps is used.

num.threads Number of threads to use. Setting this to >1 may give increased performance.
count.cutoff.quantile

A quantile between 0 and 1. Should be near 1. Read counts above this quan-
tile will be set to the read count specified by this quantile. Filtering very high
read counts increases the performance of the Baum-Welch fitting procedure.
However, if your data contains very few peaks they might be filtered out. Set
count.cutoff.quantile=1 in this case.

findSCEs 27

strand Run the HMM only for the specified strand. One of c('+', '-', '*').

states A subset or all of c("zero-inflation","0-somy","1-somy","2-somy","3-somy","4-somy",...).
This vector defines the states that are used in the Hidden Markov Model. The
order of the entries must not be changed.

most.frequent.state

One of the states that were given in states or ’none’. The specified state is
assumed to be the most frequent one. This can help the fitting procedure to
converge into the correct fit.

algorithm One of c('baumWelch','EM'). The expectation maximization ('EM') will find
the most likely states and fit the best parameters to the data, the 'baumWelch'
will find the most likely states using the initial parameters.

initial.params A aneuHMM object or file containing such an object from which initial starting
parameters will be extracted.

Details

findSCEs uses a Hidden Markov Model to classify the binned read counts: state ’zero-inflation’
with a delta function as emission densitiy (only zero read counts), ’0-somy’ with geometric dis-
tribution, ’1-somy’,’2-somy’,’3-somy’,’4-somy’, etc. with negative binomials (see dnbinom) as
emission densities. A expectation-maximization (EM) algorithm is employed to estimate the pa-
rameters of the distributions. See our paper citation("AneuFinder") for a detailed description
of the method.

Value

An aneuBiHMM object.

Author(s)

Aaron Taudt

Examples

Get an example BED file with single-cell-sequencing reads
bedfile <- system.file("extdata", "KK150311_VI_07.bam.bed.gz", package="AneuFinderData")
Bin the BAM file into bin size 1Mp
binned <- binReads(bedfile, format='bed', assembly='hg19', binsize=1e6,

chromosomes=c(1:22,'X','Y'), pairedEndReads=TRUE)
Fit the Hidden Markov Model
model <- findSCEs(binned[[1]], eps=0.1, max.time=60)
Check the fit
plot(model, type='histogram')
plot(model, type='profile')

28 fixedWidthBins

fixedWidthBins Make fixed-width bins

Description

Make fixed-width bins based on given bin size.

Usage

fixedWidthBins(bamfile = NULL, assembly = NULL, chrom.lengths = NULL,
chromosome.format, binsizes = 1e+06, chromosomes = NULL)

Arguments

bamfile A BAM file from which the header is read to determine the chromosome lengths.
If a bamfile is specified, option assembly is ignored.

assembly An assembly from which the chromosome lengths are determined. Please see
fetchExtendedChromInfoFromUCSC for available assemblies. This option is
ignored if bamfile is specified. Alternatively a data.frame generated by fetchExtendedChromInfoFromUCSC.

chrom.lengths A named character vector with chromosome lengths. Names correspond to chro-
mosomes.

chromosome.format

A character specifying the format of the chromosomes if assembly is specified.
Either ’NCBI’ for (1,2,3 ...) or ’UCSC’ for (chr1,chr2,chr3 ...). If a bamfile or
chrom.lengths is supplied, the format will be chosen automatically.

binsizes A vector of bin sizes in base pairs.

chromosomes A subset of chromosomes for which the bins are generated.

Value

A list() of GRanges objects with fixed-width bins.

Author(s)

Aaron Taudt

Examples

Make fixed-width bins of size 500kb and 1Mb
bins <- fixedWidthBins(assembly='mm10', chromosome.format='NCBI', binsizes=c(5e5,1e6))
bins

getSCEcoordinates 29

getSCEcoordinates Get SCE coordinates

Description

Extracts the coordinates of a sister chromatid exchanges (SCE) from an aneuBiHMM object.

