
Package ‘zinbwave’
February 2, 2026

Type Package

Title Zero-Inflated Negative Binomial Model for RNA-Seq Data

Version 1.33.0

Description Implements a general and flexible zero-inflated negative binomial model that
can be used to provide a low-dimensional representations of single-cell
RNA-seq data. The model accounts for zero inflation (dropouts),
over-dispersion, and the count nature of the data. The model also
accounts for the difference in library sizes and optionally for batch effects
and/or other covariates, avoiding the need for pre-normalize the data.

License Artistic-2.0

Depends R (>= 3.4), methods, SummarizedExperiment,
SingleCellExperiment

Imports BiocParallel, softImpute, stats, genefilter, edgeR, Matrix

Suggests knitr, rmarkdown, testthat, matrixStats, magrittr, scRNAseq,
ggplot2, biomaRt, BiocStyle, Rtsne, DESeq2, sparseMatrixStats

VignetteBuilder knitr

LazyData TRUE

RoxygenNote 7.3.1

biocViews ImmunoOncology, DimensionReduction, GeneExpression, RNASeq,
Software, Transcriptomics, Sequencing, SingleCell

BugReports https://github.com/drisso/zinbwave/issues

git_url https://git.bioconductor.org/packages/zinbwave

git_branch devel

git_last_commit dee1bb8

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Author Davide Risso [aut, cre, cph],
Svetlana Gribkova [aut],
Fanny Perraudeau [aut],

1

https://github.com/drisso/zinbwave/issues

2 Contents

Jean-Philippe Vert [aut],
Clara Bagatin [aut]

Maintainer Davide Risso <risso.davide@gmail.com>

Contents
computeDevianceResiduals . 3
computeObservationalWeights . 4
getAlpha_mu . 4
getAlpha_pi . 5
getBeta_mu . 6
getBeta_pi . 6
getEpsilon_alpha . 7
getEpsilon_beta_mu . 7
getEpsilon_beta_pi . 8
getEpsilon_gamma_mu . 8
getEpsilon_gamma_pi . 9
getEpsilon_W . 10
getEpsilon_zeta . 10
getGamma_mu . 11
getGamma_pi . 11
getLogitPi . 12
getLogMu . 13
getMu . 13
getPhi . 14
getPi . 15
getTheta . 15
getV_mu . 16
getV_pi . 16
getW . 17
getX_mu . 18
getX_pi . 18
getZeta . 19
glmWeightedF . 19
imputeZeros . 21
independentFiltering . 21
loglik . 22
nFactors . 23
nFeatures . 23
nParams . 24
nSamples . 25
orthogonalizeTraceNorm . 25
penalty . 26
pvalueAdjustment . 27
solveRidgeRegression . 28
toydata . 29
zinb.loglik . 29

computeDevianceResiduals 3

zinb.loglik.dispersion . 30
zinb.loglik.dispersion.gradient . 31
zinb.loglik.matrix . 32
zinb.loglik.regression . 32
zinb.loglik.regression.gradient . 33
zinb.regression.parseModel . 35
zinbAIC . 35
zinbFit . 36
zinbInitialize . 39
zinbModel . 40
ZinbModel-class . 42
zinbOptimize . 47
zinbOptimizeDispersion . 48
zinbSim . 49
zinbsurf . 50
zinbwave . 51

Index 55

computeDevianceResiduals

Deviance residuals of the zero-inflated negative binomial model

Description

Given a matrix of counts, this function computes the deviance residuals under a zero-inflated nega-
tive binomial (ZINB) model.

Usage

computeDevianceResiduals(model, x, ignoreW = TRUE)

Arguments

model the zinb model
x the matrix of counts n cells by J genes
ignoreW logical, if true matrix W is ignored. Default is TRUE.

Value

the matrix of deviance residuals of the model.

Examples

se <- SummarizedExperiment(matrix(rpois(60, lambda=5), nrow=10, ncol=6),
colData = data.frame(bio = gl(2, 3)))

m <- zinbFit(se, X=model.matrix(~bio, data=colData(se)),
BPPARAM=BiocParallel::SerialParam())

computeDevianceResiduals(m, t(assay(se)))

4 getAlpha_mu

computeObservationalWeights

Observational weights of the zero-inflated negative binomial model for
each entry in the matrix of counts

Description

Given a matrix of counts, this function computes the observational weights of the counts un-
der a zero-inflated negative binomial (ZINB) model. For each count, the ZINB distribution is
parametrized by three parameters: the mean value and the dispersion of the negative binomial
distribution, and the probability of the zero component.

Usage

computeObservationalWeights(model, x)

Arguments

model the zinb model

x the matrix of counts

Value

the matrix of observational weights computed from the model.

Examples

se <- SummarizedExperiment(matrix(rpois(60, lambda=1), nrow=10, ncol=6),
colData = data.frame(bio = gl(2, 3)))

m <- zinbFit(se, X=model.matrix(~bio, data=colData(se)),
BPPARAM=BiocParallel::SerialParam())

computeObservationalWeights(m, assay(se))

getAlpha_mu Returns the matrix of paramters alpha_mu

Description

Given an object that describes a matrix of zero-inflated distributions, returns the matrix of parame-
ters associated with W for the mean part (mu)

Usage

getAlpha_mu(object, ...)

getAlpha_pi 5

Arguments

object an object that describes a matrix of zero-inflated distributions.

... Additional parameters.

Value

the matrix of alpha_mu parameters

Examples

a <- zinbModel(n=5, J=10)
getAlpha_mu(a)

getAlpha_pi Returns the matrix of paramters alpha_pi

Description

Given an object that describes a matrix of zero-inflated distributions, returns the matrix of parame-
ters associated with W for the zero part (pi)

Usage

getAlpha_pi(object, ...)

Arguments

object an object that describes a matrix of zero-inflated distributions.

... Additional parameters.

Value

the matrix of alpha_pi parameters

Examples

a <- zinbModel(n=5, J=10)
getAlpha_pi(a)

6 getBeta_pi

getBeta_mu Returns the matrix of paramters beta_mu

Description

Given an object that describes a matrix of zero-inflated distributions, returns the matrix of parame-
ters associated with X_mu

Usage

getBeta_mu(object, ...)

Arguments

object an object that describes a matrix of zero-inflated distributions.

... Additional parameters.

Value

the matrix of beta_mu parameters

Examples

a <- zinbModel(n=5, J=10)
getBeta_mu(a)

getBeta_pi Returns the matrix of paramters beta_pi

Description

Given an object that describes a matrix of zero-inflated distributions, returns the matrix of parame-
ters associated with X_pi

Usage

getBeta_pi(object, ...)

Arguments

object an object that describes a matrix of zero-inflated distributions.

... Additional parameters.

Value

the matrix of beta_pi parameters

getEpsilon_alpha 7

Examples

a <- zinbModel(n=5, J=10)
getBeta_pi(a)

getEpsilon_alpha Returns the vector of regularization parameter for alpha

Description

Given an object describing a ZINB model, returns a vector of size the number of rows in the pa-
rameter alpha with the regularization parameters associated to each row. Here alpha refers to both
alpha_mu and alpha_pi, which have the same size and have the same regularization.

Usage

getEpsilon_alpha(object)

Arguments

object an object that describes a matrix of zero-inflated distributions.

Value

the regularization parameters for alpha_mu and alpha_pi.

Examples

a <- zinbModel(n=5, J=10)
getEpsilon_alpha(a)

getEpsilon_beta_mu Returns the vector of regularization parameter for beta_mu

Description

Given an object describing a ZINB model, returns a vector of size the number of rows in the param-
eter beta_mu with the regularization parameters associated to each row.

Usage

getEpsilon_beta_mu(object)

Arguments

object an object that describes a matrix of zero-inflated distributions.

8 getEpsilon_gamma_mu

Value

the regularization parameters for beta_mu.

Examples

a <- zinbModel(n=5, J=10)
getEpsilon_beta_mu(a)

getEpsilon_beta_pi Returns the vector of regularization parameter for beta_pi

Description

Given an object describing a ZINB model, returns a vector of size the number of rows in the param-
eter beta_pi with the regularization parameters associated to each row.

Usage

getEpsilon_beta_pi(object)

Arguments

object an object that describes a matrix of zero-inflated distributions.

Value

the regularization parameters for beta_pi.

Examples

a <- zinbModel(n=5, J=10)
getEpsilon_beta_pi(a)

getEpsilon_gamma_mu Returns the vector of regularization parameter for gamma_mu

Description

Given an object describing a ZINB model, returns a vector of size the number of columns in the
parameter gamma_mu with the regularization parameters associated to each row.

Usage

getEpsilon_gamma_mu(object)

getEpsilon_gamma_pi 9

Arguments

object an object that describes a matrix of zero-inflated distributions.

