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Abstract

A major task in the analysis of count data of RNA reads from RNA-Seq is the detection of differentially
expressed genes or isoforms. The count data are presented as a matrix consisting of RNA isoform annotation and
the number of reads. Analogous analyses also arise for other assay types, such as comparative ChIP-Seq. The
package MBttest provides a powerful method to test for differential expression by use of the beta distribution and
gene- or isoform-specific variable p to control fudge effect due to small sample size. *. This vignette explains the
use of the package. For more detail of the statistical method, please see our paper [?].

Contents

1 Introduction

This vignette is intended to give a rapid introduction to the commands used in implementing new beta t-test methods
of evaluating differential expression in high-throughput sequencing data by means of the MBttestR package. For
fuller details on the methods being used, consult Tan et al (2015) [?] .

We assume that we have count data from a set of sequencing or other high-throughput experiments, arranged in an
array such that except gene annotation information and id, each column describes a library and each row describes
RNA tag or isoform for which data have been acquired. For example, the rows may correspond to the different
sequences observed in a sequencing experiment. The data then consists of the number of each sequence observed
in each sample. We wish to determine which, if any, rows of the data correspond to some patterns of differential
expression across the samples.

MBittest, also called mBetat test, uses new beta ¢-test method to identify differential expression for each row. This
approach introduces a gene- or isoform-specific variable, called p, into t-statistics to control fudge effect resulted from
small samples. It has higher work efficiency than existing methods for identifying differential expressions of genes or
isoforms either by inflating t-values with

p>w

threshold or by shrinking those with
p<w

[?] when number of replicate libraries in each condition is small, for example, equal to or less than 8.

Different from the exiting methods such as baySeq [?], edgeR Exact test [?] and[?], edgeR GLM [?] and [?], DESeq [?]
andDESeq2 [?], etc, MBttest requires performance of simulation to determine threshold w before running program
mbetattest. MBttest provides negative binomial simulation program to generate null count data without inputting
arguments. User should repeat five or more simulations, perform program smbettest to produce null results and
calculate w using the method given in our paper [?].

1Other Bioconductor packages with similar aims are edgeR, baySeq, DESeq and DESeq?2.



2 Data Preparation and Input

We begin by loading the MBttest package.
> library(MBttest)

MBttest requires data file contain two parts: Annotation information and count data. Information consists of tagid,
geneid, gene name, chromosome id, DNA strand, etc. Information is in left side. It has at least one column for
geneid or tagid (isoformid). The data contain two conditions each having several replicate libraries and must
be in right side. Here is an example :

> data(jkttcell)
> jkttcelll[1:10,]

tagid geneid name chr strand pos anno Jurk.NS.A Jurk.NS.B Jurk.NS.C
1 54 58998 COMT chr22 + 19956542 sg 66.80 43.48 4.65
2 111 59029 CRKL chr22 + 21308033 tu-ce 68.75 63.94 66.46
3 171 59104 SLC2A11 chr22 + 24227723 sg 2.86 2.67 8.15
4 231 59157 ADRBK2 chr22 + 26118985 tu 12.88 8.45 8.59
5 242 59164 SRRD chr22 + 26887904 sg 62.54 59.88 83.27
6 265 59184 HSCB chr22 + 29153206 tu 4.02 2.07 6.85
7 306 59209 UCRC chr22 + 30165939 sg 516.71 594.71 83.84
8 327 59212  MTMR3 chr22 + 30426495 tu 4.08 3.99 2.93
9 445 59310 NCF4 chr22 + 37274056 sg 0.00 1.30 0.03
10 472 59321 CYTH4 chr22 + 37711384 sg 4.40 1.60 0.12
Jurk.48h.A Jurk.48h.B Jurk.48h.C
1 32.99 25.49 14.68
2 80.42 63.89 72.48
3 12.95 12.70 8.81
4 13.13 35.34 9.78
5 54.99 51.15 66.61
6 9.66 4.02 5.87
7 254.81 142.26 156.72
8 10.38 14.23 6.85
9 71.26 25.89 11.73
10 37.61 18.54 16.64
User also may use head to display the data with top 6 lines:
> head(jkttcell)
tagid geneid name chr strand pos anno Jurk.NS.A Jurk.NS.B Jurk.NS.C
1 54 58998 COMT chr22 + 19956542 sg 66.80 43.48 4.65
2 111 59029 CRKL chr22 + 21308033 tu-ce 68.75 63.94 66.46
3 171 59104 SLC2A11 chr22 + 24227723 sg 2.86 2.67 8.15
4 231 59157 ADRBK2 chr22 + 26118985 tu 12.88 8.45 8.59
5 242 59164 SRRD chr22 + 26887904 sg 62.54 59.88 83.27
6 265 59184 HSCB chr22 + 29153206 tu 4.02 2.07 6.85
Jurk.48h.A Jurk.48h.B Jurk.48h.C
1 32.99 25.49 14.68
2 80.42 63.89 72.48
3 12.95 12.70 8.81
4 13.13 35.34 9.78
5 54.99 51.15 66.61
6 9.66 4.02 5.87

If the data are csv file, user can use read.csv function to input data into R Console or If the data are txt file, user
can use read.delim function to load data into R Console. After loading data, user should check the data inputted.
jkttcell shows an example. In this example, 7 columns in the left side are information of poly(A) sites. The count
data are listed in the right side.



