pwOmics -
Pathway-based Integration of time-series Omics
Data using public database knowledge

Astrid Wachter
Medical Statistics, University Medical Center Géttingen, Germany

May 3, 2016

Contents

1 Introduction

Characterization of biological processes can be performed in great detail with
the increased generation of omics data on different functional levels of the
cell. Especially interpretation of time-series omics data measured in parallel
with different platforms is a complex but promising task, needing consider-
ation of time-independent combination of omics data and additionally time-
dependent signaling analysis. As each measurement technique shows a cer-
tain bias and has natural limitations in identifying full signaling responses
[yeger-lotem bridging 2009], such cross-platform analysis is an up-to-date
approach in order to connect biological implications on different signaling levels.
Using diverse data types is expected to provide a deeper understanding of global
biological functions and the underlying complex processes [Kholodenko2012].
This is why computational data analysis tools for interpretation of data from
proteomics and transcriptomics measurements in parallel are needed.

pwOmics is a tool for pathway-based level-specific data comparison and analysis
of single time point or time-series omics data measured in parallel. It provides
individual analysis workflows for the different omics data sets (see Figure ?7)
and in addition enables consensus analysis of omics data as shown in the work-
flow overview in Figure 77.

Up to this point analysis is restricted to human species. In future an expansion
of the package is possible dependent on available online open access database
information.

2 Databases

As pwOmics is a package for data integration based on prior pathway and tran-
scription knowledge data, it is necessary to define the databases to work with.
Three different kinds of databases are necessary to do all analyses steps:

Downstream Analysis Upstream Analysis
Proteome - Genome/Transcriptome —
Genome/Transcriptome Proteome

Pathway Identification of
Sl identification LY proteomic regulators
TF level TF identification w TF identification
Gene/ Gene/ Transcript Gene/Transcript
Transcript level identification identification

!

Figure 1: pwOmics downstream and upstream analysis.

r

[[
8 Proteomics \» Transcriptomics/ Pathway TF
3 data Genomics data databases target gene
> databases
& \ / l i
: ()
k- readOmics } readPWdata} [readTFdata
& S l - . . I
-
»] :
2 identifyPWs |dent|fyTFs
> N
g v
<
E hTF
&l enrichPWs enrichTFs
=
2
£
|dent|fyPWTFTGs identifyRsof TFs }
J
getProteinintersection
getTFIntersection
. getGenesintersection
‘D
>
<
8
% gettpintersection
S Visualization
2
38
staticConsensusNet]7» [plotConsensusGraph }
[consDynamicNet }** [plotConsDynNet }
g -
P
% [clusterTimeProfiles]** {plotTimeProfiIeClusters]
=1
o

Figure 2: pwOmics workflow overview.

1. Pathway databases:
The user can choose from Biocarta [nishimura biocarta 2001], Reac-
tome [milacic_annotating 2012, croft_reactome_2014]|, PID [schaefer_pid:_2009]
from the National Cancer Institute (NCI) and KEGG [kanehisa data 2014,
kanehisa kegg: 2000].

2. Protein-protein interaction (PPI) database:
STRING [franceschini_string 2013].

3. Transcription factor (TF) - target gene databases:
The user can choose from ChEA [lachmann_chea:_2010], Pazar [portales-casamar_pazar_2009,
portales-casamar_pazar:_2007] and/or decide to specify an own file e.g.
based on a commercial database.

The pathway database information is used to identify the pathways of the dif-
ferentially abundant proteins in the downstream analysis as well as upstream
protein regulators of TFs in the upstream analysis. The PPI database STRING
[franceschini_string 2013] was chosen to define the protein net for the con-
sensus analysis. The TF - target gene databases information is necessary for
the TF identification in pathways in the downstream analysis. Additionally the
upstream TFs of differentially expressed genes/transcripts are identified in the
upstream analysis based on this information.

In downstream analysis the pathway gene set information is used, whereas in
the upstream analysis also the pathway topology information is exploited.

