Package ‘zenith’

February 2, 2026

Type Package

Title Gene set analysis following differential expression using linear
(mixed) modeling with dream

Version 1.13.0
Date 2025-04-03

Description Zenith performs gene set analysis on the result of differential expression using lin-
ear (mixed) modeling with dream by considering the correlation between gene expres-
sion traits. This package implements the camera method from the limma package pro-
posed by Wu and Smyth (2012). Zenith is a simple extension of camera to be compati-
ble with linear mixed models implemented in variancePartition::dream().

VignetteBuilder knitr
License Artistic-2.0

Encoding UTF-8
URL https://DiseaseNeuroGenomics.github.io/zenith

BugReports https://github.com/DiseaseNeuroGenomics/zenith/issues

Suggests BiocStyle, BiocGenerics, knitr, pander, rmarkdown,
tweeDEseqCountData, edgeR, kableExtra, RUnit

biocViews RNASeq, GeneExpression, GeneSetEnrichment,
DifferentialExpression, BatchEffect, QualityControl,
Regression, Epigenetics, FunctionalGenomics, Transcriptomics,
Normalization, Preprocessing, Microarray, InmunoOncology,
Software

Depends R (>=4.2.0), limma, methods

Imports variancePartition (>= 1.26.0), EnrichmentBrowser (>= 2.22.0),
GSEABase (>= 1.54.0), msigdbr, Rfast, ggplot2, tidyr, dplyr,
reshape2, progress, utils, Rdpack, stats

RdMacros Rdpack

RoxygenNote 7.3.2

git_url https://git.bioconductor.org/packages/zenith
git_branch devel

https://DiseaseNeuroGenomics.github.io/zenith
https://github.com/DiseaseNeuroGenomics/zenith/issues

2 .rankSumTestWithCorrelation

git_last_commit d8b9255
git_last_commit_date 2025-10-29
Repository Bioconductor 3.23
Date/Publication 2026-02-01

Author Gabriel Hoffman [aut, cre] (ORCID:
<https://orcid.org/0000-0002-0957-0224>)

Maintainer Gabriel Hoffman <gabriel.hoffman@mssm.edu>

Contents
rankSumTestWithCorrelation 2
corInGeneSet e e e e 3
get_GeneOntology 3
get MSigDB 4
plotZenithResults L 5
zenith L e e e 7
zenithPR_gsa e 9
zenith_gsa L e e 11

Index 14

.rankSumTestWithCorrelation

Two Sample Wilcoxon-Mann-Whitney Rank Sum Test Allowing For
Correlation

Description

Same as 1imma: : . rankSumTestWithCorrelation, but returns effect size.

Usage

.rankSumTestWithCorrelation(index, statistics, correlation = @, df = Inf)

Arguments
index any index vector such that statistics[index] contains the values of the statis-
tic for the test group.
statistics numeric vector giving values of the test statistic.
correlation numeric scalar, average correlation between cases in the test group. Cases in the
second group are assumed independent of each other and other the first group.
df degrees of freedom which the correlation has been estimated.
Details

See 1imma: : .rankSumTestWithCorrelation

https://orcid.org/0000-0002-0957-0224

corlnGeneSet

Value

data.frame storing results of hypothesis test

corInGeneSet Evaluate mean correlation between residuals in gene set

Description
Evaluate mean correlation between residuals in gene set based on results from dream
Usage

corInGeneSet(fit, idx, squareCorr = FALSE)

Arguments
fit result of differential expression with dream
idx indeces or rownames to extract
squareCorr compute the mean squared correlation instead
Value

list storing correlation and variance inflation factor

get_GeneOntology Load Gene Ontology genesets

Description

Load Gene Ontology genesets

Usage

get_GeneOntology(
onto = c("BP", "MF", "CC"),
to = "ENSEMBL",
includeOffspring = TRUE,
org = "hsa"

4 get_MSigDB

Arguments
onto array of categories to load
to convert gene names to this type using EnrichmentBrowser::idMap(). See
EnrichmentBrowser: :idTypes(org="hsa") for valid types
includeOffspring
if TRUE, follow the GO hierarchy down and include all genes in offspring sets
for a given gene set
org organism. human ('hsa'), mouse ('mmu’'), etc
Details