3 Simulation for Calculating omega Value

Before performing mbetattest on the real data, user needs simulation to determine omega value. There are three
steps for doing so:

3.1 Stepl: Simulate null count data

Use the following function to generate null simulation data
simulat(yy, nci, rl, r2, p, q, A)

where

yy is real data.

r1 and r2 are replicate numbers in conditions 1 and 2.

p is proportion of genes differentially expressed in m genes, default value is 0.

q is proportion of genes artificial noise. Its default value is 0.

A is effect value. Its default value is 0. nci: column number of information of data.
Here is an example:

> sjknulli<-simulat (yy=jkttcell[1:500,],nci=7,r1=3,r2=3,9=0.2)

Our data is jkttcell. It has 7 columns for information of poly(A) sites. Two conditions are resting and stimulation.
Each has 3 replicate libraries, r1=3 and r2=3. Since this is null simulation, we set p=0 and q=0.2 for artificial noise.
With the same read data and parameters, you can generate a set of 4-6 null datasets: sjknull2, ---, sjknull6 for
calculating omega value.

3.2 Step2: Perform multiple beta t-tests

Use function smbetattest to perform multiple beta t-test with p =1 on the simulated null data:
smbetattest(X, na, nb,alpha)

where

X =simulated data.

na and nb are numbers of replicate libraries in conditions 1 and 2.
alpha is probabilistic threshold. User can set alpha=0.05 or 0.01.
The example is

> mysimi<-smbetattest (X=sjknulll,na=3,nb=3,alpha=0.05)
Save them to csv files
write.csv(mysiml, file="simulatedNullDatalResult.csv”)

After performing smbetattest on each simulated null dataset, user would have results recorded in file like simulat-
edNullDatalResult.csv and open it with excel.

In symbol column, mbeta t-test gives test result: symb= "-" means that the gene or tag is not chosen while symb=
"+" indicates that the gene or isoform is found to be differentially expressed.

In this example, 12 genes would be found to be falsely positive.

3.3 Step3: Calculate omega value

Here is a demo for calculating omega(since we can't use greek letter omega in R function, we use W to represent
omega). In Figure 3, red highlighted column is rho column. We copied the p values of these 12 genes into another
empty column and sorted them from the smallest to the largest. Then we gave sequence numbers from 1 to 12
corresponding to p-values and calculate g-value for each ordered p value:

We chose the 10th p value (1.09166) as the first W value because the 11th rho value has g-value > 0.85. Repeat
this process in 4-6 simulated null datasets and we took the averaged W value as W value in the real data.
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Figure 1: This is an example showing the results obtained by smbetattest from simulated null data. Column A is
row number, geneid is set in simulation, and geneid.l is original geneid.

4 Normalize the count data

As a second processing step, we need to estimate the effective library size. This step is also called normalization, even
though it may not make the count data be of normal distribution. If the counts of expressed genes in one condition
are, on average, twice as high as in another (because the library was sequenced twice as deeply), the size factor for
the first condition should be twice higher than the second one, then differential analysis would give error results. For
this reason, we must make all libraries have the same size before performing any statistical method. For doing so,
user can the function estimateSizeFactors of R package DESeq [?] or DESeq2 [?] to estimate the size factors
from the count data or use the following simple method to normalize the the count data: In excel sheet, use function
sum to calculate sizes of all libraries, and then use excel function average to calculate averaged library size. The last
step is to use the following equation to convert the original count data to new count data with the same library size:

yijN
Y =
*TON;
where i = 2, - - -, n(number of genes or isofoms) in rows in a sheet, j = nci+1, - -+, nci + ¢ where ¢ = na + nb and

nci is column number of annotation information; k = nci 4+ ¢+ 2 + j; Nj is size of library j and N is mean of sizes
over all libraries; y;; is original count of RNA reads in row ¢ and column j.

