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1 Overview

There are now 863 completely sequenced genomes of cellular organisms in NCBI genome
database. Nevertheless, functional annotation drops far behind sequencing because func-
tional valida-tion experiments are time-consuming and costly. Taken model organism Homo
sapiens, Mus musculus and Saccharomyces cere-visiae as examples, only 16and 18anno-
tations in Gene Ontology), respectively. Thus computational methods for predicting function
is still a fun-damental complement. The most common com-putation approach is biologi-
cal sequence based classification, since sequence information is still the most abundant and
reliable. Se-quence based classification has been used in: discovering new microRNA can-
didates, predicting transcription factor binding sites , detecting protein post-translational
modification sites , and so on.

Features and models are two basic factors for classification. Features generally are nu-
merical values that can be used to distinguish different classes. Therefore it is preferable
to select features that can achieve better and faster classification. Classification models are
built from features by various algorithms, and it is necessary to evaluate its prediction ability
by cross validation or jackknife test. For biological sequences, there are additional steps: one
is to reduce homolog sequences which might result in overestimation of prediction accuracy,
and then another most important step is to convert sequences into numerical features. Thus,
the general workflow for sequence-based classifications includes (Figure ??): reduce homolog
sequences; extract features from sequences and code them to numerical values; evaluate and
select features; build classification model and evaluate its performance.
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Here we present an R package (BioSeqClass) to carry out the general workflow for bi-
ological sequence based classification. It contains diverse fearure coding schemas for RNA,
DNA and proteins, supports feature seletion, and integrates multiple classification methods.

Figure 1: Workflow for Biological Sequence based Classification.

2 Installation

2.1 Requirements

BioSeqClass employs some external programs to extract biological properties and use other
R packages to build classification model:

1. BioSeqClass imported R packages are listed in table ??. These packages will be auto-
matically installed when Biocalss is firstly loaded.

2. External programs are used to assist the performance of BioSeqClass (see table ??).
Some programs are invoked via their web service, and some ones are needed to be
installed at the local computer.

Note: You do not need to install programs listed in table ??, unless you will use the
related function in BioSeqClass.
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2.2 Installation

The biocLite script is used to install PAnnBuilder from within R:

> source("http://bioconductor.org/biocLite.R")

> biocLite("BioSeqClass")

Users also can use the installation script ”BioSeqClass.R”to download and install BioSeqClass
package.

> source("http://www.biosino.org/download/BioSeqClass/BioSeqClass.R")

> BioSeqClass()

Load package:

> library(BioSeqClass)

Note: Web Connection is needed to install BioSeqClass and its required packages. All
the codes in this vignette were tested in R 2.8.0 and 2.9.0, thus the latest R version is
recommended.

3 Function description

3.1 Homolog Reduction

Homologous sequences in training/testing data may lead to overestimation of prediction ac-
curacy. Therefore, the first step for sequence based classification and prediction is homolog
reduction based on sequence similarity. Taking computation complexity and similarity re-
striction into consideration, homolog reductions for full-length sequences and fragment se-
quences are different. We have designed different functions to deal with them, respectively
(see table ??).

• hr - It employs cdhitHR and aligndisHR to filter homolog sequences by sequence sim-
ilarity. cdhitHR is designed to filter full-length protein or gene sequences. aligndisHR
is designed for aligned sequences with equal length.

• cdhitHR - It uses cd-hit program to do homolog reduction (”formatdb” and ”blastall”
are required for running cd-hit program). CD-HIT is a program for clustering large
protein database at high sequence identity threshold (?).

• aligndisHR - It uses the number of different residues to do homolog reduction (?).
The algorithm proceeds in a stepwise manner by first eliminating sequences that were
different from another in exactly 1 position. Elimination proceeds one peptide at a
time; Re-evaluate after each peptide is removed. Once no further homologs of distance
1 remain, homologs of distance 2 are eliminated, and so forth until identity between
all peptides are less than given cutoff.
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3.2 Feature Extraction and Numerical Coding

3.2.1 Biological sequences

RNA, DNA and protein are three kinds of basic biological sequences. RNA and DNA are
composed of bases, while proteins are composed of amino acids. Furthermore, amino acids
have different physical-chemical properties, which were used to divide amino acids into differ-
ent groups. These elements and groups are basic objects for feature extraction (see table ??).