Value

the regularization parameters for gamma_mu.

Examples

a <- zinbModel(n=5, J=10)
getEpsilon_gamma_mu(a)

getEpsilon_gamma_pi Returns the vector of regularization parameter for gamma_pi

Description

Given an object describing a ZINB model, returns a vector of size the number of columns in the
parameter gamma_pi with the regularization parameters associated to each column.

Usage

getEpsilon_gamma_pi(object)

Arguments

object an object that describes a matrix of zero-inflated distributions.

Value

the regularization parameters for gamma_pi.

Examples

a <- zinbModel(n=5, J=10)
getEpsilon_gamma_pi(a)

10 getEpsilon_zeta

getEpsilon_W Returns the vector of regularization parameter for W

Description

Given an object describing a ZINB model, returns a vector of size the number of columns in the
parameter W with the regularization parameters associated to each column.

Usage

getEpsilon_W(object)

Arguments

object an object that describes a matrix of zero-inflated distributions.

Value

the regularization parameters for W.

Examples

a <- zinbModel(n=5, J=10)
getEpsilon_W(a)

getEpsilon_zeta Returns the regularization parameter for the dispersion parameter

Description

The regularization parameter penalizes the variance of zeta, the log of the dispersion parameters
across samples.

Usage

getEpsilon_zeta(object)

Arguments

object an object that describes a matrix of zero-inflated distributions.

Value

the regularization parameters for zeta.

Examples

a <- zinbModel(n=5, J=10)
getEpsilon_zeta(a)

getGamma_mu 11

getGamma_mu Returns the matrix of paramters gamma_mu

Description

Given an object that describes a matrix of zero-inflated distributions, returns the matrix of parame-
ters associated with V_mu

Usage

getGamma_mu(object, ...)

Arguments

object an object that describes a matrix of zero-inflated distributions.

... Additional parameters.

Value

the matrix of gamma_mu parameters

Examples

a <- zinbModel(n=5, J=10)
getGamma_mu(a)

getGamma_pi Returns the matrix of paramters gamma_pi

Description

Given an object that describes a matrix of zero-inflated distributions, returns the matrix of parame-
ters associated with V_pi

Usage

getGamma_pi(object, ...)

Arguments

object an object that describes a matrix of zero-inflated distributions.

... Additional parameters.

Value

the matrix of gamma_pi parameters

12 getLogitPi

Examples

a <- zinbModel(n=5, J=10)
getGamma_pi(a)

getLogitPi Returns the matrix of logit of probabilities of zero

Description

Given an object that describes a matrix of zero-inflated distributions, returns the matrix of logit of
probabilities of 0.

Usage

getLogitPi(object)

Arguments

object an object that describes a matrix of zero-inflated distributions.

Details

Note that although the user interface of zinbFit requires a J x n matrix, internally this is stored as
a n x J matrix (i.e., samples in row and genes in column). Hence the parameter matrix returned by
this function is of n x J dimensions.

Value

the matrix of logit-probabilities of 0

Examples

a <- zinbModel(n=5, J=10)
getLogitPi(a)

getLogMu 13

getLogMu Returns the matrix of logarithm of mean parameters

Description

Given an object that describes a matrix of zero-inflated distributions, returns the matrix of logarithm
of mean parameters.

Usage

getLogMu(object)

Arguments

object an object that describes a matrix of zero-inflated distributions.

Details

Note that although the user interface of zinbFit requires a J x n matrix, internally this is stored as
a n x J matrix (i.e., samples in row and genes in column). Hence the parameter matrix returned by
this function is of n x J dimensions.

Value

the matrix of logarithms of mean parameters

Examples

a <- zinbModel(n=5, J=10)
getLogMu(a)

getMu Returns the matrix of mean parameters

Description

Given an object that describes a matrix of zero-inflated distributions, returns the matrix of mean
parameters.

Usage

getMu(object)

Arguments

object an object that describes a matrix of zero-inflated distributions.

14 getPhi

Details

Note that although the user interface of zinbFit requires a J x n matrix, internally this is stored as
a n x J matrix (i.e., samples in row and genes in column). Hence the parameter matrix returned by
this function is of n x J dimensions.

Value

the matrix of mean parameters

Examples

a <- zinbModel(n=5, J=10)
getMu(a)

getPhi Returns the vector of dispersion parameters

Description

Given an object that describes a matrix of zero-inflated negative binomial distributions, returns the
vector of dispersion parameters phi.

Usage

getPhi(object)

Arguments

object an object that describes a matrix of zero-inflated. distributions.

Value

the vector of dispersion parameters

Examples

a <- zinbModel(n=5, J=10)
getPhi(a)

getPi 15

getPi Returns the matrix of probabilities of zero

Description

Given an object that describes a matrix of zero-inflated distributions, returns the matrix of probabil-
ities of 0.

Usage

getPi(object)

Arguments

object an object that describes a matrix of zero-inflated distributions.

Details

Note that although the user interface of zinbFit requires a J x n matrix, internally this is stored as
a n x J matrix (i.e., samples in row and genes in column). Hence the parameter matrix returned by
this function is of n x J dimensions.

Value

the matrix of probabilities of 0

Examples

a <- zinbModel(n=5, J=10)
getPi(a)

getTheta Returns the vector of inverse dispersion parameters

Description

Given an object that describes a matrix of zero-inflated negative binomial distributions, returns the
vector of inverse dispersion parameters theta.

Usage

getTheta(object)

Arguments

object an object that describes a matrix of zero-inflated distributions.

16 getV_pi

Value

the vector of inverse dispersion parameters theta

Examples

a <- zinbModel(n=5, J=10)
getTheta(a)

getV_mu Returns the gene-level design matrix for mu

Description

Given an object that describes a matrix of zero-inflated distributions, returns the gene-level design
matrix for mu

Usage

getV_mu(object, ...)

Arguments

object an object that describes a matrix of zero-inflated distributions.

... Additional parameters.

Value

the gene-level design matrix for mu

Examples

a <- zinbModel(n=5, J=10)
getV_mu(a)

getV_pi Returns the gene-level design matrix for pi

Description

Given an object that describes a matrix of zero-inflated distributions, returns the gene-level design
matrix for pi

Usage

getV_pi(object, ...)

getW 17

Arguments

object an object that describes a matrix of zero-inflated distributions.

... Additional parameters.

Value

the gene-level design matrix for pi

Examples

a <- zinbModel(n=5, J=10)
getV_pi(a)

getW Returns the low-dimensional matrix of inferred sample-level covari-
ates W

Description

Given an object that contains the fit of a ZINB-WaVE model, returns the matrix W of low-dimensional
matrix of inferred sample-level covariates.

Usage

getW(object)

Arguments

object a ZinbModel object, typically the result of zinbFit.

Value

the matrix W of inferred sample-level covariates.

Examples

a <- zinbModel(n=5, J=10)
getW(a)

18 getX_pi

getX_mu Returns the sample-level design matrix for mu

Description

Given an object that describes a matrix of zero-inflated distributions, returns the sample-level design
matrix for mu

Usage

getX_mu(object, ...)

Arguments

object an object that describes a matrix of zero-inflated distributions.

... Additional parameters.

Value

the sample-level design matrix for mu

Examples

a <- zinbModel(n=5, J=10)
getX_mu(a)

getX_pi Returns the sample-level design matrix for pi

Description

Given an object that describes a matrix of zero-inflated distributions, returns the sample-level design
matrix for pi

Usage

getX_pi(object, ...)

Arguments

object an object that describes a matrix of zero-inflated distributions.

... Additional parameters.

Value

the sample-level design matrix for pi

getZeta 19

Examples

a <- zinbModel(n=5, J=10)
getX_pi(a)

getZeta Returns the vector of log of inverse dispersion parameters

Description

Given an object that describes a matrix of zero-inflated negative binomial distributions, returns the
vector zeta of log of inverse dispersion parameters

Usage

getZeta(object)

Arguments

object an object that describes a matrix of zero-inflated distributions.

Value

the vector zeta of log of inverse dispersion parameters

Examples

a <- zinbModel(n=5, J=10)
getZeta(a)

glmWeightedF Zero-inflation adjusted statistical tests for assessing differential ex-
pression.

Description

This function recycles an old version of the glmLRT method that allows an F-test with adjusted
denominator degrees of freedom to account for the downweighting in the zero-inflation model.

Usage

glmWeightedF(
glmfit,
coef = ncol(glmfit$design),
contrast = NULL,
ZI = TRUE,
independentFiltering = TRUE,
filter = NULL

)

20 glmWeightedF

Arguments

glmfit a DGEGLM-class object, usually output from glmFit.

coef integer or character vector indicating which coefficients of the linear model are
to be tested equal to zero. Values must be columns or column names of design.
Defaults to the last coefficient. Ignored if contrast is specified.

contrast numeric vector or matrix specifying one or more contrasts of the linear model
coefficients to be tested equal to zero. Number of rows must equal to the number
of columns of design. If specified, then takes precedence over coef.