5 Perform Multiple Beta ¢-Tests on The Real Data

Suppose the data have been normalized so that all libraries have the same size. After obtaining W value, user can
use the function and the real data to perform mbeta ¢-test: mbetattest(X,na,nb,W, alpha, file) where X is real
data. In our current example, X=jkttcell. na and nb are respectively numbers of replicate libraries in conditions 1
and 2. For jktcell data, na = nb = 3. W is omega value. According to our calculation above step, W = 1. alpha is
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Figure 2: The row number in column A in Figure 1 was deleted. To show explicitly, we here hided geneid (for
simulation), tagid column and selected rows are genes that were identified to be differentially expressed.

the probabilistic threshold. You can set alpha=0.05 or 0.01 or the other values; file is csv file for saving the results.
The example is

> res<-mbetattest (X=jkttcell[1:1000,],na=3,nb=3,W=1,alpha=0.05,file="jurkat_NS_48h_tag_mbetattest.csv")

mbetattest has two output results: one is saved in csv file and the other is dat for maplot and for heatmap. The
package MBttest has this result obtained the whole data. We here load it for making MAplot:

> data(dat)
> head(dat)

tagid geneid name chr strand pos anno Jurk.NS.A Jurk.NS.B Jurk.NS.C Jurk.48h.A
1 83344 58782 MX1 chr2il + 42831139  sg 0 0.00 0.00 29.61
2 197313 56792 CD22 chril9 + 35838262 sg 0 0.45 3.81 96.33
3 202264 53072 CD19 chri6 + 28950664  sg 0 0.00 0.00 37.65
4 232007 37653 BASP1 chrb + 17276943  sg 0 0.55 1.31 63.15
5 301820 46661  HBB chril - 5246697 sg 0 0.00 0.00 4.52
6 368151 51057 TCL1A chri4 - 96176393  sg 0 1.03 5.15 153.51
Jurk.48h.B Jurk.48h.C beta_t rho symb
1 0.48 0 0 O -
2 8.07 0 0 O -
3 0.52 0 0 O -
4 0.58 0 0 o0 -
5 39.52 0 0 o0 -
6 9.93 0 0 0 -
> maplot(dat=dat,r1=3,r2=3,TT=350,matitle="MA plot")

> maplot(dat=dat,r1=3,r2=3,TT=50,matitle="MA plot")
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Figure 3: Demo for calculating W

myheatmap has multiple options: both-side, row and column cluster trees with distance methods: "euclidean”, "pear-
son”, "spearman”, and "kendall” correlation coefficients and color label with "redgreen”, "greenred”, "redblue”, "bluered”
or "heat.colors” and angles for genes or isoforms in row and cases (conditions) in column. User can use default without
any choice like (Figure ??) which has tree="both” for both-side tree, or choose tree="column" like (Figure ??) if
columns are species or cancer cases or not choose tree with tree="none” (see (Figure ??)). User may change heatmap
color with colors, for example, in (Figure ??), we chose colors="redblue". If user find that default column name or row
name does no have good angles, then user can adjust them with rwangle (row angle) or clangle(column angle).
rwangle and clangle values are from 0 to 90.

> myheatmap (dat=dat,r1=3,r2=3,maptitle="Jurkat T-cell heatmap2")
> myheatmap (dat=dat,r1=3,r2=3,tree="none" ,maptitle="Jurkat T-cell heatmap3")

> myheatmap (dat=dat,r1=3,r2=3, colrs="redblue", tree="column",
+ method="pearson", maptitle="Jurkat T-cell heatmap")
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Figure 4: 'MA’-plot of t-value against log mean over all replicate libraries across two conditions. The isoforms who
were given differential transcripts in simulation had absolute larger t-values that were highlighted in red than the
threshold given in multiple tests. Those who were given no differential expression had very small absolute t-values
close to zero labeled in black across long means. Here threshold for truncating t-values is set to be 350, since none of
absolute t-values are over 350, the MAplot is an outline MAplot in which red and black dots are not explicitly seen.
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Figure 5: '"MA’-plot of t-value against log mean over all replicate libraries across two conditions. To explicit display
the t-values across log mean, absolute ¢-values >= 50 were truncated. One can explicitly see that truly differential
transcripts in simulation had absolute larger ¢t-values that were highlighted in red than the threshold given in multiple
tests and those who had no differential expressions had very smaller absolute t-values that were labeled in black than
the threshold.
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Figure 6: The heatmap has both-side trees and displays explicitly differential expression between stimulating and rest.
Most of genes were up-expressed by stimulation but a small part of genes were down-expressed. The tree in column
divides columns into two groups: NS and 48h. The tree in row is tree of differentially expressed genes and also divide

genes in row into two big groups.
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Figure 7. The heatmap did not give trees on both sides, but the heatmap is the same with (Figure ??)
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6 Session Info

> sessionInfo()

R version 3.3.0 RC (2016-04-26 r70550)
Platform: x86_64-apple-darwinl3.4.0 (64-bit)
Running under: 0S X 10.9.5 (Mavericks)

locale:
[1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] MBttest_1.0.0 gtools_3.5.0 gplots_3.0.1

loaded via a namespace (and not attached):

[1] BiocStyle_2.0.0 tools_3.3.0 KernSmooth_2.23-15 gdata_2.17.0
[6] caTools_1.17.1 bitops_1.0-6
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