Usage

getSCEcoordinates(model, resolution = c(3, 6), min.segwidth = 2,
fragments = NULL, min.reads = 50)

Arguments

model An aneuBiHMM object.

resolution An integer vector specifying the resolution at bin level at which to scan for SCE
events.

min.segwidth Minimum segment length in bins when scanning for SCE events.

fragments A GRanges object with read fragments or a file that contains such an object.
These reads will be used for fine mapping of the SCE events.

min.reads Minimum number of reads required for SCE refinement.

Value

A GRanges object containing the SCE coordinates.

Author(s)

Aaron Taudt

Examples

Get an example BED file with single-cell-sequencing reads
bedfile <- system.file("extdata", "KK150311_VI_07.bam.bed.gz", package="AneuFinderData")
Bin the BAM file into bin size 1Mp
binned <- binReads(bedfile, format='bed', assembly='hg19', binsize=1e6,

chromosomes=c(1:22,'X','Y'), pairedEndReads=TRUE)
Fit the Hidden Markov Model
model <- findSCEs(binned[[1]], eps=0.1, max.time=60)
Find sister chromatid exchanges
model$sce <- getSCEcoordinates(model)
print(model$sce)
plot(model)

30 heatmapAneuploidies

getSegments Extract segments and cluster

Description

Extract segments and ID from a list of aneuHMM or aneuBiHMM objects and cluster if desired.

Usage

getSegments(hmms, cluster = TRUE, classes = NULL)

Arguments

hmms A list of aneuHMM or aneuBiHMM objects or files that contain such objects.

cluster Either TRUE or FALSE, indicating whether the samples should be clustered by
similarity in their CNV-state.

classes A vector with class labels the same length as hmms. If supplied, the clustering
will be ordered optimally with respect to the class labels (see RearrangeJoseph).

Value

A list() with (clustered) segments and SCE coordinates.

heatmapAneuploidies Plot aneuploidy state

Description

Plot a heatmap of aneuploidy state for multiple samples. Samples can be clustered and the output
can be returned as data.frame.

Usage

heatmapAneuploidies(hmms, ylabels = NULL, cluster = TRUE,
as.data.frame = FALSE)

Arguments

hmms A list of aneuHMM objects or files that contain such objects.

ylabels A vector with labels for the y-axis. The vector must have the same length as
hmms. If NULL the IDs from the aneuHMM objects will be used.

cluster If TRUE, the samples will be clustered by similarity in their CNV-state.

as.data.frame If TRUE, instead of a plot, a data.frame with the aneuploidy state for each sample
will be returned.

heatmapGenomewide 31

Value

A ggplot object or a data.frame, depending on option as.data.frame.

Author(s)

Aaron Taudt

Examples

Get results from a small-cell-lung-cancer
folder <- system.file("extdata", "primary-lung", "hmms", package="AneuFinderData")
files <- list.files(folder, full.names=TRUE)
Plot the ploidy state per chromosome
heatmapAneuploidies(files, cluster=FALSE)
Return the ploidy state as data.frame
df <- heatmapAneuploidies(files, cluster=FALSE, as.data.frame=TRUE)
head(df)

heatmapGenomewide Genome wide heatmap of CNV-state

Description

Plot a genome wide heatmap of copy number variation state. This heatmap is best plotted to file,
because in most cases it will be too big for cleanly plotting it to screen.

Usage

heatmapGenomewide(hmms, ylabels = NULL, classes = NULL,
classes.color = NULL, file = NULL, cluster = TRUE, plot.SCE = TRUE,
hotspots = NULL)

Arguments

hmms A list of aneuHMM objects or files that contain such objects.
ylabels A vector with labels for the y-axis. The vector must have the same length as

hmms. If NULL the IDs from the aneuHMM objects will be used.
classes A character vector with the classification of the elements on the y-axis. The

vector must have the same length as hmms. If specified the clustering algorithm
will try to display similar categories together in the dendrogram.

classes.color A (named) vector with colors that are used to distinguish classes. Names must
correspond to the unique elements in classes.

file A PDF file to which the heatmap will be plotted.
cluster Either TRUE or FALSE, indicating whether the samples should be clustered by

similarity in their CNV-state.
plot.SCE Logical indicating whether SCE events should be plotted.
hotspots A GRanges object with coordinates of genomic hotspots (see hotspotter).