ZI logical, specifying whether the degrees of freedom in the statistical test should
be adjusted according to the weights in the fit object to account for the down-
weighting. Defaults to TRUE and this option is highly recommended.

independentFiltering

logical, specifying whether independent filtering should be performed.

filter vector of values to perform filtering on. Default is the mean of the fitted values
from glmfit.

Details

When ‘independentFiltering=TRUE‘ (default) an independent filtering step is applied prior to the
multiple testing procedure, as described in great details in the ‘DESeq2“ vignette. The values in the
‘padjFilter‘ column refer to this procedure. They are identical to the ‘FDR‘ values if the filtering step
does not remove any gene, since the function uses the Benjamini-Hochberg correction by default.
If the procedure filters some genes, the adjusted p-values will typically result in greater power to
detect DE genes. The theory behind independent filtering is described in Bourgon et al. (2010).

Note

This function uses an adapted version of the glmLRT function that was originally written by Gordon
Smyth, Davis McCarthy and Yunshun Chen as part of the edgeR package. Koen Van den Berge
wrote code to adjust residual degree of freedoom and added the independent filtering step.

References

McCarthy, DJ, Chen, Y, Smyth, GK (2012). Differential expression analysis of multifactor RNA-
Seq experiments with respect to biological variation. Nucleic Acids Research 40, 4288-4297. Bour-
gon, Richard, Robert Gentleman, and Wolfgang Huber (2010) Independent Filtering Increases De-
tection Power for High-Throughput Experiments. PNAS 107 (21): 9546-51.

See Also

glmLRT

imputeZeros 21

imputeZeros Impute the zeros using the estimated parameters from the ZINB model.

Description

Given a matrix of counts and a zinb model, this function computes the imputed counts under a
zero-inflated negative binomial (ZINB) model.

Usage

imputeZeros(model, x)

Arguments

model the zinb model

x the matrix of counts n cells by J genes

Value

the matrix of imputed counts.

Examples

se <- SummarizedExperiment(matrix(rpois(60, lambda=5), nrow=10, ncol=6),
colData = data.frame(bio = gl(2, 3)))

m <- zinbFit(se, X=model.matrix(~bio, data=colData(se)),
BPPARAM=BiocParallel::SerialParam())

imputeZeros(m, t(assay(se)))

independentFiltering Perform independent filtering in differential expression analysis.

Description

This function uses the DESeq2 independent filtering method to increase detection power in high
throughput gene expression studies.

Usage

independentFiltering(object, filter, objectType = c("edgeR", "limma"))

22 loglik

Arguments

object Either a DGELRT-class object or a data.frame with differential expression re-
sults.

filter The characteristic to use for filtering, usually a measure of normalized mean
expression for the features.

objectType Either "edgeR" or "limma". If "edgeR", it is assumed that object is of class
DGELRT-class, the output of glmLRT. If "limma", it is assumed that object is
a data.frame and the output of a limma-voom analysis.

Author(s)

Koen Van den Berge

References

Michael I Love, Wolfgang Huber, and Simon Anders. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biology, 15(12):550, dec 2014.

See Also

results

loglik Compute the log-likelihood of a model given some data

Description

Given a statistical model and some data, this function computes the log-likelihood of the model
given the data, i.e., the log-probability of the data under the model.

Usage

loglik(model, x, ...)

S4 method for signature 'ZinbModel,matrix'
loglik(model, x)

Arguments

model an object that describes a statistical model.

x an object that describes data.

... additional arguments.

Value

The log-likelihood of the model given the data.

nFactors 23

Methods (by class)

• loglik(model = ZinbModel, x = matrix): return the log-likelihood of the ZINB model.

Examples

m <- zinbModel(n=5, J=10)
x <- zinbSim(m)
loglik(m, x$counts)

nFactors Generic function that returns the number of latent factors

Description

Given an object that describes a dataset or a model involving latent factors, this function returns the
number of latent factors.

Usage

nFactors(x)

Arguments

x an object that describes a dataset or a model involving latent factors

Value

the number of latent factors

Examples

a <- zinbModel()
nFactors(a)

nFeatures Generic function that returns the number of features

Description

Given an object that describes a dataset or a model, it returns the number of features.

Usage

nFeatures(x)

24 nParams

Arguments

x an object that describes a dataset or a model.

Value

the number of features.

Examples

a <- zinbModel()
nFeatures(a)

nParams Generic function that returns the total number of parameters of the
model

Description

Given an object that describes a model or a dataset, it returns total number of parameters of the
model.

Usage

nParams(model)

S4 method for signature 'ZinbModel'
nParams(model)

Arguments

model an object that describes a dataset or a model.

Value

the total number of parameters of the model.

Functions

• nParams(ZinbModel): returns the total number of parameters in the model.

Examples

a <- zinbModel()
nParams(a)

nSamples 25

nSamples Generic function that returns the number of samples

Description

Given an object that describes a model or a dataset, it returns the number of samples.

Usage

nSamples(x)

Arguments

x an object that describes a dataset or a model.

Value

the number of samples.

Examples

a <- zinbModel()
nSamples(a)

orthogonalizeTraceNorm

Orthogonalize matrices to minimize trace norm of their product

Description

Given two matrices U and V that can be multiplied, this function finds two new matrices U2 and V2
such that their product is conserved (U*V = U2*V2) and such that a||U||^2 + b||V||^2 is minimized.

Usage

orthogonalizeTraceNorm(U, V, a = 1, b = 1)

Arguments

U left matrix

V right matrix

a weight of the norm of U (default=1)

b weight of the norm of V (default=1)

26 penalty

Value

A list with the two matrices that solve the problem in the slots U and V.

Examples

U <- matrix(rnorm(15),5,3)
V <- matrix(rnorm(12),3,4)
o <- orthogonalizeTraceNorm(U,V)
norm(U%*%V - o$U%*%o$V) # should be zero
sum(U^2)+sum(V^2)
sum(o$U^2)+sum(o$V^2) # should be smaller

penalty Compute the penalty of a model

Description

Given a statistical model with regularization parameters, compute the penalty.

Usage

penalty(model)

S4 method for signature 'ZinbModel'
penalty(model)

Arguments

model an object that describes a statistical model with regularization parameters.

Value

The penalty of the model.

Methods (by class)

• penalty(ZinbModel): return the penalization.

Examples

m <- zinbModel(K=2)
penalty(m)

pvalueAdjustment 27

pvalueAdjustment Perform independent filtering in differential expression analysis.

Description

This function performs independent filtering to increase detection power in high throughput gene
expression studies.

Usage

pvalueAdjustment(
baseMean,
filter,
pValue,
theta,
alpha = 0.05,
pAdjustMethod = "BH"

)

Arguments

baseMean A vector of mean values.

filter A vector of stage-one filter statistics.

pValue A vector of unadjusted p-values, or a function which is able to compute this
vector from the filtered portion of data, if data is supplied. The option to sup-
ply a function is useful when the value of the test statistic depends on which
hypotheses are filtered out at stage one. (The limma t-statistic is an example.)

theta A vector with one or more filtering fractions to consider. Actual cutoffs are then
computed internally by applying quantile to the filter statistics contained in (or
produced by) the filter argument.

alpha A cutoff to which p-values, possibly adjusted for multiple testing, will be com-
pared. Default is 0.05.

pAdjustMethod The unadjusted p-values contained in (or produced by) test will be adjusted for
multiple testing after filtering. Default is "BH".

Value

a list with pvalues, filtering threshold, theta, number of rejections, and alpha.

Note

This function is an adapted version of the pvalueAdjustment function that was originally written
by Michael I. Love as part of the DESeq2 package. Koen Van den Berge adapted the function.

28 solveRidgeRegression

solveRidgeRegression Solve ridge regression or logistic regression problems

Description

This function solves a regression or logistic regression problem regularized by a L2 or weighted L2
penalty. Contrary to lm.ridge or glmnet, it works for any number of predictors.

Usage

solveRidgeRegression(
x,
y,
beta = rep(0, NCOL(x)),
epsilon = 1e-06,
family = c("gaussian", "binomial"),
offset = rep(0, NROW(x))

)

Arguments

x a matrix of covariates, one sample per row, one covariate per column.

y a vector of response (continuous for regression, 0/1 binary for logistic regres-
sion)

beta an initial solution where optimization starts (null vector by default)

epsilon a scalar or vector of regularization parameters (default 1e-6)

family a string to choose the type of regression (default family="gaussian")

offset a vector of offsets (default null vector)

Details

When family="gaussian", we solve the ridge regression problem that finds the β that minimizes:

||y − xβ||2 + ϵ||β||2/2.