The database information is downloaded internally via STRINGdb and Annota-
tionHub [Morgan| package. In case the author is interested also in the metadata
of the pathway database and TF - target database it can be received by

library (pwOmics)

library(AnnotationHub)

ah = AnnotationHub ()

#pathway databases

pw = query(ah, "NIH Pathway Interaction Database")
pwl1]

V V.V Vv VvV

AnnotationHub with 1 record

snapshotDate(): 2016-04-29

names(): AH22329

$dataprovider: NIH Pathway Interaction Database

$species: Homo sapiens

$rdataclass: biopax

$title: BioCarta.owl.gz

$description: BioCarta BioPax file from NCI Pathway Interaction Database
$taxonomyid: 9606

$genome: hgl9

$sourcetype: BioPax

$sourceurl: ftp://ftpl.nci.nih.gov/pub/PID/BioPAX/BioCarta.owl.gz
$sourcelastmodifieddate: 2009-09-09

$sourcesize: 338343

$tags: BioCarta, BioPax, Pathway Interaction Database
retrieve record with 'object[["AH22329"]]1'

> #TF-target databases
> chea = query(ah, "ChEA")
> cheal1]

AnnotationHub with 1 record

snapshotDate(): 2016-04-29

names(): AH22237

$dataprovider: ChEA

$species: NA

$rdataclass: data.frame

$title: chea-background.zip

$description: ChEA background file, containing transcription factor data t...
$taxonomyid: NA

$genome: NA

$sourcetype: Zip

$sourceurl: http://amp.pharm.mssm.edu/result/kea/chea-background.zip
$sourcelastmodifieddate: 2015-03-09

$sourcesize: 3655103

$tags: ChEA, Transcription Factors

retrieve record with 'object[["AH22237"]]'

> pazar = query(ah, "Pazar")

> pazar[1]

AnnotationHub with 1 record

snapshotDate(): 2016-04-29
names(): AH22238
$dataprovider: Pazar
$species: NA

$rdataclass: GRanges
$title: pazar_ABS_20120522.csv
$description: TF - Target Gene file from pazar_ABS_20120522
$taxonomyid: NA
$genome: NA

$sourcetype: CSV

$sourceurl: http://www.pazar.info/tftargets/pazar_ABS_20120522.csv
$sourcelastmodifieddate: 2012-06-04

$sourcesize: 120202

$tags: Pazar, Transcription Factors

retrieve record with 'object[["AH22238"]]'

In case you want to use TF - target gene information which is not part of the
mentioned databases but e.g. part of a commercial database, a user-specified
file can be used for the analysis. This file should be a ‘.txt’ file with first column
transcription factors and second column target gene symbols without a header,

e.g.:

GATA-4 HAMP
c-Jun IL18
NF-kappaB TLR2
MYB LTB
FOXO1A TGFBR1

The STRING PPIl-information is downloaded automatically while processing
and analyzing the data: The STRINGdb package [franceschini string 2013]
is used here.

3 Example dataset

The example dataset used here for demonstration purposes is the one presented
in [Waters2012], which comprises the mitogenic response of human mammary
epithelial cells to epidermal growth factor (EGF). This dataset includes whole
genome time course microarray data measured with NimbleGen whole genome
60-mer oligonucleotide arrays (Design Version 2003_10_27) at time points 0, 1, 4,
8, 13, 18 and 24 hr after EGF stimulation. The complementary proteomics data
was measured with LC-FTICR (Fourier-transform ion cyclotron resonance-mass
spectrometry coupled with advanced capillary liquid chromatography) at time
points 0.25, 1, 4, 8, 13, 18 and 24 hours after EGF stimulation. Preprocessing
of data was done as described in [Waters2012] resulting in lists of significant
genes and proteins for each time point as logl0 expression ratios relative to the
time O hr controls.

4 Data pre-processing

pwOmics is a package for secondary data analysis, i.e. it needs already pre-
processed data as input for the analysis. The input required is

1. a list of all protein IDs measured,

2. a list of all gene/transcript IDs measured,

3. a list of differentially abundant proteins + log fold changes,

4. a list of differentially expressed genes/transcripts + log fold changes.
The IDs need to be gene symbols, both for protein and gene/transcript data. In
case time-series data is analyzed inputs 3. and 4. needs to be specified for each
time point. It is absolutely necessary, that all proteins and genes/transcript in
inputs 3. and 4. are part of the lists of all protein IDs and all gene/transcript

IDs, respectively.