32 hotspotter

Value

A ggplot object or NULL if a file was specified.

Examples

Get results from a small-cell-lung-cancer
lung.folder <- system.file("extdata", "primary-lung", "hmms", package="AneuFinderData")
lung.files <- list.files(lung.folder, full.names=TRUE)
Get results from the liver metastasis of the same patient
liver.folder <- system.file("extdata", "metastasis-liver", "hmms", package="AneuFinderData")
liver.files <- list.files(liver.folder, full.names=TRUE)
Plot a clustered heatmap
classes <- c(rep('lung', length(lung.files)), rep('liver', length(liver.files)))
labels <- c(paste('lung',1:length(lung.files)), paste('liver',1:length(liver.files)))
heatmapGenomewide(c(lung.files, liver.files), ylabels=labels, classes=classes,

classes.color=c('blue','red'))

hotspotter Find hotspots of genomic events

Description

Find hotspots of genomic events by using kernel density estimation.

Usage

hotspotter(gr.list, bw, pval = 1e-08)

Arguments

gr.list A list with GRanges object containing the coordinates of the genomic events.

bw Bandwidth used for kernel density estimation (see density).

pval P-value cutoff for hotspots.

Value

A GRanges object containing coordinates of hotspots with p-values.

Author(s)

Aaron Taudt

importBed 33

importBed Read bed-file into GRanges

Description

This is a simple convenience function to read a bed(.gz)-file into a GRanges object. The bed-file is
expected to have the following fields: chromosome, start, end, name, score, strand.

Usage

importBed(bedfile, skip = 0, chromosome.format = "NCBI")

Arguments

bedfile Filename of the bed or bed.gz file.

skip Number of lines to skip at the beginning.
chromosome.format

Desired format of the chromosomes. Either ’NCBI’ for (1,2,3 ...) or ’UCSC’
for (chr1,chr2,chr3 ...).

Value

A GRanges object with the contents of the bed-file.

Author(s)

Aaron Taudt

Examples

Get an example BED file with single-cell-sequencing reads
bedfile <- system.file("extdata", "KK150311_VI_07.bam.bed.gz", package="AneuFinderData")
Import the file and skip the first 10 lines
data <- importBed(bedfile, skip=10)

initializeStates Initialize state factor levels and distributions

Description

Initialize the state factor levels and distributions for the specified states.

Usage

initializeStates(states)

34 karyotypeMeasures

Arguments

states A subset of c("zero-inflation","0-somy","1-somy","2-somy","3-somy","4-somy",...).

Value

A list with $labels, $distributions and $multiplicity values for the given states.

karyotypeMeasures Measures for Karyotype Heterogeneity

Description

Computes measures for karyotype heterogeneity. See the Details section for how these measures
are defined.

Usage

karyotypeMeasures(hmms, normalChromosomeNumbers = NULL)

Arguments

hmms A list with aneuHMM objects or a list of files that contain such objects.
normalChromosomeNumbers

A named integer vector with physiological copy numbers. This is useful to spec-
ify male and female samples, e.g. c('X'=2) for female samples and c('X'=1,'Y'=1)
for male samples. The assumed default is ’2’ for all chromosomes.

Details

We define x as the vector of copy number states for each position. The number of HMMs is S. The
measures are computed for each bin as follows:

Aneuploidy: D = mean(abs(x − P)), where P is the physiological number of chromosomes at
that position.

Heterogeneity: H = sum(table(x) ∗ 0 : (length(table(x)) − 1))/S

Value

A list with two data.frames, containing the karyotype measures $genomewide and $per.chromosome.

Author(s)

Aaron Taudt

loadGRangesFromFiles 35

Examples

Get results from a small-cell-lung-cancer
lung.folder <- system.file("extdata", "primary-lung", "hmms", package="AneuFinderData")
lung.files <- list.files(lung.folder, full.names=TRUE)
Get results from the liver metastasis of the same patient
liver.folder <- system.file("extdata", "metastasis-liver", "hmms", package="AneuFinderData")
liver.files <- list.files(liver.folder, full.names=TRUE)
normal.chrom.numbers <- rep(2, 23)
names(normal.chrom.numbers) <- c(1:22,'X')
lung <- karyotypeMeasures(lung.files, normalChromosomeNumbers=normal.chrom.numbers)
liver <- karyotypeMeasures(liver.files, normalChromosomeNumbers=normal.chrom.numbers)
print(lung$genomewide)
print(liver$genomewide)

loadGRangesFromFiles Load GRanges from files

Description

Load GRanges objects from file into a list.