When family="binomial" we solve the ridge logistic regression problem

min
∑
i

[−yi(xβ)i + log(1 + exp(xβ)i))] + ϵ||β||2/2.

When epsilon is a vector of size equal to the size of beta, then the penalty is a weighted L2 norm∑
i ϵiβ

2
i /2.

Value

A vector solution of the regression problem

toydata 29

toydata Toy dataset to check the model

Description

Toy dataset to check the model

Format

A matrix of integers (counts) with 96 samples (rows) and 500 genes (columns).

zinb.loglik Log-likelihood of the zero-inflated negative binomial model

Description

Given a vector of counts, this function computes the sum of the log-probabilities of the counts
under a zero-inflated negative binomial (ZINB) model. For each count, the ZINB distribution is
parametrized by three parameters: the mean value and the dispersion of the negative binomial
distribution, and the probability of the zero component.

Usage

zinb.loglik(Y, mu, theta, logitPi)

Arguments

Y the vector of counts

mu the vector of mean parameters of the negative binomial

theta the vector of dispersion parameters of the negative binomial, or a single scalar is
also possible if the dispersion parameter is constant. Note that theta is sometimes
called inverse dispersion parameter (and phi=1/theta is then called the dispersion
parameter). We follow the convention that the variance of the NB variable with
mean mu and dispersion theta is mu + mu^2/theta.

logitPi the vector of logit of the probabilities of the zero component

Value

the log-likelihood of the model.

30 zinb.loglik.dispersion

Examples

n <- 10
mu <- seq(10,50,length.out=n)
logitPi <- rnorm(10)
zeta <- rnorm(10)
Y <- rnbinom(n=n, size=exp(zeta), mu=mu)
zinb.loglik(Y, mu, exp(zeta), logitPi)
zinb.loglik(Y, mu, 1, logitPi)

zinb.loglik.dispersion

Log-likelihood of the zero-inflated negative binomial model, for a fixed
dispersion parameter

Description

Given a unique dispersion parameter and a set of counts, together with a corresponding set of
mean parameters and probabilities of zero components, this function computes the sum of the log-
probabilities of the counts under the ZINB model. The dispersion parameter is provided to the
function through zeta = log(theta), where theta is sometimes called the inverse dispersion param-
eter. The probabilities of the zero components are provided through their logit, in order to better
numerical stability.

Usage

zinb.loglik.dispersion(zeta, Y, mu, logitPi)

Arguments

zeta a scalar, the log of the inverse dispersion parameters of the negative binomial
model

Y a vector of counts

mu a vector of mean parameters of the negative binomial

logitPi a vector of logit of the probabilities of the zero component

Value

the log-likelihood of the model.

See Also

zinb.loglik.

zinb.loglik.dispersion.gradient 31

Examples

mu <- seq(10,50,length.out=10)
logitPi <- rnorm(10)
zeta <- rnorm(10)
Y <- rnbinom(n=10, size=exp(zeta), mu=mu)
zinb.loglik.dispersion(zeta, Y, mu, logitPi)

zinb.loglik.dispersion.gradient

Derivative of the log-likelihood of the zero-inflated negative binomial
model with respect to the log of the inverse dispersion parameter

Description

Derivative of the log-likelihood of the zero-inflated negative binomial model with respect to the log
of the inverse dispersion parameter

Usage

zinb.loglik.dispersion.gradient(zeta, Y, mu, logitPi)

Arguments

zeta the log of the inverse dispersion parameters of the negative binomial

Y a vector of counts

mu a vector of mean parameters of the negative binomial

logitPi a vector of the logit of the probability of the zero component

Value

the gradient of the inverse dispersion parameters.

See Also

zinb.loglik, zinb.loglik.dispersion.

32 zinb.loglik.regression

zinb.loglik.matrix Log-likelihood of the zero-inflated negative binomial model for each
entry in the matrix of counts

Description

Given a matrix of counts, this function computes the log-probabilities of the counts under a zero-
inflated negative binomial (ZINB) model. For each count, the ZINB distribution is parametrized by
three parameters: the mean value and the dispersion of the negative binomial distribution, and the
probability of the zero component.

Usage

zinb.loglik.matrix(model, x)

Arguments

model the zinb model
x the matrix of counts

Value

the matrix of log-likelihood of the model.

zinb.loglik.regression

Penalized log-likelihood of the ZINB regression model

Description

This function computes the penalized log-likelihood of a ZINB regression model given a vector of
counts.

Usage

zinb.loglik.regression(
alpha,
Y,
A.mu = matrix(nrow = length(Y), ncol = 0),
B.mu = matrix(nrow = length(Y), ncol = 0),
C.mu = matrix(0, nrow = length(Y), ncol = 1),
A.pi = matrix(nrow = length(Y), ncol = 0),
B.pi = matrix(nrow = length(Y), ncol = 0),
C.pi = matrix(0, nrow = length(Y), ncol = 1),
C.theta = matrix(0, nrow = length(Y), ncol = 1),
epsilon = 0

)

zinb.loglik.regression.gradient 33

Arguments

alpha the vectors of parameters c(a.mu, a.pi, b) concatenated

Y the vector of counts

A.mu matrix of the model (see Details, default=empty)

B.mu matrix of the model (see Details, default=empty)

C.mu matrix of the model (see Details, default=zero)

A.pi matrix of the model (see Details, default=empty)

B.pi matrix of the model (see Details, default=empty)

C.pi matrix of the model (see Details, default=zero)

C.theta matrix of the model (see Details, default=zero)

epsilon regularization parameter. A vector of the same length as alpha if each coordi-
nate of alpha has a specific regularization, or just a scalar is the regularization
is the same for all coordinates of alpha. Default=O.

Details

The regression model is parametrized as follows:

log(µ) = Aµ ∗ aµ +Bµ ∗ b+ Cµ

logit(Π) = Aπ ∗ aπ +Bπ ∗ b

log(θ) = Cθ

where µ,Π, θ are respectively the vector of mean parameters of the NB distribution, the vector of
probabilities of the zero component, and the vector of inverse dispersion parameters. Note that the
b vector is shared between the mean of the negative binomial and the probability of zero. The log-
likelihood of a vector of parameters α = (aµ; aπ; b) is penalized by a regularization term ϵ||α||2/2 is
ϵ is a scalar, or

∑
i ϵiα

2
i /2 is ϵ is a vector of the same size as α to allow for differential regularization

among the parameters.

Value

the penalized log-likelihood.

zinb.loglik.regression.gradient

Gradient of the penalized log-likelihood of the ZINB regression model

Description

This function computes the gradient of the penalized log-likelihood of a ZINB regression model
given a vector of counts.

34 zinb.loglik.regression.gradient

Usage

zinb.loglik.regression.gradient(
alpha,
Y,
A.mu = matrix(nrow = length(Y), ncol = 0),
B.mu = matrix(nrow = length(Y), ncol = 0),
C.mu = matrix(0, nrow = length(Y), ncol = 1),
A.pi = matrix(nrow = length(Y), ncol = 0),
B.pi = matrix(nrow = length(Y), ncol = 0),
C.pi = matrix(0, nrow = length(Y), ncol = 1),
C.theta = matrix(0, nrow = length(Y), ncol = 1),
epsilon = 0

)

Arguments

alpha the vectors of parameters c(a.mu, a.pi, b) concatenated

Y the vector of counts

A.mu matrix of the model (see Details, default=empty)

B.mu matrix of the model (see Details, default=empty)

C.mu matrix of the model (see Details, default=zero)

A.pi matrix of the model (see Details, default=empty)

B.pi matrix of the model (see Details, default=empty)

C.pi matrix of the model (see Details, default=zero)

C.theta matrix of the model (see Details, default=zero)

epsilon regularization parameter. A vector of the same length as alpha if each coordi-
nate of alpha has a specific regularization, or just a scalar is the regularization
is the same for all coordinates of alpha. Default=O.

Details

The regression model is described in zinb.loglik.regression.

Value

The gradient of the penalized log-likelihood.

See Also

zinb.loglik.regression

zinb.regression.parseModel 35

zinb.regression.parseModel

Parse ZINB regression model

Description

Given the parameters of a ZINB regression model, this function parses the model and computes the
vector of log(mu), logit(pi), and the dimensions of the different components of the vector of param-
eters. See zinb.loglik.regression for details of the ZINB regression model and its parameters.