The OmicsData object is the format used for data analysis in pwOmics package.
It contains a list of four main elements:

1. OmicsD - here the omics data set, its description and the results are stored

2. PathwayD - here the chosen pathway databases and the generated Biopax
model is stored

3. TFtargetsD - here the chosen TF-target gene databases and the combined
TF-target gene information is stored

4. Status - The status variable equals ‘1’ in case not all information needed
for the analysis is read in yet and ‘2’ after identification of the first up-
stream/downstream signaling levels. As the enrichment step is not nec-
essarily part of the analysis and dependent on the pathway database and
the TF-target gene database the identification of signaling molecules in
further levels might not be successful, the status variable is not used in
the further analysis.

Thus pwOmics reads in the omics data set provided by the user to the first
element of the OmicsData object and further on stores all the results in this
part as well.

This is why the user has to provide the omics data set in a special format: A
list needs to be generated with a protein list named ‘P’ as first element and a
gene/transcript list named ‘G’ as second element. These lists contain as first el-
ement a data frame with all (unique) protein IDs and gene/transcript IDs in the
first column, respectively, and as second element a list with data frames for each
time point of measurement. The data frames have two columns with the first one
containing the differentially abundant/expressed proteins or genes/transcripts
as gene symbols and the second column containing the corresponding log fold
changes, e.g.:

> data(OmicsExampleData)
> OmicsExampleData

Generated as in the following example:

OmicsExampleData = 1list(P = 1ist(allPIDs,
1list(PIDstp0.25, PIDstpl, PIDstp4, PIDstp8,
PIDstpl3, PIDstpl8, PIDstp24)),
G = 1ist(allGIDs,
1list(GIDstpl, GIDstp4, GIDstp8, GIDstpl3,
GIDstp18, GIDstp24)))

> head (OmicsExampleData$P[[2]][[1]])

GeneSymbol X15min
MRPS17 0.6976049
RPS12 -1.0297977
SLC3A2 -1.2623327
RPL8 0.8304820

ACTB -2.4914461
ALDOA 0.8637013

DO WN -

In case the user only wants to analyze omics data from a single time point just
one data frame has to be specified.

The time points do not have to be the same for protein and gene/transcript
data and need to be specified when reading in the omics data set separately via
the ‘tp_prots’ and ‘tp_genes’ parameters of the ‘readOmics’ function.

> data_omics = readOmics(tp_prots = c(0.25, 1, 4, 8, 13, 18, 24),
+ tp_genes = c(1, 4, 8, 13, 18, 24),

+ OmicsExampleData,

+ PWdatabase = c("biocarta", "kegg", "nci",
+ "reactome"),

+

TFtargetdatabase = c("chea", "pazar"))

If data from a single timepoint measurement should be analyzed the user simply
assigns the experiment number ‘1’ for these parameters:

#for single time point data set:
omics = list(P = 1list(allPIDs, 1list(PIDs_1)),
G = 1ist(allGIDs, 1ist(GIDs_1)))
data_omics = readOmics(tp_prots = c(1),
tp_genes = c(1),
OmicsExampleData,
PWdatabase = c("biocarta", "kegg", "nci",
"reactome"),
TFtargetdatabase = c("chea", "pazar"))

Additionally the selected databases have to be specified.

The stored information can be easily accessed via the following functions:

> getOmicsTimepoints(data_omics)

> head(getOmicsallProteinIDs(data_omics))

> head(getOmicsallGeneIDs (data_omics))

> head(getOmicsDataset (data_omics, writeData = FALSE)[[1]])

5 Individual analysis

As shown in Figure 7?7 the analysis is based on an individual analysis of the
proteomic and the genomic/transcriptomic data. The downstream analysis and
upstream analysis are described in the following subsections.

Prior to that the database information has to be read in. In a first step the TF-
target information can be made accessible to the OmicsData object by:

data_omics = readTFdata(data_omics)

Via the ‘TF_target_path’ parameter the path of the user-specified file can be
given. This information can be used additionally to the selected database con-
tent.