Usage

loadGRangesFromFiles(files)

Arguments

files A list of files that contain GRanges objects.

Value

A list() containing all loaded GRanges objects.

Author(s)

Aaron Taudt

Examples

Not run:
Get some files that you want to load
files <- list.files("folder-with-saved-GRanges-RData-files",

full.names=TRUE)
grlist <- loadGRangesFromFiles(files)
Plot one of them
plot(grlist[[1]]
End(Not run)

36 plot.aneuBiHMM

loadHmmsFromFiles Load HMMs from files

Description

Load aneuHMM objects from file into a list.

Usage

loadHmmsFromFiles(hmms, strict = TRUE)

Arguments

hmms A list of files that contain aneuHMM objects.

strict If any of the loaded objects is not a aneuHMM object, an error (strict=TRUE) or
a warning (strict=FALSE) will be generated.

Value

A list() containing all loaded aneuHMM objects.

Author(s)

Aaron Taudt

Examples

Get some files that you want to load
folder <- system.file("extdata", "primary-lung", "hmms", package="AneuFinderData")
files <- list.files(folder, full.names=TRUE)
Load and plot the first then
hmms <- loadHmmsFromFiles(files[1:10])
lapply(hmms, plot, type='profile')

plot.aneuBiHMM Plotting function for aneuBiHMM objects

Description

Make different types of plots for aneuBiHMM objects.

Usage

S3 method for class 'aneuBiHMM'
plot(x, type = "profile", ...)

plot.aneuHMM 37

Arguments

x An aneuBiHMM object.

type Type of the plot, one of c('profile', 'histogram', 'karyogram'). You
can also specify the type with an integer number.

profile An profile with read counts and CNV-state.
histogram A histogram of binned read counts with fitted mixture distribution.
karyogram A karyogram-like chromosome overview with CNV-state.

... Additional arguments for the different plot types.

Value

A ggplot object.

plot.aneuHMM Plotting function for aneuHMM objects

Description

Make different types of plots for aneuHMM objects.

Usage

S3 method for class 'aneuHMM'
plot(x, type = "profile", ...)

Arguments

x An aneuHMM object.

type Type of the plot, one of c('profile', 'histogram', 'karyogram'). You
can also specify the type with an integer number.

karyogram A karyogram-like chromosome overview with CNV-state.
histogram A histogram of binned read counts with fitted mixture distribution.
karyogram An profile with read counts and CNV-state.

... Additional arguments for the different plot types.

Value

A ggplot object.

38 plot.GRanges

plot.character Plotting function for saved AneuFinder objects

Description

Convenience function that loads and plots a AneuFinder object in one step.

Usage

S3 method for class 'character'
plot(x, ...)

Arguments

x A filename that contains either binned.data or a aneuHMM.
... Additional arguments.

Value

A ggplot object.

plot.GRanges Plotting function for binned read counts

Description

Make plots for binned read counts from binned.data.

Usage

S3 method for class 'GRanges'
plot(x, type = "profile", ...)

Arguments

x A GRanges object with binned read counts.
type Type of the plot, one of c('profile', 'histogram', 'karyogram'). You

can also specify the type with an integer number.
karyogram A karyogram-like chromosome overview with read counts.
histogram A histogram of read counts.
profile An profile with read counts.

... Additional arguments for the different plot types.

Value

A ggplot object.

plotBinnedDataHistogram 39

plotBinnedDataHistogram

Plot a histogram of binned read counts

Description

Plot a histogram of binned read counts from binned.data

Usage

plotBinnedDataHistogram(binned.data, strand = "*", chromosome = NULL,
start = NULL, end = NULL)

Arguments

binned.data A GRanges object containing binned read counts in meta-column ’counts’.
strand One of c(’+’,’-’,’*’). Plot the histogram only for the specified strand.
chromosome, start, end

Plot the histogram only for the specified chromosome, start and end position.