3.2.2 Feature Coding

Feature coding means to extract features from sequences and convert them into numerical
values. The frequently used features are the basic elements of sequence (bases, amino acids),
physical-chemical properties, secondary structures, and so on. There are many methods to
convert features to numerical values. The simplest is the composition of element. But more
sophisticated conversions are preferrable for achieving better distinguishing power. Previous
studies have shown that feature coding is the key point for the accuracy of classification
and prediction. Here we have summarized various feature coding methods used in published
papers and carried out them in BioSeqClass (see table ??). These functions will allow more
diverse choices of coding strategies and accelerate the feature coding process. We also provide
a function featureEvaluate to test the performance of models with different feature coding
schemes and different classification algorithms.

3.3 Feature Selection

Features are important for the accuracy of prediction model. However, it does not mean that
the more the better. Computation time is usually increased with the increase of number of
features. Conflictive features would even reduce the accuracy. Therefore, suitable feature
selection is needed for better prediction performance and less computation cost. We provided
two functions for feature selection (see table ??).

3.4 Model Building and Performance Evaluation

Besides features, classification method is another factor that influences classification. Differ-
ent cases may have different perference over classification methods. Multiple classification
methods are integrated and available in BioSeqClass (see table ??). To evaluate and compare
classification models, performance assessment is done for each model, including precision,
sensitivity, specificity, accuracy, and matthews correlation coefficient.
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Table 1: Imported R packages.

Existing R Package Functions used by BioSeqClass
Biostrings readAAStringSet, writeXStringSet
e1071 svm
ipred bagging
klaR svmlight, NaiveBayes
randomForest randomForest
class knn
tree tree
nnet nnet
rpart rpart
party ctree
foreign write.arff
Biobase addVigs2WinMenu

4 Examples

To illustrate the use of BioSeqClass, lysine acetylation site prediction is taken as an example.

1. Suppose the original data are protein FASTA sequences and lysine acetylation sites.
You can use getTrain to extract the flanking peptides of acetylation sites as positive
dataset, and filter these peptides based on sequence identity. Lysine without acetylation
annotation are regarded as negative dataset, and are filtered like the positive dataset.
Considering the computational time, only 20 positive data are used as examples in the
following codes.

> library(BioSeqClass)

> # Example data in BioSeqClass.

> file=file.path(path.package("BioSeqClass"),"example","acetylation_K.fasta")

> posfile = file.path(path.package("BioSeqClass"),

+ "example", "acetylation_K.site")

> # Only a part of lysine acetylation sites are used for demo.

> posfile1=tempfile()

> write.table(read.table(posfile,sep='\t',header=F)[1:20,], posfile1,

+ sep='\t', quote=F, row.names=F, col.names=F)

> seqList = getTrain(file, posfile1, aa="K", w=7, identity=0.4)

[1] "Positive Site: 18"

[1] "Positive Protein: 9"

[1] "Positive Site After Homolog Reduction: 16"

[1] "Positive Protein After Homolog Reduction: 9"
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Table 2: Invoked External Programs.

External
Program

Description Related BioSeqClass
Function

Need In-
stalled?

Ref

cd-hit a program for clustering large
protein database at high se-
quence identity threshold

cdhitHR Yes (?)

blastpgp PSI-BLAST (Position-Specific
Iterated BLAST) for capturing
the conservation pattern

featurePSSM Yes (?)

SVMlight support vector machine classifyModelSVMLIGHT No (?)
DSSP a database of secondary struc-

ture assignments for protein en-
tries in the Protein Data Bank
(PDB)

getDSSP No (?)

Proteus2 predict secondary structure predictPROTEUS No (?)
HMMER predict domains with hmmpfam

using models of Pfam database
predictPFAM No (?)

Table 3: Summary Table for Homolog Reduction Functions.

Function Description Ref
hr employ cdhitHR and aligndisHR to do homolog reduction
cdhitHR invoke cd-hit to cluster sequences (?)
aligndisHR calculated identity of aligned sequences (?)

