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1 Introduction

Modern "omics” technologies enable quantitative monitoring of the abundance of various biological molecules in
a high-throughput manner, accumulating an unprecedented amount of quantitative information on a genomic
scale. Systematic integration and comparison of multiple layers of information is required to provide deeper
insights into biological systems.

Multivariate approaches have been applied successfully in the analysis of high throughput "omics” data. Principal
component analysis (PCA) has been shown to be useful in exploratory analysis of linear trends in biological
data [? ]. Culhane and colleagues employed a two table coupling method (co-inertia analysis, CIA) to examine
covariant gene expression patterns between microarray datasets from two different platforms [? |. Although
PCA is available in several R packages, the ade4 and made4 contain many additional multivariate statistical
methods including methods for analysis of one data table, coupling of two data tables or multi-table analysis
[? ? ]. These methods for integrating multiple datasets make these particular packages very attractive for
analysis of multi-omics data. omicade4 is developed as an extension to ade4 and made4 to facilitate input
and analysis of more than two omics datasets.

omicade4 provides functions for multiple co-inertia analysis and for graphical representation, so that the general
similarity of different datasets could be easily interpreted. The method could be applied when several set of
variables (genes, transcripts, proteins) are measured on the same set of individuals (cell lines, patients). This
vignette provides a case study on a toy NCI-60 dataset to show the usage of this package. In addition, the
package provides methods for S3 class cia, which encapsulates results from the co-inertia analysis by cia
function from made4. Therefore, functions from made4 and ade4 are also called in this vignette. For more
information please refer to [? | and several recent reviews.

2  Quick Start

The package includes example data from four different microarray platforms (i.e., Agilent, Affymetrix HGU 95,
Affymetrix HGU 133 and Affymetrix HGU 133plus 2.0) on the NCI-60 cell lines. The package and datasets are
loaded by the commands:

> library(omicade4)
> data(NCI60_4arrays)


http://bioconductor.org/packages/ade4
http://bioconductor.org/packages/made4
http://bioconductor.org/packages/omicade4
http://bioconductor.org/packages/ade4
http://bioconductor.org/packages/made4
http://bioconductor.org/packages/omicade4
http://bioconductor.org/packages/made4
http://bioconductor.org/packages/made4
http://bioconductor.org/packages/ade4
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NCI60_4arrays is a list containing the NCI-60 microarray data with only few hundreds of genes randomly
selected in each platform to keep the size of the Bioconductor package small. However, the full datasets are
available in [? ].

2.1 Data Overview

MCIA links the individuals (samples in column) in different datasets and thus the columns will be linked between
the multiple datasets. Thus we have to ensure that the order of samples (the columns) in all datasets is the
same before performing MCIA. The number of variables (genes) does not need to be the same. We can check
the dimension of each dataset in the list by

> sapply (NCI60_4arrays, dim)

agilent hgul33 hgul33p2 hgu95
[1,] 300 298 268 288
[2,] 60 60 60 60

And check whether samples are ordered correctly

> all(apply((x <- sapply(NCI60_4arrays, colnames))[,-1], 2, function(y)
+ identical(y, x[,1])))

[1] TRUE

Before performing the MCIA, we can use hierarchical clustering to have a general idea about similarity of cell
lines, which can be done with the following command. We will compare the clustering result with MCIA.

> layout (matrix(1:4, 1, 4))

> par(mar=c(2, 1, 0.1, 6))

> for (df in NCI60_4arrays) {
d <- dist(t(df))

hcl <- hclust(d)

dend <- as.dendrogram(hcl)
plot(dend, horiz=TRUE)

+ + + + +

2.2 Data Exploration with Multiple Co-inertia Analysis

The main function mcia can be used to perform multiple co-inertia analysis:

> mcoin <- mcia(NCI60_4arrays, cia.nf=10)
> class(mcoin)

[1] "mcia"

It returns an object of class mcia. There are several methods that could be applied on this class. To visualize
the result, one can use plot directly. However, because there are nine cancer types, we want to distinguish the
cell lines by their original cancer type. This can be done by defining a phenotype factor in plot. The following
commands create a vector to indicate the cell line groups.
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Figure 1: The hierarchical clustering of NCI-60 cell lines

> cancer_type <-
> cancer_type <-
> cancer_type

colnames (NCI60_4arrays$agilent)
sapply(strsplit(cancer_type, split="\\."), function(x) x[1])