Secondly, the ‘readPWdata’ function takes the OmicsData object with the
provided information about the omics data set and the path of the prepared

“.RData’ files from the pathway databases (see section ??) and automatically
generates the corresponding genelists of the pathway data if ‘loadgenelists =
FALSE’. In this step the automatic definition of internal differing IDs for differ-
ent pathway databases is necessary, which are stored in a new biopax model in
the OmicsData object.

data_omicsPW = readPWdata(data_omics,
loadgenelists = FALSE)

As the process of generating genelists with these IDs can take some time - espe-
cially for rather big databases such as Reactome [milacic_annotating 2012,
croft_reactome_2014] - the genelists for the different databases are automati-
cally stored in the working directory and can be reused in another analysis when
the corresponding path containing these files is given to the ‘readPWdata’ func-
tion as loadgenelists parameter.

data_omics = readPWdata(data_omics,
loadgenelists = "Genelist_reactome.RData")

Automatically the information of the selected databases and/or the correspond-
ing user-specified file are merged. The file format (if this option is used) should
be exactly as specified in section ?7.

5.1 Downstream analysis

The downstream analysis is starting with the provided proteomic data (either
single time point data or time-series data). The first step is the identification of
the pathways in which the differentially abundant proteins play a role. pwOmics
performs this searching step on the basis of the provided proteomic data set and
the selected pathway database(s).

After reading in these information the user can follow the workflow for down-
stream analysis and identify the pathways in which the differentially abundant
proteins are present:

data_omics = identifyPWs(data_omics)

In a next step pathway enrichment can be conducted. The user can specify
the multiple testing correction method as well as the significance level for this
step. In case of few identified pathways this might result in too few pathways
for further analysis. In this case the enrichment step should be skipped.

data_omics = enrichPWs(data_omics, "BH", alpha = 0.05)

Following the workflow the next step is the identification of the transcription
factors in these (enriched) pathways, which is done with the information pro-
vided by the chosen TF-target gene database. The user can choose if only the
enriched pathways or all pathways should be considered for further analysis:

data_omics = identifyPWTFTGs(data_omics, only_enriched = FALSE)

For use of this function the working directory should contain the previously
generated genelists.

The results of the downstream analysis can be easily accessed by the following
functions:

getDS_PWs(data_omics)
getDS_TFs(data_omics)
getDS_TGs (data_omics)

#Access biopax model generated newly on basis of selected
#pathway databases:
getBiopaxModel (data_omics)

5.2 Upstream analysis

The upstream analysis is starting with the provided gene/transcript data (either
single time point data or time-series data). It first of all identifies the upstream
TF's of the differentially expressed genes/transcripts. This step is done with the
provided/selected information of TF-target gene pairs.

Given this information, the identification of upstream TFs can be done:

data_omics = identifyTFs(data_omics)

Similarly as in the downstream analysis also in the upstream analysis an optional
enrichment step can be conducted, but here on the TF level.

data_omics = enrichTFs(data_omics, "BH", alpha = 0.05)

Upstream of the (enriched) TFs the regulator proteins can be identified with
the following function:

data_omics = identifyRsofTFs(data_omics, only_enriched = FALSE,
noTFs_inPW = 1, order_neighbors = 10)

Again, the user can specify if only the enriched TFs or all TFs should be con-
sidered for further analysis. The identification of upstream regulators is done in
the following way:

1. Identification of the pathways the previously identified TFs are part of.

2. Selection of pathways according to the user-specified parameter ‘noTFs_inPW’:
Only those pathways are considered in further analysis with at least this
number of TFs in the pathway. Minimum number of TF's in the pathway
is 2.

3. Upstream regulators are identified for these TFs. This is done by finding
first for each TF the pathway neighborhood according to the user-specified
parameter ‘order_neighbors’. This parameter specifies the order of the
identified pathway neighborhood. Then the intersection of all identified
neighborhoods for all TFs in a pathway is determined. The resulting path-
way node set is defined here as the set of regulator proteins.

In case the pathways under consideration do not have pathway components
in the downloaded biopax model, this will be indicated with a warning. This
warning can be ignored by the user in regard to the following analysis steps.
The results of the upstream analysis can be accessed with the following func-
tions:

getUS_TFs(data_omics)
getUS_PWs(data_omics)
getUS_regulators(data_omics)

6 Consensus analysis

The consensus analysis combines the results from upstream and downstream
analysis by constituting in particular the comparative analysis of the results
of the two different data sets. The intersection analysis simply compares the
results of the separate upstream and downstream analysis. The static consensus
analysis enables setting up static consensus graphs for each time point measured
in parallel. Finally, the consensus-based dynamic analysis provides the user with
one final dynamic network obtained from the data changes over time based on
dynamic bayesian network inference. The consensus-based dynamic analysis is
self-evidently only conductable with time-series data sets measured for proteome
and genome/transcriptome data in parallel.