Value

A ggplot object.

plotKaryogram Karyogram-like chromosome overview

Description

Plot a karyogram-like chromosome overview with read counts and CNV-state from a aneuHMM ob-
ject or binned.data.

Usage

plotKaryogram(model, both.strands = FALSE, plot.SCE = FALSE, file = NULL)

Arguments

model A aneuHMM object or binned.data.
both.strands If TRUE, strands will be plotted separately.
plot.SCE Logical indicating whether SCE events should be plotted.
file A PDF file where the plot will be saved.

Value

A ggplot object or NULL if a file was specified.

40 plotUnivariateHistogram

plotProfile Read count and CNV profile

Description

Plot a profile with read counts and CNV-state from a aneuHMM object or binned.data.

Usage

plotProfile(model, both.strands = FALSE, plot.SCE = TRUE, file = NULL)

Arguments

model A aneuHMM object or binned.data.
both.strands If TRUE, strands will be plotted separately.
plot.SCE Logical indicating whether SCE events should be plotted.
file A PDF file where the plot will be saved.

Value

A ggplot object or NULL if a file was specified.

plotUnivariateHistogram

Plot a histogram of binned read counts with fitted mixture distribution

Description

Plot a histogram of binned read counts from with fitted mixture distributions from a aneuHMM object.

Usage

plotUnivariateHistogram(model, state = NULL, strand = "*",
chromosome = NULL, start = NULL, end = NULL)

Arguments

model A aneuHMM object.
state Plot the histogram only for the specified CNV-state.
strand One of c(’+’,’-’,’*’). Plot the histogram only for the specified strand.
chromosome, start, end

Plot the histogram only for the specified chromosome, start and end position.

Value

A ggplot object.

qualityControl 41

qualityControl Quality control measures for binned read counts

Description

Calculate various quality control measures on binned read counts.

Usage

qc.spikiness(counts)

qc.entropy(counts)

qc.bhattacharyya(hmm)

Arguments

counts A vector of binned read counts.

hmm An aneuHMM object.

Details

The Shannon entropy is defined as S = −sum(n ∗ log(n)), where n = counts/sum(counts).

Spikyness is defined as K = sum(abs(diff(counts)))/sum(counts).

Value

A numeric.

Functions

• qc.spikiness: Calculate the spikiness of a library

• qc.entropy: Calculate the Shannon entropy of a library

• qc.bhattacharyya: Calculate the Bhattacharyya distance between the ’1-somy’ and ’2-
somy’ distribution

Author(s)

Aaron Taudt

42 simulateReads

readConfig Read AneuFinder configuration file

Description

Read an AneuFinder configuration file into a list structure. The configuration file has to be specified
in INI format. R expressions can be used and will be evaluated.

Usage

readConfig(configfile)

Arguments

configfile Path to the configuration file

Value

A list with one entry for each element in configfile.

Author(s)

Aaron Taudt

simulateReads Simulate reads from genome

Description

Simulate single or paired end reads from any BSgenome object. These simulated reads can be
mapped to the reference genome using any aligner to produce BAM files that can be used for
mappability correction.

Usage

simulateReads(bsgenome, readLength, bamfile, file,
pairedEndFragmentLength = NULL, every.X.bp = 500)

subsetByCNVprofile 43

Arguments

bsgenome A BSgenome object containing the sequence of the reference genome.

readLength The length in base pairs of the simulated reads that are written to file.

bamfile A BAM file. This file is used to estimate the distribution of Phred quality scores.

file The filename that is written to disk. The ending .fastq.gz will be appended.
pairedEndFragmentLength

If this option is specified, paired end reads with length readLength will be sim-
ulated coming from both ends of fragments of this size. NOT IMPLEMENTED
YET.

every.X.bp Stepsize for simulating reads. A read fragment will be simulated every X bp.

Details

Reads are simulated by splitting the genome into reads with the specified readLength.

Value

A fastq.gz file is written to disk.