This function loads the GO gene sets using the packages EnrichmentBrowser and GO.db It can
take a mintute to load because converting gene name type is slow.
Value

Gene sets stored as GeneSetCollection

Examples

load GO Biological Process
gs = get_GeneOntology('BP')

load all gene sets
gs = get_GeneOntology()

get_MSigDB Load MSigDB genesets

Description

Load MSigDB genesets

Usage

get_MSigDB(
cat,
to = c("ENSEMBL", "SYMBOL", "ENTREZ"),
organism = c("HS", "MM")

)
Arguments
cat array of categories to load.
to return genes names as 'ENSEMBL' or 'SYMBOL'

organism organism: human ('HS") or mouse ('MS")

plotZenithResults 5

Details

This function loads the MSigDB gene sets using the packages and msigdbr. It can take a mintute
to load because converting gene name type is slow.

Value

Gene sets stored as GeneSetCollection

Examples

load Hallmark gene sets
gs = get_MSigDB('H')

load all gene sets
gs = get_MSigDB()

plotZenithResults Heatmap of zenith results using ggplot2

Description

Heatmap of zenith results showing genesets that have the top and bottom t-statistics from each

assay.
Usage
plotZenithResults(

df,
ntop = 5,
nbottom = 5,
label.angle = 45,
zmax = NULL,

transpose = FALSE,
sortByGeneset = TRUE

)
Arguments
df result data. frame from zenith_gsa
ntop number of gene sets with highest t-statistic to show
nbottom number of gene sets with lowest t-statistic to show
label.angle angle of x-axis label
zmax maxium of the color scales. If not specified, used range of the observed t-
statistics
transpose transpose the axes of the plot

sortByGeneset use hierarchical clustering to sort gene sets. Default is TRUE

6 plotZenithResults

Value

Heatmap showing enrichment for gene sets and cell types

Examples

Load packages
library(edgeR)
library(variancePartition)
library(tweeDEseqCountData)

Load RNA-seq data from LCL's
data(pickrell)

geneCounts = exprs(pickrell.eset)
df_metadata = pData(pickrell.eset)

Filter genes

Note this is low coverage data, so just use as code example
dsgn = model.matrix(~ gender, df_metadata)

keep = filterByExpr(geneCounts, dsgn, min.count=5)

Compute library size normalization
dge = DGEList(counts = geneCounts[keep,])
dge = calcNormFactors(dge)

Estimate precision weights using voom
vobj = voomWithDreamWeights(dge, ~ gender, df_metadata)

Apply dream analysis
fit = dream(vobj, ~ gender,df_metadata)
fit = eBayes(fit)

Load Hallmark genes from MSigDB

use gene 'SYMBOL', or 'ENSEMBL' id

use get_GeneOntology() to load Gene Ontology
gs = get_MSigDB("H", to="ENSEMBL")

Run zenith analysis
res.gsa = zenith_gsa(fit, gs, 'gendermale', progressbar=FALSE)

Show top gene sets
head(res.gsa, 2)

for each cell type select 3 genesets with largest t-statistic
and 1 geneset with the lowest

Grey boxes indicate the gene set could not be evaluted because
to few genes were represented

plotZenithResults(res.gsa)

zenith 7

zenith Gene set analysis following differential expression with dream

Description

Perform gene set analysis on the result of differential expression using linear (mixed) modeling with
variancePartition: :dream by considering the correlation between gene expression traits. This
package is a slight modification of 1imma: : camera to 1) be compatible with dream, and 2) allow
identification of gene sets with log fold changes with mixed sign.

Usage

zenith(
fit,
coef,
index,
use.ranks = FALSE,
allow.neg.cor = FALSE,
progressbar = TRUE,
inter.gene.cor = 0.01

)
Arguments

fit result of differential expression with dream

coef coefficient to test using topTable(fit, coef)

index an index vector or a list of index vectors. Can be any vector such that fit[index,]
selects the rows corresponding to the test set. The list can be made using
ids2indices.

use.ranks do a rank-based test (TRUE) or a parametric test CFALSE’)?

allow.neg.cor should reduced variance inflation factors be allowed for negative correlations?
progressbar if TRUE, show progress bar

inter.gene.cor if NA, estimate correlation from data. Otherwise, use specified value

Details

zenith gives the same results as camera(. .., inter.gene.cor=NA) which estimates the correla-
tion with each gene set.