6.1 Intersection analysis

The intersection analysis of pwOmics is a simple comparative analysis of the
results of upstream and downstream analysis. Thus, it enables a comparison of
single time point data and time-series data, the latter also for non-corresponding
time points in the different data sets. The comparison is possible on the three
different functional levels considered in this package: On the proteome level, the
transcription factor level and gene/transcript level.

getProteinIntersection(data_omics,
tp_prot = 4,
tp_genes = 4)
getTFIntersection(data_omics,
tp_prot = 4,
tp_genes = 1)
getGenesIntersection(data_omics,
tp_prot = 4,
tp_genes = 13)

These functions not only enable a comparison of the same timepoints on the
distinct levels, but for time-series data sets also for non-matching time points:
With the time resolution of measuring omics data in most cases being pre-
defined by expected signaling changes and financial limitations the potential in
the interpretation of the results is strongly confined to the experimental design
decisions. Thus, measured signaling changes, which naturally consist of a super-
position of diverse time-scales of transcriptional and translational processes and
comprehend diverse frequency patterns [yosef_impulse_2011], are dependent
on the sampling. This means for some of the signaling axes it might be the case,
that

e changes are not detected at all as their rate is too high,

e hopefully most are represented in the data and

10

e some might be so slow that their change is not considered significant and
thus are excluded from analysis.

As the corresponding signaling changes are not expected to be seen at the same
time point in proteome data and gene/transcript data it is necessary to enable
also the comparison of non-corresponding time points.

The possibility to compare such time points naturally cannot account for the
changes not captured during measurement, however, it gives the possibility to
consider also the time needed for regulatory control mechanisms in the interpre-
tation of the measurement results - even if this shows considerable variations as
well.

In case the user wants to compare the corresponding time points on the three
levels simultaneously he can do so by using the following function:

gettpIntersection(data_omics)

6.2 Static consensus analysis

The static consensus analysis goes one step ahead and integrates the results
gained from the comparative analysis of the corresponding time points to a
consensus net for each time point. The change of this consensus net over time
gives a first insight into the changes seen statically at the different time points.
However, the static consensus nets do not yet include information gathered over
time - as it is the case in the consensus-based dynamic analysis (see section 77?).
This is why the static consensus analysis is also applicable for single time point
measurements.

The static consensus analysis is conducted by generation of a Steiner tree [Kleinberg_AlgorithmDesign 20(
on basis of matching proteins and TF's identified in downstream and upstream
analysis for each corresponding time point. The underlying graph used is the
protein-protein-interaction (PPI) graph from the STRING database reduced to
the connected nodes. The matching proteins and TFs are considered as terminal
nodes and are connected via a shortest path-based approximation of the Steiner
tree algorithm [Takahashi Steiner_1980, Sadeghi2013] across the reduced
PPI-STRING-graph. Subsequently knowledge of TF-target gene pairs from the
chosen database is used to expand the graph with matching genes/transcripts
from both upstream and downstream analysis. In case the consensus graph con-
tains corresponding proteins and genes/transcripts, feedback loops are added
automically.

consensusGraphs = staticConsensusNet(data_omics)

6.3 Consensus-based dynamic analysis

Unlike the static consensus analysis, the consensus-based dynamic analysis takes
into consideration also the signaling changes over time by applying dynamic
bayesian network inference. The packages used for the consensus-based dynamic
analysis are longitudinal [Opgen_longi 2006, rainer_opgen-rhein_inferring 2006|
to adjust the format of the data and the actual network inference part is done via
the ebdbNet [Rau_ebdbnet_2010] package. This package includes an iterative

11

empirical Bayesian procedure with a Kalman filter estimating the posterior dis-
tributions of the network parameters. The defined prior structure of the network
is used for a straightforward estimation of hyperparameters via an expectation
maximization (EM)-like algorithm and the dimension of the hidden states are
determined via the singular value decomposition (SVD) of a block-Hankel ma-
trix.