Author(s)

Aaron Taudt

Examples

Get an example BAM file with single-cell-sequencing reads
bamfile <- system.file("extdata", "BB150803_IV_074.bam", package="AneuFinderData")
Simulate 51bp reads for at a distance of every 5000bp
if (require(BSgenome.Mmusculus.UCSC.mm10)) {
simulateReads(BSgenome.Mmusculus.UCSC.mm10, bamfile=bamfile, readLength=51,

file=tempfile(), every.X.bp=5000)
}

subsetByCNVprofile Get IDs of a subset of models

Description

Get the IDs of models that have a certain CNV profile. The result will be TRUE for models that
overlap all specified ranges in profile by at least one base pair with the correct state.

Usage

subsetByCNVprofile(hmms, profile)

44 transCoord

Arguments

hmms A list of aneuHMM objects or files that contain such objects.

profile A GRanges object with metadata column ’expected.state’ and optionally columns
’expected.mstate’ and ’expected.pstate’.

Value

A named logical vector with TRUE for all models that are concordant with the given profile.

Examples

Get results from a small-cell-lung-cancer
lung.folder <- system.file("extdata", "primary-lung", "hmms", package="AneuFinderData")
lung.files <- list.files(lung.folder, full.names=TRUE)
Get all files that have a 3-somy on chromosome 1 and 4-somy on chromosome 2
profile <- GRanges(seqnames=c('1','2'), ranges=IRanges(start=c(1,1), end=c(195471971,182113224)),

expected.state=c('3-somy','4-somy'))
ids <- subsetByCNVprofile(lung.files, profile)
print(which(ids))

transCoord Transform genomic coordinates

Description

Add two columns with transformed genomic coordinates to the GRanges object. This is useful for
making genomewide plots.

Usage

transCoord(gr)

Arguments

gr A GRanges object.

Value

The input GRanges with two additional metadata columns ’start.genome’ and ’end.genome’.

univariate.findCNVs 45

univariate.findCNVs Find copy number variations (univariate)

Description

findCNVs classifies the binned read counts into several states which represent copy-number-variation.

Usage

univariate.findCNVs(binned.data, ID = NULL, eps = 0.1, init = "standard",
max.time = -1, max.iter = -1, num.trials = 1, eps.try = NULL,
num.threads = 1, count.cutoff.quantile = 0.999, strand = "*",
states = c("zero-inflation", paste0(0:10, "-somy")),
most.frequent.state = "2-somy", algorithm = "EM", initial.params = NULL)

Arguments

binned.data A GRanges object with binned read counts.

ID An identifier that will be used to identify this sample in various downstream
functions. Could be the file name of the binned.data for example.

eps Convergence threshold for the Baum-Welch algorithm.

init One of the following initialization procedures:

standard The negative binomial of state ’2-somy’ will be initialized with mean=mean(counts),
var=var(counts). This procedure usually gives good convergence.

random Mean and variance of the negative binomial of state ’2-somy’ will be
initialized with random values (in certain boundaries, see source code). Try
this if the standard procedure fails to produce a good fit.

max.time The maximum running time in seconds for the Baum-Welch algorithm. If this
time is reached, the Baum-Welch will terminate after the current iteration fin-
ishes. The default -1 is no limit.

max.iter The maximum number of iterations for the Baum-Welch algorithm. The default
-1 is no limit.

num.trials The number of trials to find a fit where state most.frequent.state is most
frequent. Each time, the HMM is seeded with different random initial values.

eps.try If code num.trials is set to greater than 1, eps.try is used for the trial runs. If
unset, eps is used.

num.threads Number of threads to use. Setting this to >1 may give increased performance.
count.cutoff.quantile

A quantile between 0 and 1. Should be near 1. Read counts above this quan-
tile will be set to the read count specified by this quantile. Filtering very high
read counts increases the performance of the Baum-Welch fitting procedure.
However, if your data contains very few peaks they might be filtered out. Set
count.cutoff.quantile=1 in this case.

strand Run the HMM only for the specified strand. One of c('+', '-', '*').