Table 4: Summary Table for Base and Amino Acid Groups.

Function Description Ref
elements basic elements of biological sequence
aaClass amino acids groups depend on their physical-chemical properties:

hydrophobicity, normalized Van der Waals volume, polarizability,
polarity, and so on

(?)
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Table 5: Summary table for Feature Coding Functions.

Type Function Feature Coding Scheme Ref

DNA,
RNA, or
protein

featureBinary use 0-1 vector to code each element (??)
featureCTD numeric vector for the composition, transition

and distribution of properties
(?)

featureFragmentComposition numeric vector for the frequency of k-mer se-
quence fragment

(??)

featureGapPairComposition numeric vector for the frequency of g-spaced ele-
ment pair

(?)

featureCKSAAP integer vector for the number of k-spaced element
pair (k cycled from 0 to g)

(?)

protein

featureHydro hydrophobic effect (??)
featureACH average cumulative hydrophobicity over a sliding

window
(??)

featureAAindex numeric vector measuring the physicochemical
and biochemical properties based on AAindex
database

(??)

featureACI numeric vector measuring the average cumulative
properties in AAindex

featureACF numeric vector measuring the Auto Correlation
Function (ACF) of properties in AAindex

(??)

featurePseudoAAComp numeric vector for the pseudo amino acid com-
position proposed by Chou,K.C.

(?)

featurePSSM numeric vector for the normalized position-
specific score of PSSM generated by PSI-BLAST

(????)

featureDOMAIN vector for the number of domain. Domains can
be obtained by ’predictPFAM’ function.

(?)

featureSSC coding for secondary structure of protein. Sec-
ondary structure can be got by ’predictPRO-
TEUS’ or ’getDSSP’.

(?)

DNA or
RNA

featureBDNAVIDEO Conformational and physicochemical DNA fea-
tures from B-DNA-VIDEO database

(?)

featureDIPRODB conformational and thermodynamic dinu-
cleotide properties from DiProDB database
(http://diprodb.fli-leibniz.de)

(?)

Table 6: Summary Table for Feature Selection Functions.

Function Description Ref
selectWeka feature selction by methods in WEKA (?)
selectFFS feature forword selction based on the performance of

classification model
(?)

classify build and test model with cross validation, also support
feature selection by envoking WEKA
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Table 7: Summary Table for Classification Methods.

Function Description Depended R package
classifyModelLIBSVM support vector machine by LIBSVM e1071
classifyModelSVMLIGHT support vector machine by SVM-light klaR
classifyModelNB naive bayes klaR
classifyModelRF random forest randomForest
classifyModelKNN k-nearest neighbor class
classifyModelTree tree model tree
classifyModelNNET neural net algorithm VR
classifyModelRPART recursive partitioning trees rpart
classifyModelCTREE conditional inference trees party
classifyModelCTREELIBSVM combine conditional inference trees and sup-

port vector machine
party , e1071

classifyModelBAG bagging method ipred

[1] "Negative Site: 215"

[1] "Negative Protein: 9"

[1] "Negative Site After Homolog Reduction and Random Selection: 16"

[1] "Negative Protein After Homolog Reduction and Random Selection: 6"

2. If the original data are non-redundant positive/negative peptides. We directly read
the data into R and assign class labels for them.

> tmpDir=file.path(path.package('BioSeqClass'), 'example')
> tmpFile1=file.path(tmpDir, 'acetylation_K.pos40.pep')
> tmpFile2=file.path(tmpDir, 'acetylation_K.neg40.pep')
> posSeq=as.matrix(read.csv(tmpFile1,header=F,sep='\t',row.names=1))[,1]
> negSeq=as.matrix(read.csv(tmpFile2,header=F,sep='\t',row.names=1))[,1]
> seq=c(posSeq,negSeq)

> classLable=c(rep("+1",length(posSeq)),rep("-1",length(negSeq)) )

> length(seq)

[1] 1200

3. Once you have positive/negative datasets, you can code them to numeric vectors by
functions listed in table ??. Function featureBinary and featureGapPairComposi-

tion are taken as examples of different coding methods, which use binary 0-1 coding
and the composition of gapped amino acid pair, respectively. Other functions can be
used in the same way.
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> # Use 0-1 binary coding.