Usage

zinb.regression.parseModel(alpha, A.mu, B.mu, C.mu, A.pi, B.pi, C.pi)

Arguments

alpha the vectors of parameters c(a.mu, a.pi, b) concatenated

A.mu matrix of the model (see above, default=empty)

B.mu matrix of the model (see above, default=empty)

C.mu matrix of the model (see above, default=zero)

A.pi matrix of the model (see above, default=empty)

B.pi matrix of the model (see above, default=empty)

C.pi matrix of the model (see above, default=zero)

Value

A list with slots logMu, logitPi, dim.alpha (a vector of length 3 with the dimension of each of
the vectors a.mu, a.pi and b in alpha), and start.alpha (a vector of length 3 with the starting
indices of the 3 vectors in alpha)

See Also

zinb.loglik.regression

zinbAIC Compute the AIC or BIC of a model given some data

Description

Given a statistical model and some data, these functions compute the AIC or BIC of the model
given the data, i.e., the AIC/BIC of the data under the model.

36 zinbFit

Usage

zinbAIC(model, x)

zinbBIC(model, x)

S4 method for signature 'ZinbModel,matrix'
zinbAIC(model, x)

S4 method for signature 'ZinbModel,matrix'
zinbBIC(model, x)

Arguments

model an object that describes a statistical model.

x an object that describes data.

Value

the AIC/BIC of the model.

Functions

• zinbAIC(model = ZinbModel, x = matrix): returns the AIC of the ZINB model.

• zinbBIC(model = ZinbModel, x = matrix): returns the BIC of the ZINB model.

Examples

se <- SummarizedExperiment(matrix(rpois(60, lambda=5), nrow=10, ncol=6),
colData = data.frame(bio = gl(2, 3)))

m <- zinbFit(se, X=model.matrix(~bio, data=colData(se)),
BPPARAM=BiocParallel::SerialParam())

zinbAIC(m, t(assay(se)))
zinbBIC(m, t(assay(se)))

zinbFit Fit a ZINB regression model

Description

Given an object with the data, it fits a ZINB model.

zinbFit 37

Usage

zinbFit(Y, ...)

S4 method for signature 'SummarizedExperiment'
zinbFit(
Y,
X,
V,
K,
which_assay,
commondispersion = TRUE,
zeroinflation = TRUE,
verbose = FALSE,
nb.repeat.initialize = 2,
maxiter.optimize = 25,
stop.epsilon.optimize = 1e-04,
BPPARAM = BiocParallel::bpparam(),
...

)

S4 method for signature 'matrix'
zinbFit(
Y,
X,
V,
K,
commondispersion = TRUE,
zeroinflation = TRUE,
verbose = FALSE,
nb.repeat.initialize = 2,
maxiter.optimize = 25,
stop.epsilon.optimize = 1e-04,
BPPARAM = BiocParallel::bpparam(),
...

)

S4 method for signature 'dgCMatrix'
zinbFit(Y, ...)

Arguments

Y The data (genes in rows, samples in columns).
... Additional parameters to describe the model, see zinbModel.
X The design matrix containing sample-level covariates, one sample per row. If

missing, X will contain only an intercept. If Y is a SummarizedExperiment
object, X can be a formula using the variables in the colData slot of Y.

V The design matrix containing gene-level covariates, one gene per row. If miss-
ing, V will contain only an intercept. If Y is a SummarizedExperiment object,

38 zinbFit

V can be a formula using the variables in the rowData slot of Y.

K integer. Number of latent factors.

which_assay numeric or character. Which assay of Y to use (only if Y is a SummarizedEx-
periment).

commondispersion

Whether or not a single dispersion for all features is estimated (default TRUE).

zeroinflation Whether or not a ZINB model should be fitted. If FALSE, a negative binomial
model is fitted instead.

verbose Print helpful messages.
nb.repeat.initialize

Number of iterations for the initialization of beta_mu and gamma_mu.
maxiter.optimize

maximum number of iterations for the optimization step (default 25).
stop.epsilon.optimize

stopping criterion in the optimization step, when the relative gain in likelihood
is below epsilon (default 0.0001).

BPPARAM object of class bpparamClass that specifies the back-end to be used for compu-
tations. See bpparam for details.

Details

By default, i.e., if no arguments other than Y are passed, the model is fitted with an intercept for the
regression across-samples and one intercept for the regression across genes, both for mu and for pi.

This means that by default the model is fitted with X_mu = X_pi = 1_n and V_mu = V_pi = 1_J. If
the user explicitly passes the design matrices, this behavior is overwritten, i.e., the user needs to
explicitly include the intercept in the design matrices.

If Y is a Summarized experiment, the function uses the assay named "counts", if any, or the first
assay.

Currently, if Y is a sparseMatrix, this calls the zinbFit method on as.matrix(Y)

Value

An object of class ZinbModel that has been fitted by penalized maximum likelihood on the data.

Methods (by class)

• zinbFit(SummarizedExperiment): Y is a SummarizedExperiment.

• zinbFit(matrix): Y is a matrix of counts (genes in rows).

• zinbFit(dgCMatrix): Y is a sparse matrix of counts (genes in rows).

See Also

model.matrix.

zinbInitialize 39

Examples

se <- SummarizedExperiment(matrix(rpois(60, lambda=5), nrow=10, ncol=6),
colData = data.frame(bio = gl(2, 3)))

m <- zinbFit(se, X=model.matrix(~bio, data=colData(se)),
BPPARAM=BiocParallel::SerialParam())

bio <- gl(2, 3)
m <- zinbFit(matrix(rpois(60, lambda=5), nrow=10, ncol=6),

X=model.matrix(~bio), BPPARAM=BiocParallel::SerialParam())

zinbInitialize Initialize the parameters of a ZINB regression model

Description

The initialization performs quick optimization of the parameters with several simplifying assump-
tions compared to the true model: non-zero counts are models as log-Gaussian, zeros are modeled
as dropouts. The dispersion parameter is not modified.

Usage

zinbInitialize(
m,
Y,
nb.repeat = 2,
it.max = 100,
BPPARAM = BiocParallel::bpparam()

)

Arguments

m The model of class ZinbModel

Y The matrix of counts.

nb.repeat Number of iterations for the estimation of beta_mu and gamma_mu.

it.max Maximum number of iterations in softImpute.

BPPARAM object of class bpparamClass that specifies the back-end to be used for compu-
tations. See bpparam for details.

Value

An object of class ZinbModel similar to the one given as argument with modified parameters al-
pha_mu, alpha_pi, beta_mu, beta_pi, gamma_mu, gamma_pi, W.

40 zinbModel

Examples

Y <- matrix(rpois(60, lambda=2), 6, 10)
bio <- gl(2, 3)
time <- rnorm(6)
gc <- rnorm(10)
m <- zinbModel(Y, X=model.matrix(~bio + time), V=model.matrix(~gc),

which_X_pi=1L, which_V_mu=1L, K=1)
m <- zinbInitialize(m, Y, BPPARAM=BiocParallel::SerialParam())

zinbModel Initialize an object of class ZinbModel

Description

Initialize an object of class ZinbModel

Usage

zinbModel(
X,
V,
O_mu,
O_pi,
which_X_mu,
which_X_pi,
which_V_mu,
which_V_pi,
W,
beta_mu,
beta_pi,
gamma_mu,
gamma_pi,
alpha_mu,
alpha_pi,
zeta,
epsilon,
epsilon_beta_mu,
epsilon_gamma_mu,
epsilon_beta_pi,
epsilon_gamma_pi,
epsilon_W,
epsilon_alpha,
epsilon_zeta,
epsilon_min_logit,
n,
J,
K

)

zinbModel 41

Arguments

X matrix. The design matrix containing sample-level covariates, one sample per
row.

V matrix. The design matrix containing gene-level covariates, one gene per row.

O_mu matrix. The offset matrix for mu.

O_pi matrix. The offset matrix for pi.

which_X_mu integer. Indeces of which columns of X to use in the regression of mu.

which_X_pi integer. Indeces of which columns of X to use in the regression of pi.

which_V_mu integer. Indeces of which columns of V to use in the regression of mu.

which_V_pi integer. Indeces of which columns of V to use in the regression of pi.

W matrix. The factors of sample-level latent factors.

beta_mu matrix or NULL. The coefficients of X in the regression of mu.

beta_pi matrix or NULL. The coefficients of X in the regression of pi.

gamma_mu matrix or NULL. The coefficients of V in the regression of mu.

gamma_pi matrix or NULL. The coefficients of V in the regression of pi.

alpha_mu matrix or NULL. The coefficients of W in the regression of mu.

alpha_pi matrix or NULL. The coefficients of W in the regression of pi.

zeta numeric. A vector of log of inverse dispersion parameters.

epsilon nonnegative scalar. Regularization parameter.
epsilon_beta_mu

nonnegative scalar. Regularization parameter for beta_mu.
epsilon_gamma_mu

nonnegative scalar. Regularization parameter for gamma_mu.
epsilon_beta_pi

nonnegative scalar. Regularization parameter for beta_pi.
epsilon_gamma_pi

nonnegative scalar. Regularization parameter for gamma_pi.

epsilon_W nonnegative scalar. Regularization parameter for W.

epsilon_alpha nonnegative scalar. Regularization parameter for alpha (both alpha_mu and al-
pha_pi).

epsilon_zeta nonnegative scalar. Regularization parameter for zeta.
epsilon_min_logit

scalar. Minimum regularization parameter for parameters of the logit model,
including the intercept.

n integer. Number of samples.

