Subclonal variant calling with multiple samples and prior
knowledge using shearwater

Moritz Gerstung

May 11, 2016
Contents

1 Introduction

The shearwater algorithm was designed for calling subclonal variants in large (N = 10...1,000) cohorts
of deeply (~100x) sequenced unmatched samples. The large cohort allows for estimating a base-specific
error profile on each position, which is modelled by a beta-binomial. A prior can be useded to selec-
tively increase the power of calling variants on known mutational hotspots. The algorithm is similar to
deepSNV, but uses a slightly different parametrization and a Bayes factors instead of a likelihood ratio
test.

If you are using shearwater, please cite

* Gerstung M, Papaemmanuil E and Campbell PJ (2014). “Subclonal variant calling with multiple
samples and prior knowledge.” Bioinformatics, 30, pp. 1198-1204.

2 The statistical model

2.1 Definition

Suppose you have an experimental setup with multiple unrelated samples. Let the index i denote the
sample, j the genomic position and k a particular nucleotide. Let X;;; and X, denote the counts of
nucleotide & in sample ¢ on position j in forward and reverse read orientation, respectively. We assume
that

X ~ BetaBin(n, u, p)
X' ~ BetaBin(n', i/’, p). €}

are beta-binomially distributed. To test if there is a variant k in sample i, we compare the counts to a
compound reference X;;; = 3oy Xnje and X[, = >,y Xj ;.. The subset of indeces H is usually
chosen such that # = {h : h # j}, that is the row sums X;;; and X/;,. To reduce the effect of true
variants in other samples entering the compound reference, one may also choose H such that it only
includes sample h with variant allele frequencies below a user defined threshold, typically 10%.

We model the compound reference again as a beta-binomial,

X ~ BetaBin(n, v, p)
X’ ~ BetaBin(n', ', p). (2)

2.2 Testing for variants

Testing for the presence of a variant can now be formulated as a model selection problem in which we
specify a null model and an alternative. Here we consider two options, "OR" and "AND".

2.2.1 The OR model
The OR model is defined in the following way:

My: p=v v y=v

My : p=py >uv . (3)
Under the null model M, the mean rates of the beta-binomials are identical in sample 7 and the com-
pound reference on at least one strand. Under the alternative model M, the mean rates u, 11’ are identical

on both strands and greater than the mean in the compound reference on both strands.
Here we use the following point estimates for the parameters:

= (X +X)/(n+n)

vp = (X' +X')/(n" +n')

fio = X/n

jy = X'"/n’. 4)

Using these values, the Bayes factor is approximated by

Pr(D | My) _ Pr(X]so) Pr(X'|ip) Pr(X]in)
Pr(D | My) | Pr(X|j) Pr(X'|j) Pr(X]?)
Pr(X]jio) Pr(X'|%) Pr(X'|%)
Pr(X]j1) Pr(X'|i) Pr(X])
* Pr(X i) Pr(X|) Pr(X'|%) Pr(X'|) -
Pr(X][j1) Pr(X]9) Pr(X'|t) Pr(X'[{")

Example The Bayes factors can be computed using the bbb command:

library(deepSNV)
library(RColorBrewer)
n <- 100 ## Coverage
n_samples <- 1000 ## Assume 1000 samples
x <- 0:20 ## Nucleotide counts
X <- cbind(rep(x, each = length(x)), rep(x, length(x))) ## ALl combinations forward and reverse
par(bty="n", mgp = c(2,.5,0), mar=c(3,3,2,2)+.1, las=1, tcl=-.33, mfrow=c(2,2))
for(nu in 10"c(-4,-2)){ ## Loop over error rates
Create counts array with errors
counts = aperm(array(c(rep(round(n_samples*n* c(nu,l-nu,nu,l-nu)), each=nrow(X)), cbind(n -
dim=c (nrow(X) ,4,2)), c(3,1,2))
for(rho in c(le-4, 1e-2)){ ## Loop over disperston factors
Compute Bayes factors
BF = bbb(counts, rho=rho, model="0OR", return="BF")