> feature1 = featureBinary(seq,elements("aminoacid"))

> dim(feature1)

[1] 1200 300

> # Use the compostion of paired amino acids.

> feature2 = featureGapPairComposition(seq,0,elements("aminoacid"))

> dim(feature2)

[1] 1200 400

4. classify is used to build classification model under cross validation. It also supports
feature selection by invoking WEKA. Models built with selected features usually can
obtain higher accuracy. In the following codes, two models are built by classify. The
1st classification model ’LIBSVM CV5’ is built by support vector machine with linear
kernel and get an accuracy of 0.56 under 5-fold cross validation. The 2nd classification
model ’FS LIBSVM CV5’ is also built by support vector machine with linear kernel,
but a feature selection method called ”CfsSubsetEval” is used before building model.
Thus the 2nd model using feature selection achieves an higher accuracy of 0.62 than
the 1st model using all features.

> data = data.frame(feature1,classLable)

> # Use support vector machine and 5 fold cross validation to do classification.

> LIBSVM_CV5 = classify(data, classifyMethod='libsvm',
+ cv=5, svm.kernel='linear',svm.scale=F)
> LIBSVM_CV5[["totalPerformance"]]

tp tn fp fn prc sn

337.0000000 337.0000000 263.0000000 263.0000000 0.5599397 0.5616667

sp acc mcc pc

0.5616667 0.5616667 0.1243355 0.3918323

> # Features selection is done by envoking "CfsSubsetEval" method in WEKA.

> FS_LIBSVM_CV5 = classify(data, classifyMethod='libsvm',
+ cv=5, evaluator='CfsSubsetEval', search='BestFirst',
+ svm.kernel='linear', svm.scale=F)

> FS_LIBSVM_CV5[["totalPerformance"]] ## Accuracy is increased by feature selection.

tp tn fp fn prc sn

258.0000000 488.0000000 112.0000000 342.0000000 0.6924855 0.4300000

sp acc mcc pc

0.8133333 0.6216667 0.2621407 0.3651539
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> # Selected features:

> colnames(data)[FS_LIBSVM_CV5$features[[1]]]

[1] "BIN.1_A" "BIN.2_R" "BIN.3_K" "BIN.4_K" "BIN.5_K" "BIN.5_N"

[7] "BIN.6_N" "BIN.6_G" "BIN.6_T" "BIN.6_P" "BIN.7_P" "BIN.9_W"

[13] "BIN.9_H" "BIN.9_Y" "BIN.9_L" "BIN.10_Q" "BIN.11_W" "BIN.11_V"

[19] "BIN.12_K" "BIN.12_F" "BIN.13_K" "BIN.13_I" "BIN.13_M" "BIN.14_A"

[25] "BIN.15_K" "BIN.15_E" "BIN.15_A" "BIN.15_T"

5. Different feature coding methods usually might result in different prediction perfor-
mance. featureEvaluate can be used to test multiple feature coding methods. Figure
?? shows the 3D plot of prediction accuracy varied with feature coding functions and
parameters. It can be generated by employing featureEvaluate as follows (Note: It
may be time consuming!):

> fileName = tempfile()

> # Note: It may be time consuming.

> testFeatureSet = featureEvaluate(seq, classLable, fileName, cv=5,

+ ele.type='aminoacid', featureMethod=c('Binary','GapPairComposition'),
+ classifyMethod='libsvm',
+ group=c('aaH', 'aaV', 'aaZ', 'aaP', 'aaF', 'aaS', 'aaE'), g=0,

+ hydro.methods=c('kpm', 'SARAH1'), hydro.indexs=c('hydroE', 'hydroF', 'hydroC') )

> summary = read.csv(fileName,sep="\t",header=T)

> # Plot the result of 'featureEvaluate'
> require("scatterplot3d")

> tmp1 = summary[,"Feature_Function"]

> tmp2 = as.factor(sapply(as.vector(summary[,'Feature_Parameter']),
+ function(x){unlist(strsplit(x,split='; '))[1]}))
> testResult = data.frame(as.integer(tmp2), as.integer(tmp1), summary[,"acc"])