J integer. Number of genes.

K integer. Number of latent factors.

42 ZinbModel-class

Details

This is a wrapper around the new() function to create an instance of class ZinbModel. Rarely, the
user will need to create a ZinbModel object from scratch, as tipically this is the result of zinbFit.

If any of X, V, W matrices are passed, n, J, and K are inferred. Alternatively, the user can specify one
or more of n, J, and K.

The regularization parameters can be set by a unique parameter epsilon or specific values for the
different regularization parameters can also be provided. If only epsilon is specified, the other
parameters take the following values:

• epsilon_beta = epsilon/J

• epsilon_gamma = epsilon/n

• epsilon_W = epsilon/n

• epsilon_alpha = epsilon/J

• epsilon_zeta = epsilon

We empirically found that large values of epsilon provide a more stable estimation of W.

A call with no argument has the following default values: n = 50, J = 100, K = 0, epsilon=J.

Although it is possible to create new instances of the class by calling this function, this is not the
most common way of creating ZinbModel objects. The main use of the class is within the zinbFit
function.

Value

an object of class ZinbModel.

Examples

a <- zinbModel()
nSamples(a)
nFeatures(a)
nFactors(a)
nParams(a)

ZinbModel-class Class ZinbModel

Description

Objects of this class store all the values needed to work with a zero-inflated negative binomial
(ZINB) model, as described in the vignette. They contain all information to fit a model by penalized
maximum likelihood or simulate data from a model.

ZinbModel-class 43

Usage

S4 method for signature 'ZinbModel'
show(object)

S4 method for signature 'ZinbModel'
nSamples(x)

S4 method for signature 'ZinbModel'
nFeatures(x)

S4 method for signature 'ZinbModel'
nFactors(x)

S4 method for signature 'ZinbModel'
getX_mu(object, intercept = TRUE)

S4 method for signature 'ZinbModel'
getX_pi(object, intercept = TRUE)

S4 method for signature 'ZinbModel'
getV_mu(object, intercept = TRUE)

S4 method for signature 'ZinbModel'
getV_pi(object, intercept = TRUE)

S4 method for signature 'ZinbModel'
getLogMu(object)

S4 method for signature 'ZinbModel'
getMu(object)

S4 method for signature 'ZinbModel'
getLogitPi(object)

S4 method for signature 'ZinbModel'
getPi(object)

S4 method for signature 'ZinbModel'
getZeta(object)

S4 method for signature 'ZinbModel'
getPhi(object)

S4 method for signature 'ZinbModel'
getTheta(object)

S4 method for signature 'ZinbModel'
getEpsilon_beta_mu(object)

44 ZinbModel-class

S4 method for signature 'ZinbModel'
getEpsilon_gamma_mu(object)

S4 method for signature 'ZinbModel'
getEpsilon_beta_pi(object)

S4 method for signature 'ZinbModel'
getEpsilon_gamma_pi(object)

S4 method for signature 'ZinbModel'
getEpsilon_W(object)

S4 method for signature 'ZinbModel'
getEpsilon_alpha(object)

S4 method for signature 'ZinbModel'
getEpsilon_zeta(object)

S4 method for signature 'ZinbModel'
getW(object)

S4 method for signature 'ZinbModel'
getBeta_mu(object)

S4 method for signature 'ZinbModel'
getBeta_pi(object)

S4 method for signature 'ZinbModel'
getGamma_mu(object)

S4 method for signature 'ZinbModel'
getGamma_pi(object)

S4 method for signature 'ZinbModel'
getAlpha_mu(object)

S4 method for signature 'ZinbModel'
getAlpha_pi(object)

Arguments

object an object of class ZinbModel.

x an object of class ZinbModel.

intercept logical. Whether to return the intercept (ignored if the design matrix has no
intercept). Default TRUE

ZinbModel-class 45

Details

For the full description of the model see the model vignette. Internally, the slots are checked so that
the matrices are of the appropriate dimensions: in particular, X, O_mu, O_pi, and W need to have n
rows, V needs to have J rows, zeta must be of length J.

Value

nSamples returns the number of samples; nFeatures returns the number of features; nFactors
returns the number of latent factors.

Methods (by generic)

• show(ZinbModel): show useful info on the object.

• nSamples(ZinbModel): returns the number of samples.

• nFeatures(ZinbModel): returns the number of features.

• nFactors(ZinbModel): returns the number of latent factors.

• getX_mu(ZinbModel): returns the sample-level design matrix for mu.

• getX_pi(ZinbModel): returns the sample-level design matrix for pi.

• getV_mu(ZinbModel): returns the gene-level design matrix for mu.

• getV_pi(ZinbModel): returns the sample-level design matrix for pi.

• getLogMu(ZinbModel): returns the logarithm of the mean of the non-zero component.

• getMu(ZinbModel): returns the mean of the non-zero component.

• getLogitPi(ZinbModel): returns the logit-probability of zero.

• getPi(ZinbModel): returns the probability of zero.

• getZeta(ZinbModel): returns the log of the inverse of the dispersion parameter.

• getPhi(ZinbModel): returns the dispersion parameter.

• getTheta(ZinbModel): returns the inverse of the dispersion parameter.

• getEpsilon_beta_mu(ZinbModel): returns the regularization parameters for beta_mu.

• getEpsilon_gamma_mu(ZinbModel): returns the regularization parameters for gamma_mu.

• getEpsilon_beta_pi(ZinbModel): returns the regularization parameters for beta_pi.

• getEpsilon_gamma_pi(ZinbModel): returns the regularization parameters for gamma_pi.

• getEpsilon_W(ZinbModel): returns the regularization parameters for W.

• getEpsilon_alpha(ZinbModel): returns the regularization parameters for alpha.

• getEpsilon_zeta(ZinbModel): returns the regularization parameters for zeta.

• getW(ZinbModel): returns the matrix W of inferred sample-level covariates.

• getBeta_mu(ZinbModel): returns the matrix beta_mu of inferred parameters.

• getBeta_pi(ZinbModel): returns the matrix beta_pi of inferred parameters.

• getGamma_mu(ZinbModel): returns the matrix gamma_mu of inferred parameters.

• getGamma_pi(ZinbModel): returns the matrix gamma_pi of inferred parameters.

• getAlpha_mu(ZinbModel): returns the matrix alpha_mu of inferred parameters.

• getAlpha_pi(ZinbModel): returns the matrix alpha_pi of inferred parameters.

46 ZinbModel-class

Slots

X matrix. The design matrix containing sample-level covariates, one sample per row.

V matrix. The design matrix containing gene-level covariates, one gene per row.

O_mu matrix. The offset matrix for mu.

O_pi matrix. The offset matrix for pi.

which_X_mu integer. Indeces of which columns of X to use in the regression of mu.

which_V_mu integer. Indeces of which columns of V to use in the regression of mu.

which_X_pi integer. Indeces of which columns of X to use in the regression of pi.

which_V_pi integer. Indeces of which columns of V to use in the regression of pi.

X_mu_intercept logical. TRUE if X_mu contains an intercept.

X_pi_intercept logical. TRUE if X_pi contains an intercept.

V_mu_intercept logical. TRUE if V_mu contains an intercept.

V_pi_intercept logical. TRUE if V_pi contains an intercept.

W matrix. The factors of sample-level latent factors.

beta_mu matrix or NULL. The coefficients of X in the regression of mu.

gamma_mu matrix or NULL. The coefficients of V in the regression of mu.

alpha_mu matrix or NULL. The coefficients of W in the regression of mu.

beta_pi matrix or NULL. The coefficients of X in the regression of pi.

gamma_pi matrix or NULL. The coefficients of V in the regression of pi.

alpha_pi matrix or NULL. The coefficients of W in the regression of pi.

zeta numeric. A vector of log of inverse dispersion parameters.

epsilon_beta_mu nonnegative scalar. Regularization parameter for beta_mu

epsilon_gamma_mu nonnegative scalar. Regularization parameter for gamma_mu

epsilon_beta_pi nonnegative scalar. Regularization parameter for beta_pi

epsilon_gamma_pi nonnegative scalar. Regularization parameter for gamma_pi

epsilon_W nonnegative scalar. Regularization parameter for W

epsilon_alpha nonnegative scalar. Regularization parameter for alpha (both alpha_mu and al-
pha_pi)

epsilon_zeta nonnegative scalar. Regularization parameter for zeta

epsilon_min_logit scalar. Minimum regularization parameter for parameters of the logit model,
including the intercept.

zinbOptimize 47

zinbOptimize Optimize the parameters of a ZINB regression model

Description

The parameters of the model given as argument are optimized by penalized maximum likelihood on
the count matrix given as argument. It is recommended to call zinb_initialize before this function
to have good starting point for optimization, since the optimization problem is not convex and can
only converge to a local minimum.