46 variableWidthBins

states A subset or all of c("zero-inflation","0-somy","1-somy","2-somy","3-somy","4-somy",...).
This vector defines the states that are used in the Hidden Markov Model. The
order of the entries must not be changed.

most.frequent.state

One of the states that were given in states or ’none’. The specified state is
assumed to be the most frequent one. This can help the fitting procedure to
converge into the correct fit.

algorithm One of c('baumWelch','EM'). The expectation maximization ('EM') will find
the most likely states and fit the best parameters to the data, the 'baumWelch'
will find the most likely states using the initial parameters.

initial.params A aneuHMM object or file containing such an object from which initial starting
parameters will be extracted.

Value

An aneuHMM object.

variableWidthBins Make variable-width bins

Description

Make variable-width bins based on a reference BAM file. This can be a simulated file (produced by
simulateReads and aligned with your favourite aligner) or a real reference.

Usage

variableWidthBins(reads, binsizes, chromosomes = NULL)

Arguments

reads A GRanges with reads. See bam2GRanges and bed2GRanges.

binsizes A vector with binsizes. Resulting bins will be close to the specified binsizes.

chromosomes A subset of chromosomes for which the bins are generated.

Details

Variable-width bins are produced by first binning the reference BAM file with fixed-width bins and
selecting the desired number of reads per bin as the (non-zero) maximum of the histogram. A new
set of bins is then generated such that every bin contains the desired number of reads.

Value

A list() of GRanges objects with variable-width bins.

writeConfig 47

Author(s)

Aaron Taudt

Examples

Get an example BED file with single-cell-sequencing reads
bedfile <- system.file("extdata", "KK150311_VI_07.bam.bed.gz", package="AneuFinderData")
Read the file into a GRanges object
reads <- bed2GRanges(bedfile, assembly='mm10', chromosomes=c(1:19,'X','Y'),

min.mapq=10, remove.duplicate.reads=TRUE)
Make variable-width bins of size 500kb and 1Mb
bins <- variableWidthBins(reads, binsizes=c(5e5,1e6))
Plot the distribution of binsizes
hist(width(bins[['1e+06']]), breaks=50)

writeConfig Write AneuFinder configuration file

Description

Write an AneuFinder configuration file from a list structure.

Usage

writeConfig(conf, configfile)

Arguments

conf A list structure with parameter values. Each entry will be written in one line.

configfile Filename of the outputfile.

Value

NULL

Author(s)

Aaron Taudt

48 zinbinom

zinbinom The Zero-inflated Negative Binomial Distribution

Description

Density, distribution function, quantile function and random generation for the zero-inflated nega-
tive binomial distribution with parameters w, size and prob.

Usage

dzinbinom(x, w, size, prob, mu)

pzinbinom(q, w, size, prob, mu, lower.tail = TRUE)

qzinbinom(p, w, size, prob, mu, lower.tail = TRUE)

rzinbinom(n, w, size, prob, mu)

Arguments

x Vector of (non-negative integer) quantiles.

w Weight of the zero-inflation. 0 <= w <= 1.

size Target for number of successful trials, or dispersion parameter (the shape pa-
rameter of the gamma mixing distribution). Must be strictly positive, need not
be integer.

prob Probability of success in each trial. 0 < prob <= 1.

mu Alternative parametrization via mean: see ‘Details’.

q Vector of quantiles.

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

p Vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

Details

The zero-inflated negative binomial distribution with size = n and prob = p has density

p(x) = w + (1 − w)
Γ(x + n)

Γ(n)x!
pn(1 − p)x

for x = 0, n > 0, 0 < p ≤ 1 and 0 ≤ w ≤ 1.

p(x) = (1 − w)
Γ(x + n)

Γ(n)x!
pn(1 − p)x

for x = 1, 2, . . ., n > 0, 0 < p ≤ 1 and 0 ≤ w ≤ 1.

zinbinom 49

Value

dzinbinom gives the density, pzinbinom gives the distribution function, qzinbinom gives the quantile
function, and rzinbinom generates random deviates.

Functions

• dzinbinom: gives the density

• pzinbinom: gives the cumulative distribution function

• qzinbinom: gives the quantile function

• rzinbinom: random number generation

Author(s)

Matthias Heinig, Aaron Taudt

See Also

Distributions for standard distributions, including dbinom for the binomial, dnbinom for the negative
binomial, dpois for the Poisson and dgeom for the geometric distribution, which is a special case
of the negative binomial.