[1] "BR" "BR" "BR" "BR" "BR" "CNS" "CNS" "CNS" "CNS" "CNS" "CNS" "co" nco" nco"
[15] Wes ncon ncon ncon "LE" "LE" "LE" "LE" "LE" "LE" "ME" "ME" "ME" "ME"
[29] "ME" "ME" "ME" "ME" "ME" "ME" npen nLen 1 edd 1 edd el nLen nLen nLen
[43] nen noy" noy" noy" noy" noy" noy" ngy" "pR" "pR" "RE" "RE" "RE" "RE"
[57] "RE" "RE" uREn IIREII

Next, we plot the result for the first two principal components

> plot(mcoin, axes=1:2, phenovec=cancer_type, sample.lab=FALSE,

df.color=1:4)

This command produces a 4-panel figure as shown in figure ??. The top left panel is the sample space, where
each cell line is projected. Shapes represent samples in different platforms. Same cell lines are linked by edges.
The shorter the edge, the better the correlation of samples in different platforms. In our sample plot, a relatively
high correlation of all microarray datasets is depicted by the short edges. Furthermore, in most cancer types
except lung cancer and breast cancer, cell lines having the same origin are closely projected, which indicates

high homogeneity of these cancer types. This agrees with the hierarchical clustering (figure ?7?).

The next interesting question is which genes are responsible for defining the coordinates of samples. The top
right panel is the variable (gene) space, e.g., genes from different platforms, which are distinguished by colors
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Figure 2: The MCIA plot of NCI-60 data

and shapes, are projected on this space. In this panel, a gene that is particularly highly expressed in a certain
cell line will be located on the direction of this cell line. The farther away towards the outer margin, the stronger
the association is. Equally, genes projected on the opposite direction from the origin indicate that they are lost
or down regulated in those cell lines. From this sense, since the melanoma cell lines are highly weighted on the
positive side of the horizontal axis in the first panel, the corresponding melanoma highly expressed genes are
on the same direction. The following command could be used to select melanoma associated genes according
to the coordinate of genes in that space

> melan_gene <- selectVar(mcoin, al.lim=c(2, Inf), a2.lim=c(-Inf, Inf))
> melan_gene

var agilent hgul33 hgul33p2 hgu9b stat
1 ST8SIA1 TRUE FALSE FALSE FALSE
2 S100A1 TRUE TRUE FALSE TRUE
3 C100rf90 TRUE FALSE FALSE FALSE
4 S100B TRUE  TRUE FALSE FALSE
5 GPNMB  FALSE  TRUE FALSE FALSE
6 C6orf218 FALSE FALSE TRUE FALSE
7 ACP5  FALSE FALSE FALSE TRUE
8 PLP1  FALSE FALSE FALSE TRUE
9 S0X10  FALSE FALSE FALSE TRUE

i i o o i o I i GV I o

The first column represents gene names, the subsequent columns indicate which genes are identified in which
platforms, and the last column is a statistic of the total number of platforms identifying the corresponding
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gene in the selected region.

The bottom left panel in figure ?? shows the eigenvalue for each eigenvector. The barplot represents the
absolute eigenvalues. The dots linked by lines indicate the proportion of variance for the eigenvectors. Cyan
bars indicate the eigenvectors kept in the analysis. In this case, we kept 10 eigenvectors, and the top three
axes have a relative large eigenvalue according to the scree plot. Therefore, not only the top two axes, but
also the third one could lead to some interesting findings. Different axes could be explored by changing the
axes argument in plot, such as:

> plot(mcoin, axes=c(1, 3), phenovec=cancer_type, sample.lab=FALSE, df.color=1:4)
> plot(mcoin, axes=c(2, 3), phenovec=cancer_type, sample.lab=FALSE, df.color=1:4)

Finally, the bottom right panel in figure ?? shows the pseudo-eigenvalues space of all datasets, which indicates
how much variance of an eigenvalue is contributed by each dataset. In this example, the HGU 95 is highly
weighted on the first axis. Therefore, this dataset contributes the most variance on this axis among four
datasets. However, the HGU 133 plus 2.0 data highly contribute to the second axis. Note that we selected
some melanoma related genes by limiting the first axis using selectVar function, where we identified four
genes in Agilent and HGU 95 platforms comparing to only one gene in the HGU 133 plus 2.0 platform, which
is in agreement with the result suggested by this plot.

In addition, the function plotVar could be used to visualize the gene space, given a list of genes of interest.
Let's get back to the melanoma genes again, we know that S100B and S100A1 are detected in more than one
dataset. Now, we want to know where these genes are projected on the gene space. This could be visualized
by

> geneStat <- plotVar(mcoin, var=c("S100B", "S100A1"), var.lab=TRUE)

The output plot is shown in figure ?77?.
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Figure 3: visualization of genes of interest in CIA