Plot

image (z=logl0(matrix(BF[2,,1], nrow=length(x))),
X=X,
y=x,

breaks=c(-100,-8:0),
col=rev(brewer.pal(9,"Reds")),

xlab = "Forward allele count",
ylab="Backward allele count",
main = paste("rho =", format(rho, digits=2), "nu = ", format(nu, dig

font.main=1)
text (X[,1],X[,2],ceiling(logl0(matrix(BF[2,,1], nrow=length(x)))), cex=0.5)

rho = 1e-04 nu = 1le-04 rho=0.01 nu= 1e-04

207 41; 20
- 741§ -
5 s30% 5
Q 6308 Q
o 15-2 °f o 154
Q 5 2-1- Q
[} 4 1-1% (0]
= 4 1-1 =
© 41-1 < 101
he) 318 ko)
= 3 0 =
308
= 2 0K < 54
[] 2 Q
© 1 ©
m e m
2 0-
T
0 5 10 15 20
Forward allele count Forward allele count
rho =1e-04 nu = 0.01 rho=0.01 nu= 0.01
—754 —433211
— 20 654 — 20 432211
654 432211
% 554 % 432110
o) 543 o 332110
O 15543 O 154322110
443 3221100
@ 432 Q 3211000
[} 432 ()] 321100
= 332 = 2211000
@ 10322 @]10-221100-1-
he] 321 be] 21100 0-1-1-1-1-1-1-1-1-1-1-1-1-1-
= 321 -3- 3-3-2 = 21100 0-1- 1-1-
© 221 2-2-2-1-1 [2110000-; 000
; 211 1-10 0 0 ; 11100000 10000000000
< 5—211 -1-1-1-1-1-1- 00000111 < 5—110000000000000000111
[] 11000 100000011111222 Q 110000000000001111111
[110000000111122222333 © 110000000011111111222
om 110001111122223334444 om 110000111111112222223
10111112222333444556565 101111111122222233333
0—011112223333/144555667 0—011111122222333334/144
T T T T 1 T T T T 1
0 5 10 15 20 0 5 10 15 20
Forward allele count Forward allele count

Here we have used a coverage of n = 100 on both strands and computed the Bayes factors assuming 1,000
samples to estimate the error rate v = v/ from. Shown are results for fixed values of rho = {1074,1072}.
2.2.2 The AND model
The AND model is defined in the following way:

My: p=v A =V

Mi: p=p >uv,v. (6)

Here the null model states that the error rates v = y and v’ = 1 are identical on both strands, which is
more restrictive and hence in favour of the alternative.
In this case the Bayes factor is approximately

Pr(D | My) _ Pr(X[0) Pr(X|0) Pr(X’|0) Pr(X'|%)
Pr(D | My) | Pr(X|j) Pr(X]p) Pr(X'|fo) Pr(X'[¥)

(7)

Example The behaviour of the AND model can be inspected by the following commands

par(bty="n", mgp = c(2,.5,0), mar=c(3,3,2,2)+.1, las=1, tcl=-.33, mfrow=c(2,2))
for(nu in 10~c(-4,-2)){

counts = aperm(array(c(rep(round(n_samples*n* c(nu,l-nu,nu,l-nu)), each=nrow(X)), cbind(n - :

dim=c (nrow(X) ,4,2)), c(3,1,2))
for(rho in c(le-4, 1le-2)){

BF = bbb(counts, rho=rho, model="AND", return="BF")

image (z=log10(matrix(BF[2,,1], nrow=length(x))),
X=X,
V=X,
breaks=c(-100,-8:0),
col=rev(brewer.pal(9,"Reds")),

xlab = "Forward allele count",
ylab="Backward allele count",
main = paste("rho =", format(rho, digits=2), "nu = "

, format(nu, dig

font.main=1)
text (X[,1],X[,2],ceiling(logl0(matrix(BF[2,,1], nrow=length(x)))), cex=0.5)

rho = 1e-04 nu = 1le-04 rho =0.01 nu= 1e-04
20 20

15 15+

Backward allele count
Backward allele count

0 5 10 15 20

Forward allele count Forward allele count

rho = 1e-04 nu = 0.01 rho =0.01 nu= 0.01
20

Backward allele count
Backward allele count

5 100 15 20
Forward allele count Forward allele count

One realises that for small dispersion the Bayes factor depends mostly on the sum of the forward and
reverse strands in the AND model.

2.3 Estimating p

If the dispersion parameter p is not specified, it is estiated at each locus using the following method-of-
moment estimator:

Ns*/(1-0)/0 = 3N 1/n;
NN 1/n,

2 NSy (0 — fu)?

(N-D)Y¥ ni

This yields consistent estimates over a range of true values:

p=

®

rho = 107seq(-6,-1)
rhoHat <- sapply(rho, function(r){
sapply(1:100, function(i){
n = 100
X = rbetabinom(1000, n, 0.01, rho=r)
X = cbind(X, n-X)
Y = array(X, dim=c(1000,1,2))
deepSNV: : :estimateRho(Y, Y/n, Y < 1000)[1,1]1})
1)
par(bty="n", mgp = c(2,.5,0), mar=c(3,4,1,1)+.1, tcl=-.33)
plot(rho, type="1", log="y", xaxt="n", xlab="rho", ylab="rhoHat", xlim=c(0.5,6.5), lty=3)
boxplot (t(rhoHat+ 1le-7) ~ rho, add=TRUE, col="#FFFFFFAA", pch=16, cex=.5, lty=1, staplewex=0)
points(colMeans(rhoHat), pch="x", col="red", cex=2)

le-02
]

rhoHat
1eTO4

*

* .
- IIEHI -

1e-06

T 1
le-06 le-04 0.01 0.1
rho

2.4 Using a prior

shearwater calls variants if the posterior probability that the null model M is true falls below a certain
threshold. Generally, the posterior odds is given by
Pr(My | D) 1—m(My))Pr(D | M)