For differential expression with dream using linear (mixed) models see Hoffman and Roussos
(2020). For the original camera gene set test see Wu and Smyth (2012).

8 zenith

Value

* NGenes: number of genes in this set

* Correlation: mean correlation between expression of genes in this set

* delta: difference in mean t-statistic for genes in this set compared to genes not in this set
* se: standard error of delta

* p.less: p-value for hypothesis test of HO: delta <@

* p.greater: p-value for hypothesis test of H0: delta > @

* PValue: p-value for hypothesis test HO: delta !=0

* Direction: direction of effect based on sign(delta)

* FDR: false discovery rate based on Benjamini-Hochberg method in p.adjust

References

Hoffman, G. E., & Roussos, P. (2021). Dream: powerful differential expression analysis for re-
peated measures designs. Bioinformatics, 37(2), 192-201.

Wu, Di, and Gordon K. Smyth. "Camera: a competitive gene set test accounting for inter-gene
correlation." Nucleic acids research 40.17 (2012): e133-e133.

Examples

library(variancePartition)

simulate meta-data
info <- data.frame(Age=c(20, 31, 52, 35, 43, 45),Group=c(0,0,0,1,1,1))

simulate expression data

y <- matrix(rnorm(1000x6),1000,6)
rownames(y) = paste@("gene"”, 1:1000)
colnames(y) = rownames(info)

First set of 20 genes are genuinely differentially expressed
index1 <- 1:20
ylindex1,4:6] <- y[index1,4:6]+1

Second set of 20 genes are not DE
index2 <- 21:40

perform differential expression analysis with dream
fit = dream(y, ~ Age + Group, info)
fit = eBayes(fit)

perform gene set analysis testing Age
res = zenith(fit, "Age"”, list(setl=index1,set2=index2))

head(res)

zenithPR_gsa

zenithPR_gsa

Gene set analysis using pre-computed test statistic

Description

Perform gene set analysis on the result of a pre-computed test statistic. Test whether statistics in a
gene set are larger/smaller than statistics not in the set.

Usage

zenithPR_gsa(
statistics,
ids,
geneSets,
use.ranks =

progressbar

FALSE,
n_genes_min =

10,
TRUE,

inter.gene.cor = 0.01,

coef.name =

Arguments

statistics

ids

geneSets
use.ranks
n_genes_min
progressbar
inter.gene.cor

coef.name

Details

"zenithPR"

pre-computed test statistics

name of gene for each entry in statistics

GeneSetCollection

do a rank-based test TRUE or a parametric test FALSE? default: FALSE
minumum number of genes in a geneset

if TRUE, show progress bar

correlation of test statistics with in gene set

name of column to store test statistic

This is the same as zenith_gsa(), but uses pre-computed test statistics. Note that zenithPR_gsa()
may give slightly different results for small samples sizes, if zenithPR_gsa() is fed t-statistics
instead of z-statistics.

Value

* NGenes: number of genes in this set

* Correlation: mean correlation between expression of genes in this set

delta: difference in mean t-statistic for genes in this set compared to genes not in this set

¢ se: standard error of delta

10 zenithPR_gsa

* p.less: p-value for hypothesis test of HO: delta <@
* p.greater: p-value for hypothesis test of H0: delta > @
* PValue: p-value for hypothesis test HO: delta != 0

* Direction: direction of effect based on sign(delta)

FDR: false discovery rate based on Benjamini-Hochberg method in p.adjust

* coef.name: name for pre-computed test statistics. Default: zenithPR

See Also

zenith_gsa(), limma: : cameraPR()

Examples

Load packages
library(edgeR)
library(variancePartition)
library(tweeDEseqCountData)

Load RNA-seq data from LCL's
data(pickrell)

geneCounts = exprs(pickrell.eset)
df_metadata = pData(pickrell.eset)

Filter genes

Note this is low coverage data, so just use as code example
dsgn = model.matrix(~ gender, df_metadata)

keep = filterByExpr(geneCounts, dsgn, min.count=5)

Compute library size normalization
dge = DGEList(counts = geneCounts[keep,])
dge = calcNormFactors(dge)

Estimate precision weights using voom
vobj = voomWithDreamWeights(dge, ~ gender, df_metadata)