Usage

zinbOptimize(
m,
Y,
commondispersion = TRUE,
maxiter = 25,
stop.epsilon = 1e-04,
verbose = FALSE,
BPPARAM = BiocParallel::bpparam()

)

Arguments

m The model of class ZinbModel

Y The matrix of counts.
commondispersion

Whether the dispersion is the same for all features (default=TRUE)

maxiter maximum number of iterations (default 25)

stop.epsilon stopping criterion, when the relative gain in likelihood is below epsilon (default
0.0001)

verbose print information (default FALSE)

BPPARAM object of class bpparamClass that specifies the back-end to be used for compu-
tations. See bpparam for details.

Value

An object of class ZinbModel similar to the one given as argument with modified parameters al-
pha_mu, alpha_pi, beta_mu, beta_pi, gamma_mu, gamma_pi, W.

Examples

Y = matrix(10, 3, 5)
m = zinbModel(n=NROW(Y), J=NCOL(Y))
m = zinbInitialize(m, Y, BPPARAM=BiocParallel::SerialParam())
m = zinbOptimize(m, Y, BPPARAM=BiocParallel::SerialParam())

48 zinbOptimizeDispersion

zinbOptimizeDispersion

Optimize the dispersion parameters of a ZINB regression model

Description

The dispersion parameters of the model are optimized by penalized maximum likelihood on the
count matrix given as argument.

Usage

zinbOptimizeDispersion(
J,
mu,
logitPi,
epsilon,
Y,
commondispersion = TRUE,
BPPARAM = BiocParallel::bpparam()

)

Arguments

J The number of genes.

mu the matrix containing the mean of the negative binomial.

logitPi the matrix containing the logit of the probability parameter of the zero-inflation
part of the model.

epsilon the regularization parameter.

Y The matrix of counts.
commondispersion

Whether or not a single dispersion for all features is estimated (default TRUE)

BPPARAM object of class bpparamClass that specifies the back-end to be used for compu-
tations. See bpparam for details.

Value

An object of class ZinbModel similar to the one given as argument with modified parameters zeta.

Examples

Y = matrix(10, 3, 5)
m = zinbModel(n=NROW(Y), J=NCOL(Y))
m = zinbInitialize(m, Y, BPPARAM=BiocParallel::SerialParam())
m = zinbOptimizeDispersion(NROW(Y), getMu(m), getLogitPi(m),

getEpsilon_zeta(m), Y, BPPARAM=BiocParallel::SerialParam())

zinbSim 49

zinbSim Simulate counts from a zero-inflated negative binomial model

Description

Given an object that describes zero-inflated negative binomial distribution, simulate counts from the
distribution.

Usage

zinbSim(object, seed, ...)

S4 method for signature 'ZinbModel'
zinbSim(object, seed)

Arguments

object an object that describes a matrix of zero-inflated negative binomial.

seed an optional integer to specify how the random number generator should be ini-
tialized with a call to set.seed. If missing, the random generator state is not
changed.

... additional arguments.

Value

A list with the following elements.

• countsthe matrix with the simulated counts.

• dataNBthe data simulated from the negative binomial.

• dataDropoutsthe data simulated from the binomial process.

• zeroFractionthe fraction of zeros.

Methods (by class)

• zinbSim(ZinbModel): simulate from a ZINB distribution.

Examples

a <- zinbModel(n=5, J=10)
zinbSim(a)

50 zinbsurf

zinbsurf Perform dimensionality reduction using a ZINB regression model for
large datasets.

Description

Given an object with the data, it performs dimensionality reduction using a ZINB regression model
with gene and cell-level covariates on a random subset of the data. It then projects the remaining
data onto the lower dimensional space.

Usage

zinbsurf(Y, ...)

S4 method for signature 'SummarizedExperiment'
zinbsurf(
Y,
X,
V,
K,
which_assay,
which_genes,
zeroinflation = TRUE,
prop_fit = 0.1,
BPPARAM = BiocParallel::bpparam(),
verbose = FALSE,
...

)

Arguments

Y The data (genes in rows, samples in columns). Currently implemented only for
SummarizedExperiment.

... Additional parameters to describe the model, see zinbModel.

X The design matrix containing sample-level covariates, one sample per row. If
missing, X will contain only an intercept. If Y is a SummarizedExperiment
object, X can be a formula using the variables in the colData slot of Y.

V The design matrix containing gene-level covariates, one gene per row. If miss-
ing, V will contain only an intercept. If Y is a SummarizedExperiment object,
V can be a formula using the variables in the rowData slot of Y.

K integer. Number of latent factors. Specify K = 0 if only computing observational
weights.

which_assay numeric or character. Which assay of Y to use. If missing, if ‘assayNames(Y)‘
contains "counts" then that is used. Otherwise, the first assay is used.

zinbwave 51

which_genes character. Which genes to use to estimate W (see details). Ignored if fitted_model
is provided.

zeroinflation Whether or not a ZINB model should be fitted. If FALSE, a negative binomial
model is fitted instead.

prop_fit numeric between 0 and 1. The proportion of cells to use for the zinbwave fit.

BPPARAM object of class bpparamClass that specifies the back-end to be used for compu-
tations. See bpparam for details.

verbose Print helpful messages.

Details

This function implements an approximate strategy, in which the full zinbwave model is fit only on
a random subset of the data (controlled by the prop_fit parameter). The rest of the samples are
subsequently projected onto the low-rank space. This strategy is much faster and uses less memory
than the full zinbwave method. It is recommended with extremely large datasets.

By default zinbsurf uses all genes to estimate W. However, we recommend to use the top 1,000
most variable genes for this step. In general, a user can specify any custom set of genes to be used
to estimate W, by specifying either a vector of gene names, or a single character string corresponding
to a column of the rowData.

Value

An object of class SingleCellExperiment; the dimensionality reduced matrix is stored in the
reducedDims slot.

Methods (by class)

• zinbsurf(SummarizedExperiment): Y is a SummarizedExperiment.

Examples

se <- SingleCellExperiment(assays = list(counts = matrix(rpois(60, lambda=5),
nrow=10, ncol=6)),

colData = data.frame(bio = gl(2, 3)))
colnames(se) <- paste0("sample", 1:6)
m <- zinbsurf(se, X="~bio", K = 1, prop_fit = .5, which_assay = 1,

BPPARAM=BiocParallel::SerialParam())

zinbwave Perform dimensionality reduction using a ZINB regression model with
gene and cell-level covariates.

Description

Given an object with the data, it performs dimensionality reduction using a ZINB regression model
with gene and cell-level covariates.

52 zinbwave

Usage

zinbwave(Y, ...)

S4 method for signature 'SummarizedExperiment'
zinbwave(
Y,
X,
V,
K = 2,
fitted_model,
which_assay,
which_genes,
commondispersion = TRUE,
zeroinflation = TRUE,
verbose = FALSE,
nb.repeat.initialize = 2,
maxiter.optimize = 25,
stop.epsilon.optimize = 1e-04,
BPPARAM = BiocParallel::bpparam(),
normalizedValues = FALSE,
residuals = FALSE,
imputedValues = FALSE,
observationalWeights = FALSE,
...

)

Arguments

Y The data (genes in rows, samples in columns). Currently implemented only for
SummarizedExperiment.

... Additional parameters to describe the model, see zinbModel.

X The design matrix containing sample-level covariates, one sample per row. If
missing, X will contain only an intercept. If Y is a SummarizedExperiment
object, X can be a formula using the variables in the colData slot of Y.

V The design matrix containing gene-level covariates, one gene per row. If miss-
ing, V will contain only an intercept. If Y is a SummarizedExperiment object,
V can be a formula using the variables in the rowData slot of Y.