> s3d=scatterplot3d(testResult,

+ color=c('red','blue')[testResult[,2]], pch=19, xlab='Parameter',
+ ylab='Feature Coding',
+ zlab='Accuracy', lab=c(9,3,7),

+ x.ticklabs=gsub('class: ','',sort(unique(tmp2))),
+ type='h',ylim=c(0,3),y.margin.add=2.5,
+ y.ticklabs=c('',gsub('feature','',sort(unique(tmp1))),'') )

6. Features from multiple functions can be combined and re-selected to increase the predic-
tion accuracy. In the following code chunk, the first three feature sets from ’testFeature-
Set’ are combined together (’testFeatureSet’ is generated in the aforementioned codes
by featureEvaluate). Then feature selection functions (classify and selectFFS)
can be employed to selecte features. (classify has been illustrated in the aforemen-
tioned code chunk. Thus selectFFS is used here to do feature forward selection to
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select a subset with maximum prediction accuracy (Note: It may be time consuming!).
The process of feature selection and the increasing accuracy are shown in Figure ??.

> feature.index = 1:3

> tmp <- testFeatureSet[[1]]$data

> tmp1 <- testFeatureSet[[feature.index[1]]]$model

> colnames(tmp) <- paste(

+ tmp1["Feature_Function"],

+ tmp1["Feature_Parameter"],

+ colnames(tmp),sep=" ; ")

> data <- tmp[,-ncol(tmp)]

> for(i in 2:length(feature.index) ){

+ tmp <- testFeatureSet[[feature.index[i]]]$data

+ tmp1 <- testFeatureSet[[feature.index[i]]]$model

+ colnames(tmp) <- paste(

+ tmp1["Feature_Function"],

+ tmp1["Feature_Parameter"],

+ colnames(tmp),sep=" ; ")

+ data <- data.frame(data, tmp[,-ncol(tmp)] )

+ }

> name <- colnames(data)

> data <- data.frame(data, tmp[,ncol(tmp)] ) ## Combined features

> # Use 'selectFFS' to do feature forward selection.

> # Note: It may be time consuming.

> combineFeatureResult = selectFFS(data,accCutoff=0.005,

+ classifyMethod="knn",cv=5) ## It is time consuming.

> tmp = sapply(combineFeatureResult,function(x){

+ c(length(x$features),x$performance["acc"])})

> plot(tmp[1,],tmp[2,],xlab="Feature Number",ylab="Accuracy",

+ , pch=19)

> lines(tmp[1,],tmp[2,])
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Figure 2: Result of featureEvaluate.

5 Session Information

This vignette was generated using the following package versions:

R version 3.3.0 RC (2016-04-26 r70550)

Platform: x86_64-apple-darwin13.4.0 (64-bit)

Running under: OS X 10.9.5 (Mavericks)

locale:

[1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
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[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] BioSeqClass_1.30.0 scatterplot3d_0.3-36

loaded via a namespace (and not attached):

[1] Rcpp_0.12.4.5 XVector_0.12.0 zlibbioc_1.18.0

[4] IRanges_2.6.0 BiocGenerics_0.18.0 splines_3.3.0

[7] MASS_7.3-45 prodlim_1.5.7 lattice_0.20-33

[10] multcomp_1.4-4 tools_3.3.0 nnet_7.3-12

[13] parallel_3.3.0 grid_3.3.0 ipred_0.9-5

[16] Biobase_2.32.0 TH.data_1.0-7 e1071_1.6-7

[19] modeltools_0.2-21 class_7.3-14 randomForest_4.6-12

[22] survival_2.39-2 Matrix_1.2-6 lava_1.4.3

[25] party_1.0-25 S4Vectors_0.10.0 codetools_0.2-14

[28] rpart_4.1-10 strucchange_1.5-1 coin_1.1-2

[31] sandwich_2.3-4 klaR_0.6-12 Biostrings_2.40.0

[34] combinat_0.0-8 stats4_3.3.0 tree_1.0-37

[37] mvtnorm_1.0-5 foreign_0.8-66 zoo_1.7-12
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