Apply dream analysis
fit = dream(vobj, ~ gender, df_metadata)
fit = eBayes(fit)

Load Hallmark genes from MSigDB

use gene 'SYMBOL', or 'ENSEMBL' id

use get_GeneOntology() to load Gene Ontology
gs = get_MSigDB("H", to="ENSEMBL")

Run zenithPR analysis with a test statistic for each gene
tab = topTable(fit, coef='gendermale', number=Inf)

res.gsa = zenithPR_gsa(tab$t, rownames(tab), gs)

zenith_gsa

zenith_gsa Perform gene set analysis using zenith

Description

Perform a competitive gene set analysis accounting for correlation between genes.

Usage

zenith_gsa(
fit,
geneSets,
coefs,
use.ranks = FALSE,
n_genes_min = 10,
inter.gene.cor = 0.01,
progressbar = TRUE,

S4 method for signature 'MArrayLM,GeneSetCollection'
zenith_gsa(

fit,

geneSets,

coef’s,

use.ranks = FALSE,

n_genes_min = 10,

inter.gene.cor = 0.01,

progressbar = TRUE,

)

Arguments
fit results from dream()
geneSets GeneSetCollection
coefs list of coefficients to test using topTable(fit, coef=coefs[[i]])
use.ranks do a rank-based test TRUE or a parametric test FALSE? default: FALSE
n_genes_min minumum number of genes in a geneset

inter.gene.cor if NA, estimate correlation from data. Otherwise, use specified value
progressbar if TRUE, show progress bar

other arguments

12 zenith_gsa

Details

This code adapts the widely used camera() analysis (Wu and Smyth, 2012) in the 1imma package
(Ritchie, et al. 2015) to the case of linear (mixed) models used by variancePartition: :dream().

Value

data. frame of results for each gene set and cell type

References

Wu, Di, and Gordon K. Smyth. "Camera: a competitive gene set test accounting for inter-gene
correlation." Nucleic acids research 40.17 (2012): e133-e133.

Ritchie, M. E., Phipson, B., Wu, D. L., Hu, Y., Law, C. W., Shi, W., & Smyth, G. K. (2015). limma
powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic acids
research, 43(7), e47-e47.

See Also

limma: :camera

Examples

Load packages
library(edgeR)
library(variancePartition)
library(tweeDEseqCountData)

Load RNA-seq data from LCL's
data(pickrell)

geneCounts = exprs(pickrell.eset)
df_metadata = pData(pickrell.eset)

Filter genes

Note this is low coverage data, so just use as code example
dsgn = model.matrix(~ gender, df_metadata)

keep = filterByExpr(geneCounts, dsgn, min.count=5)

Compute library size normalization
dge = DGEList(counts = geneCounts[keep,])
dge = calcNormFactors(dge)

Estimate precision weights using voom
vobj = voomWithDreamWeights(dge, ~ gender, df_metadata)

Apply dream analysis
fit = dream(vobj, ~ gender, df_metadata)
fit = eBayes(fit)

Load Hallmark genes from MSigDB
use gene 'SYMBOL', or 'ENSEMBL' id
use get_GeneOntology() to load Gene Ontology

zenith_gsa

gs = get_MSigDB("H", to="ENSEMBL")

Run zenith analysis
res.gsa = zenith_gsa(fit, gs, 'gendermale', progressbar=FALSE)

Show top gene sets
head(res.gsa, 2)

for each cell type select 3 genesets with largest t-statistic
and 1 geneset with the lowest

Grey boxes indicate the gene set could not be evaluted because
to few genes were represented

plotZenithResults(res.gsa)

13

Index

.rankSumTestWithCorrelation, 2
corInGeneSet, 3

get_GeneOntology, 3
get_MSigDB, 4

plotZenithResults, 5

zenith, 7

zenith_gsa, 5, 11

zenith_gsa,MArrayLM, GeneSetCollection, ANY-method
(zenith_gsa), 11

zenith_gsa,MArraylLM, GeneSetCollection-method
(zenith_gsa), 11

zenithPR_gsa, 9

14

	.rankSumTestWithCorrelation
	corInGeneSet
	get_GeneOntology
	get_MSigDB
	plotZenithResults
	zenith
	zenithPR_gsa
	zenith_gsa
	Index