Pr(M; | D)~ w(My) Pr(D| M) ©)

where m = w(M,) is the prior probability of that a variant exists. These probabilities are not uniform and
may be calculated from the distribution of observed somatic mutations. Such data can be found in the
COSMIC data base http://www.sanger.ac.uk/cosmic.

As of now, the amount of systematic, genome-wide screening data is still sparse, which makes it difficult
to get good estimates of the mutation frequencies in each cancer type. However, a wealth of data exists
for somatic mutations within a given gene. Assume we know how likely it is that a gene is mutated. We
then model

Mutations at given position - : :
o {wgene X 7 Mutations in gene if variant in COSMIC (10)

T'background else.

Suppose you have downloaded the COSMIC vcf "CosmicCodingMuts_v63_300113.vcf.gz" from ftp:
//ngs.sanger.ac.uk/production/cosmic.

library(TxDb.Hsapiens.UCSC.hgl9.knownGene)
txdb <- TxDb.Hsapiens.UCSC.hgl9.knownGene
seqlevels(txdb) <- sub("chr","",seqlevels(txdb))

regions <- reduce(exons(txdb, filter=list(gene_id='7157')))
cosmic <- readVcf ("CosmicCodingMuts_v63_300113.vcf.gz", "hgl9", param=ScanVcfParam(which=regions))
pi <- makePrior(cosmic, regions, pi.gene = 1)

The resulting prior can be visualised:
data(pi, package="deepSNV")

par(bty="n", mgp = c(2,.5,0), mar=c(3,3,2,2)+.1, tcl=-.33)
plot(pil,1], type="h", xlab="Position", ylab="Prior", col=brewer.pal(5,"Setl1")[1], ylim=c(0,0.075))
for(j in 2:5)
lines(pil,j], type="h", col=brewer.pal(5,"Set1")[j])
legend("topleft", col=brewer.pal(5,"Setl"), lty=1, bty="n", c("A","T","C","G","del"))

http://www.sanger.ac.uk/cosmic
ftp://ngs.sanger.ac.uk/production/cosmic
ftp://ngs.sanger.ac.uk/production/cosmic

0.06
|
200>

e |
S
S 9
= O
o
N
o 4
=}
8 . L Ll I .
© r T T T 1
0 1000 2000 3000 4000
Position

The data shows that the distribution of somatic variants is highly non-uniform, with multiple mutation
hotspots.

3 Using shearwater

To run shearwater you need a collection of .bam files and the set of regions you want to analyse as a
GRanges() object. Additionally, you may calculate a prior from a VCF file that you can download from
ftp://ngs.sanger.ac.uk/production/cosmicl.

3.1 Minimal example

Here is a minimal example that uses two .bam files from the deepSNV package. The data is loaded into
a large array using the loadAllData() function:

regions <- GRanges("B.FR.83.HXB2_LAI_IIIB_BRU_K034", IRanges(start = 3120, end=3140))

files <- c(system.file("extdata", "test.bam", package="deepSNV"), system.file("extdata", "control.ba
counts <- loadAllData(files, regions, g=10)

dim(counts)

[1] 2 21 10

The dimension of counts for N samples, a total of L positions is N x L x 2|B|, where |B| = 5 is the size
of the alphabet B = {A, T, C, G, —} and the factor of 2 for the two strand orientations.
The Bayes factors can be computed with the bbb function:

bf <- bbb(counts, model = "OR", rho=le-4)
dim(bf)

[1] 221 5

vcf <- bf2Vcf(bf, counts, regions, cutoff = 0.5, samples = files, prior = 0.5, mvcf = TRUE)
show (vcf)

class: CollapsedVCF

dim: 8 2

rowRanges (vcf):

#i#t GRanges with 4 metadata columns: REF, ALT, QUAL, FILTER
info(vcf):

#i# DataFrame with 4 columns: ER, PI, AF, LEN

info(header(vcf)):