Index

aneuBiHMM, 3, 13, 27, 29, 30, 36, 37
AneuFinder, 3, 4, 7, 38
AneuFinder (AneuFinder-package), 3
Aneufinder, 3, 4, 14
AneuFinder-package, 3
aneuHMM, 7, 13, 15, 22, 25, 27, 30, 31, 34,

36–41, 44, 46

bam2GRanges, 8, 14, 20, 46
bed2GRanges, 9, 14, 46
bin the data, 4
binned.data, 10, 18–20, 38–40
binning, 10, 10
binReads, 10
bivariate.findCNVs, 12
blacklist, 14
BSgenome, 42, 43

clusterByQuality, 15
collapseBins, 16
colors, 17
correctGC, 18
correctMappability, 19
countOverlaps, 12

dbinom, 49
deltaWCalculator, 20
density, 32
dgeom, 49
Distributions, 49
distributions, profiles and

karyograms, 4
dnbinom, 25, 27, 49
dpois, 49
dzinbinom (zinbinom), 48

emControl, 15
estimateComplexity, 21
export, 21
exportCNVs (export), 21

exportGRanges (export), 21
exportReadCounts (export), 21

fetchExtendedChromInfoFromUCSC, 5, 9, 10,
14, 20, 28

filterSegments, 23
find copy-number-variations, 4
find sister-chromatid-exchange, 4
findCNVs, 7, 24
findSCEs, 3, 26
fixedWidthBins, 10, 11, 14, 28

genomewide heatmaps, 4
GenomicRanges, 11
getSCEcoordinates, 29
getSegments, 30
ggplot, 31, 32, 37–40
GRanges, 3, 5, 7–14, 20–24, 26, 28, 29, 31–33,

35, 38, 39, 44–46

heatmapAneuploidies, 30
heatmapGenomewide, 31
hotspotter, 6, 31, 32

importBed, 33
initializeStates, 33

karyotypeMeasures, 34

loadGRangesFromFiles, 35
loadHmmsFromFiles, 36

Mclust, 15
mclust, 15

plot.aneuBiHMM, 36
plot.aneuHMM, 37
plot.character, 38
plot.GRanges, 38
plotBinnedDataHistogram, 39
plotKaryogram, 39

50

INDEX 51

plotProfile, 40
plotUnivariateHistogram, 40
preseqR, 21
pzinbinom (zinbinom), 48

qc.bhattacharyya (qualityControl), 41
qc.entropy (qualityControl), 41
qc.spikiness (qualityControl), 41
qualityControl, 41
qzinbinom (zinbinom), 48

readConfig, 42
RearrangeJoseph, 30
rzinbinom (zinbinom), 48

scanBamWhat, 8
simulateReads, 42, 46
stateColors (colors), 17
strandColors (colors), 17
subsetByCNVprofile, 43

transCoord, 44

univariate.findCNVs, 45

variableWidthBins, 5, 10, 11, 46

writeConfig, 47

zinbinom, 48

	AneuFinder-package
	aneuBiHMM
	Aneufinder
	aneuHMM
	bam2GRanges
	bed2GRanges
	binned.data
	binning
	binReads
	bivariate.findCNVs
	blacklist
	clusterByQuality
	collapseBins
	colors
	correctGC
	correctMappability
	deltaWCalculator
	estimateComplexity
	export
	filterSegments
	findCNVs
	findSCEs
	fixedWidthBins
	getSCEcoordinates
	getSegments
	heatmapAneuploidies
	heatmapGenomewide
	hotspotter
	importBed
	initializeStates
	karyotypeMeasures
	loadGRangesFromFiles
	loadHmmsFromFiles
	plot.aneuBiHMM
	plot.aneuHMM
	plot.character
	plot.GRanges
	plotBinnedDataHistogram
	plotKaryogram
	plotProfile
	plotUnivariateHistogram
	qualityControl
	readConfig
	simulateReads
	subsetByCNVprofile
	transCoord
	univariate.findCNVs
	variableWidthBins
	writeConfig
	zinbinom
	Index