The nodes included into the network inference step are nodes which are part of
the static consensus graphs from corresponding time points of the two different
measurement types, i.e.

1. proteins identified in upstream and downstream analysis at the same time
points,

2. Steiner nodes identified via static consensus analysis,

3. TF's identified in upstream and downstream analysis at the same time
points and

4. genes/transcripts identified in upstream and downstream analysis at the
same time points.

To apply dynamic network inference a reasonable number of measurements
needs to be available. As in most cases of parallel protein and gene/transcript
measurements only very few corresponding time steps are available it is neces-
sary to artificially introduce additional time steps. This is done by generating
smoothing splines applied on the log fold changes provided by the user under the
simplifying assumption of a gradual change of signaling between the different
time points.

This assumption, however, has to be applied consciously and carefully, as there
might be higher frequency signaling components superimposed (see for a com-
prehensive analysis of temporal dynamics of gene expression [yosef_impulse_2011]).
In theory a signal has to be sampled 2 times its maximal frequency in order

to be able to reconstruct it exactly from time discrete measurements (Nyquist-
Shannon sampling theorem [Shannon_theorem_1949, Nyquist_theorem 1928]).
This means only exact interpretation of those signaling axes are possible that
have a frequency which is smaller than half of the sampling frequency. How-
ever, under certain preconditions on signal structure and the sampling operator
reconstruction of the original signal can be done with a lower sampling rate
[DBLP:journals/tit/BlumensathD09]. This is an interesting starting point

for a more comprehensive dynamic analysis of the expected signals and the
sampling needed for an extensive data mining of omics data sets measured in
parallel, but exceeds the scope of this package.

The number of time points generated additionally via smoothing splines is based
on simulation results of ebdbNet analysis for median area under the curve (AUC)
values of receiver operating characteristic (ROC) curves: In their results it was
shown that a plateau at around 50 to 75 time points was reached. Thus in
pwOmics 50 time points are predicted with smoothing splines in order to ap-

12

ply dynamic bayesian network inference on omics data sets measured in parallel.

After generation of these time points a block-Hankel matrix of autocovariances
is constructed based on the time series abundance/expression data. For this the
user needs to provide the laghankel parameter, specifying the maximum relevant
time lag to be used in constructing the block-Hankel matrix. With a singular
value decomposition (see function ‘hankel’ of ebdbNet package) the number of
hidden states can be determined. Here, the user can specify the cutoffhankel
parameter to choose the cutoff to determine the desired percent of total variance
explained by the singular values. Additional parameters on convergence criteria
and iterations performed can be specified. For further details the user is referred
to [Rau_ebdbnet_2010].

library(ebdbNet)

library(longitudinal)

dynInferredNet = consDynamicNet(data_omics, consensusGraphs,
laghankel = 3,
cutoffhankel = 0.9)

7 Time profile clustering

An additional analysis option is clustering of co-regulation patterns over time.
It provides information about the signaling molecules with common dynamic
behaviour and thus allows to draw conclusions in terms of signaling chronol-
ogy. Time profile clustering is performed as soft clustering based on the Mfuzz
package [Mfuzz2012]. The advantage of this clustering method is that a pro-
tein, TF or gene/transcript can be assigned to several clusters, thus reducing the
sensitivity to noise and the information loss hard clustering exhibits. It is imple-
mented as fuzzy c-means algorithm [Hathaway_Pattern1986] and iteratively
optimizes the objective function to minimize the variation of objects within the
clusters. The user needs to provide a ‘min.std’ threshold parameter if proteins
or genes/transcripts with a low standard deviation should be excluded. In ad-
dition the maximum number of cluster centers which should be tested in the
‘minimum distance between cluster centroid test’ has to by given. This number
is used as initial number to determine the data-specific maximal cluster number
based on the number of distinct data points. For more details see [Mfuzz2012]
and [schwammle_simple_2010].

library (Mfuzz)

fuzzyClusters = clusterTimeProfiles(dynInferredNet,
min.std = O,
ncenters = 12)

8 Visualization

To complement the results from the different comparisons and analyses (ac-
cessible via the ‘get...” functions) the pwOmics package provides visualization
functions for the different analyses. The consensus graphs of the static analysis
for one or more corresponding time points can be plotted with the following
function (see Figure ?7?):

13

plotConsensusGraph(consensusGraphs, data_omics)

Consensus graph
time 1

consensus prllEiﬂS
steiner node proteins
consensus TFs
consensus target genes

@poom

Figure 3: pwOmics static consensus graph: Time point 1 hr.