K integer. Number of latent factors. Specify K = 0 if only computing observational
weights.

fitted_model a ZinbModel object.

which_assay numeric or character. Which assay of Y to use. If missing, if ‘assayNames(Y)‘
contains "counts" then that is used. Otherwise, the first assay is used.

which_genes character. Which genes to use to estimate W (see details). Ignored if fitted_model
is provided.

commondispersion

Whether or not a single dispersion for all features is estimated (default TRUE).

zinbwave 53

zeroinflation Whether or not a ZINB model should be fitted. If FALSE, a negative binomial
model is fitted instead.

verbose Print helpful messages.
nb.repeat.initialize

Number of iterations for the initialization of beta_mu and gamma_mu.
maxiter.optimize

maximum number of iterations for the optimization step (default 25).
stop.epsilon.optimize

stopping criterion in the optimization step, when the relative gain in likelihood
is below epsilon (default 0.0001).

BPPARAM object of class bpparamClass that specifies the back-end to be used for compu-
tations. See bpparam for details.

normalizedValues

indicates wether or not you want to compute normalized values for the counts
after adjusting for gene and cell-level covariates.

residuals indicates wether or not you want to compute the residuals of the ZINB model.
Deviance residuals are computed.

imputedValues indicates wether or not you want to compute the imputed counts of the ZINB
model.

observationalWeights

indicates whether to compute the observational weights for differential expres-
sion (see vignette).

Details

For visualization (heatmaps, ...), please use the normalized values. It corresponds to the deviance
residuals when the W is not included in the model but the gene and cell-level covariates are. As
a results, when W is not included in the model, the deviance residuals should capture the biology.
Note that we do not recommend to use the normalized values for any downstream analysis (such as
clustering, or differential expression), but only for visualization.

If one has already fitted a model using ZinbModel, the object containing such model can be used as
input of zinbwave to save the resulting W into a SummarizedExperiment and optionally compute
residuals and normalized values, without the need for re-fitting the model.

By default zinbwave uses all genes to estimate W. However, we recommend to use the top 1,000
most variable genes for this step. In general, a user can specify any custom set of genes to be used
to estimate W, by specifying either a vector of gene names, or a single character string corresponding
to a column of the rowData.

Note that if both which_genes is specified and at least one among observationalWeights, imputedValues,
residuals, and normalizedValues is TRUE, the model needs to be fit twice.

Value

An object of class SingleCellExperiment; the dimensionality reduced matrix is stored in the
reducedDims slot and optionally normalized values and residuals are added in the list of assays.

54 zinbwave

Methods (by class)

• zinbwave(SummarizedExperiment): Y is a SummarizedExperiment.

Examples

se <- SingleCellExperiment(assays = list(counts = matrix(rpois(60, lambda=5),
nrow=10, ncol=6)),

colData = data.frame(bio = gl(2, 3)))

m <- zinbwave(se, X="~bio", BPPARAM=BiocParallel::SerialParam())

Index

bpparam, 38, 39, 47, 48, 51, 53

computeDevianceResiduals, 3
computeObservationalWeights, 4

data.frame, 22

getAlpha_mu, 4
getAlpha_mu,ZinbModel-method

(ZinbModel-class), 42
getAlpha_pi, 5
getAlpha_pi,ZinbModel-method

(ZinbModel-class), 42
getBeta_mu, 6
getBeta_mu,ZinbModel-method

(ZinbModel-class), 42
getBeta_pi, 6
getBeta_pi,ZinbModel-method

(ZinbModel-class), 42
getEpsilon_alpha, 7
getEpsilon_alpha,ZinbModel-method

(ZinbModel-class), 42
getEpsilon_beta_mu, 7
getEpsilon_beta_mu,ZinbModel-method

(ZinbModel-class), 42
getEpsilon_beta_pi, 8
getEpsilon_beta_pi,ZinbModel-method

(ZinbModel-class), 42
getEpsilon_gamma_mu, 8
getEpsilon_gamma_mu,ZinbModel-method

(ZinbModel-class), 42
getEpsilon_gamma_pi, 9
getEpsilon_gamma_pi,ZinbModel-method

(ZinbModel-class), 42
getEpsilon_W, 10
getEpsilon_W,ZinbModel-method

(ZinbModel-class), 42
getEpsilon_zeta, 10
getEpsilon_zeta,ZinbModel-method

(ZinbModel-class), 42

getGamma_mu, 11
getGamma_mu,ZinbModel-method

(ZinbModel-class), 42
getGamma_pi, 11
getGamma_pi,ZinbModel-method

(ZinbModel-class), 42
getLogitPi, 12
getLogitPi,ZinbModel-method

(ZinbModel-class), 42
getLogMu, 13
getLogMu,ZinbModel-method

(ZinbModel-class), 42
getMu, 13
getMu,ZinbModel-method

(ZinbModel-class), 42
getPhi, 14
getPhi,ZinbModel-method

(ZinbModel-class), 42
getPi, 15
getPi,ZinbModel-method

(ZinbModel-class), 42
getTheta, 15
getTheta,ZinbModel-method

(ZinbModel-class), 42
getV_mu, 16
getV_mu,ZinbModel-method

(ZinbModel-class), 42
getV_pi, 16
getV_pi,ZinbModel-method

(ZinbModel-class), 42
getW, 17
getW,ZinbModel-method

(ZinbModel-class), 42
getX_mu, 18
getX_mu,ZinbModel-method

(ZinbModel-class), 42
getX_pi, 18
getX_pi,ZinbModel-method

(ZinbModel-class), 42

55

56 INDEX

getZeta, 19
getZeta,ZinbModel-method

(ZinbModel-class), 42
glmFit, 20
glmLRT, 19, 20, 22
glmWeightedF, 19

imputeZeros, 21
independentFiltering, 21

loglik, 22
loglik,ZinbModel,matrix-method

(loglik), 22

model.matrix, 38

nFactors, 23
nFactors,ZinbModel-method

(ZinbModel-class), 42
nFeatures, 23
nFeatures,ZinbModel-method

(ZinbModel-class), 42
nParams, 24
nParams,ZinbModel-method (nParams), 24
nSamples, 25
nSamples,ZinbModel-method

(ZinbModel-class), 42

orthogonalizeTraceNorm, 25

penalty, 26
penalty,ZinbModel-method (penalty), 26
pvalueAdjustment, 27

results, 22

show,ZinbModel-method
(ZinbModel-class), 42

solveRidgeRegression, 28
SummarizedExperiment, 38, 51, 54

toydata, 29

zinb.loglik, 29, 30, 31
zinb.loglik.dispersion, 30, 31
zinb.loglik.dispersion.gradient, 31
zinb.loglik.matrix, 32
zinb.loglik.regression, 32, 34, 35
zinb.loglik.regression.gradient, 33
zinb.regression.parseModel, 35

zinbAIC, 35
zinbAIC,ZinbModel,matrix-method

(zinbAIC), 35
zinbBIC (zinbAIC), 35
zinbBIC,ZinbModel,matrix-method

(zinbAIC), 35
zinbFit, 12–15, 17, 36, 42
zinbFit,dgCMatrix-method (zinbFit), 36
zinbFit,matrix-method (zinbFit), 36
zinbFit,SummarizedExperiment-method

(zinbFit), 36
zinbInitialize, 39
ZinbModel, 17, 42, 52, 53
ZinbModel (ZinbModel-class), 42
zinbModel, 37, 40, 50, 52
ZinbModel-class, 42
zinbOptimize, 47
zinbOptimizeDispersion, 48
zinbSim, 49
zinbSim,ZinbModel-method (zinbSim), 49
zinbsurf, 50
zinbsurf,SummarizedExperiment-method

(zinbsurf), 50
zinbwave, 51, 51
zinbwave,SummarizedExperiment-method

(zinbwave), 51

	computeDevianceResiduals
	computeObservationalWeights
	getAlpha_mu
	getAlpha_pi
	getBeta_mu
	getBeta_pi
	getEpsilon_alpha
	getEpsilon_beta_mu
	getEpsilon_beta_pi
	getEpsilon_gamma_mu
	getEpsilon_gamma_pi
	getEpsilon_W
	getEpsilon_zeta
	getGamma_mu
	getGamma_pi
	getLogitPi
	getLogMu
	getMu
	getPhi
	getPi
	getTheta
	getV_mu
	getV_pi
	getW
	getX_mu
	getX_pi
	getZeta
	glmWeightedF
	imputeZeros
	independentFiltering
	loglik
	nFactors
	nFeatures
	nParams
	nSamples
	orthogonalizeTraceNorm
	penalty
	pvalueAdjustment
	solveRidgeRegression
	toydata
	zinb.loglik
	zinb.loglik.dispersion
	zinb.loglik.dispersion.gradient
	zinb.loglik.matrix
	zinb.loglik.regression
	zinb.loglik.regression.gradient
	zinb.regression.parseModel
	zinbAIC
	zinbFit
	zinbInitialize
	zinbModel
	ZinbModel-class
	zinbOptimize
	zinbOptimizeDispersion
	zinbSim
	zinbsurf
	zinbwave
	Index