H# Number Type Description

#it ER 1 Float Error rate

ftp://ngs.sanger.ac.uk/production/cosmic

PI 1 Float Prior

#i# AF 1 Float Allele frequency in cohort

#Hit LEN 1 Float Length of the alt allele

geno(vcf):

#i# SimplelList of length 8: GT, GQ, BF, VF, FW, BW, FD, BD
geno (header (vcf)):

#i#t Number Type Description

#Hit GT 1 String Genotype

GQ 1 Integer Genotype Quality

#it BF 1 Float Bayes factor

it VF 1 Float Variant frequency in sample
#i# Fw 1 Integer Forward variant read count

#H# BW 1 Integer Backward variant read count
#H# FD 1 Integer Read Depth forward

H# BD 1 Integer Read Depth backward

The resulting Bayes factors were thresholded by a posterior cutoff for variant calling and converted into
a VCF object by bf2Vct.
For two samples the Bayes factors are very similar to the p-values obtained by deepSNV:

Shearwater Bayes factor under AND model
bf <- bbb(counts, model = "AND", rho=le-4)
deepSNV P-value with combine.method="fisher" (product)
dpSNV <- deepSNV(test = files[1], control = files[2], regions=regions, gq=10, combine.method="fisher"
Plot
par(bty="n", mgp = c(2,.5,0), mar=c(3,3,2,2)+.1, tcl=-.33)
plot(p.val(dpSNV), bf[1,,]/(1+bf[1,,]), log="xy",
xlab = "P-value deepSNV",

ylab = "Posterior odds shearwater"
)
»
n
-
g 3
@
R
g T
S 7
5 3
(2]
c ™M
T
o [
= O
2 -
3
Z %
a o °
—
—
< | o
&) T T T T 1
1e-46 1e-36 le-26 le-16 1e-06

P-value deepSNV

3.2 More realistic example

Suppose the bam files are in folder . /bam and the regions of interest are stored in a GRanges () object with
metadata column Gene, indicating which region (typically exons for a pulldown experiment) belongs to
which gene. Also assume that we have a tabix indexed vcf file CosmicCodingMuts_v63_300113.vcf.gz.
The analysis can be parallelized by separately analysing each gene, which is the unit needed to compute
the prior using makePrior.

Not run
files <- dir("bam", pattern="*.bam$", full.names=TRUE)
MC_CORES <- getOption("mc.cores", 2L)

vcflist <- 1list()
for(gene in levels(mcols(regions)$Gene))q{
rgn <- regions[mcols(regions)$Gene==gene]
counts <- loadAllData(files, rgn, mc.cores=MC_CORES)

BF <- mcChunk("bbb", split = 200, counts, mc.cores=MC_CORES)

COSMIC <- readVcf("CosmicCodingMuts_v63_300113.vcf.gz", "GRCh37", param=ScanVcfParam(which=:

prior <- makePrior (COSMIC, rgn, pi.mut = 0.5)

vcfList [[gene]l] <- bf2Vcf(BF = BF, counts=counts, regions=rgn, samples = files, cutoff = 0.5
}

vcf <- do.call(rbind, vcflist)

The mcChunk function splits the counts objects into chunks of size split and processes these in parallel
using mclapply.

Instead of using a for loop one can also use a different mechanism, e.g. submitting this code to a
computing cluster, etc.

sessionlnfo()

* R version 3.3.0 (2016-05-03), x86_64-apple-darwini3.4.0
* Locale: C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
* Base packages: base, datasets, grDevices, graphics, methods, parallel, splines, stats, stats4, utils

¢ Other packages: Biobase 2.32.0, BiocGenerics 0.18.0, Biostrings 2.40.0, GenomelInfoDb 1.8.1,
GenomicRanges 1.24.0, IRanges 2.6.0, RColorBrewer 1.1-2, Rhtslib 1.4.1, Rsamtools 1.24.0,
S4Vectors 0.10.0, SummarizedExperiment 1.2.1, VGAM 1.0-1, VariantAnnotation 1.18.0,
XVector 0.12.0, deepSNV 1.18.1, knitr 1.13

* Loaded via a namespace (and not attached): AnnotationDbi 1.34.1, BSgenome 1.40.0,
BiocParallel 1.6.1, DBI 0.4-1, GenomicAlignments 1.8.0, GenomicFeatures 1.24.1, RCurl 1.95-4.8,
RSQLite 1.0.0, XML 3.98-1.4, biomaRt 2.28.0, bitops 1.0-6, evaluate 0.9, formatR 1.4, highr 0.6,
magrittr 1.5, rtracklayer 1.32.0, stringi 1.0-1, stringr 1.0.0, tools 3.3.0, zlibbioc 1.18.0