The consensus-based dynamic analysis result can be visualized as follows (see
Figure ?7):

plotConsDynNet (dynInferredNet, sig.level = 0.65)

Here, the parameter ‘sig.level’ is the significance level used as cutoff for plotting
edges in the network and has to be specified in the range between 0 and 1.
Furthermore the user can indicate if unconnected nodes should be removed and
provide additional igraph [igraph2006] layout parameters.

However, as the user can access the networks easily tkplot from the igraph R
package is a nice interactive graph drawing alternative. In addition plot param-
eters can be easily changed as the result networks are of class ‘igraph’.

In order to plot the results from time profile clustering (see Figure ??) the
following function can be used:

plotTimeProfileClusters(fuzzyClusters)

The different colours represent the different clusters. The legend is only shown if
the number of genes and proteins is not too large. Otherwise the user can easily
access this information by having a look to the output of the ‘clusterTimePro-
files’ function which provides information about cluster centers, the number of
data points in each cluster of the closest hard clustering, cluster indices, and

14

Consensus graph
time 4

B consensus proteins

O steiner node proteins
O consensus TFs
B consensus target genes

Figure 4: pwOmics static consensus graph: Time point 4 hrs.

additional parameters explained in detail in the ‘mfuzz’ documentation. In the
legend the attachments ‘_g’ and ‘_p’, respectively, indicate, if the node originally
derives from protein or gene/transcript measurements.

15

Dynamic consensus net

B consensus proteins
[consensus genes

Figure 5: pwOmics dynamic network graph.

9 Session Information

e R Under development (unstable) (2015-03-11 r67980), Platform: x86_64-
unknown-linux-gnu (64-bit), Running under: Ubuntu precise (12.04.5 LTS)

e Locale: LC_CTYPE=en_US.UTF-8, LC_.NUMERIC=C,
LC_TIME=en_US.UTF-8, LC_COLLATE=en_US.UTF-8,
LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=en_US.UTF-8, LC_LNAME=C, LC_ADDRESS=C,
LC_TELEPHONE=C, LC_.MEASUREMENT=en_US.UTF-8,
LC_IDENTIFICATION=C

e Attached base packages: tcltk, parallel, stats, graphics, grDevices, utils,
datasets, methods, base

e Other attached packages: ebdbNet_1.2.3, Mfuzz_2.27.1, DynDoc_1.45.0,
widgetTools_1.45.0, e1071_1.6-4, Biobase_2.27.3, BiocGenerics_0.13.11, lon-
gitudinal_1.1.11, corpcor_1.6.7, igraph_0.7.1, pwOmics_0.99.2

e Loaded via namespace (and not attached): Repp-0.11.5, XVector_0.7.4,
BiocInstaller_1.17.7, GenomelnfoDb_1.3.19, plyr_1.8.1,
AnnotationHub_1.99.82, tkWidgets_1.45.0, class_7.3-12, bitops_1.0-6,
biomaRt_2.23.5, digest_0.6.8, RSQLite_1.0.0, shiny_0.11.1, DBL.0.3.1,

16

Fuzzy c—-means clustering
with 3 centers

B cluster 1
@ cluster 2
W cluster 3

normalized expression

time

Figure 6: pwOmics time profile clusters.

rBiopaxParser_2.5.0, stringr_0.6.2, httr_0.6.1, S4Vectors_0.5.23,
gtools_3.4.2, caTools_1.17.1, IRanges_2.1.44, stats4_3.2.0,
data.table_1.9.4, R6_2.0.1, AnnotationDbi_1.29.24, XML_3.98-1.1,
RJSONIO_1.3-0, gdata_2.13.3, reshape2_1.4.1, STRINGdb_1.7.0,
gplots_2.16.0, htmltools_0.2.6, GenomicRanges_1.19.54, mime_0.3,
interactiveDisplayBase_1.5.6, xtable_1.7-4, httpuv_1.3.2,
KernSmooth_2.23-14, RCurl_1.95-4.5, chron_2.3-45

17

