
Package ‘xcore’
February 2, 2026

Title xcore expression regulators inference

Version 1.15.0

Description xcore is an R package for transcription factor activity modeling
based on known molecular signatures and user's gene expression data.
Accompanying xcoredata package provides a collection of molecular signatures,
constructed from publicly available ChiP-seq experiments. xcore use ridge
regression to model changes in expression as a linear combination of molecular
signatures and find their unknown activities. Obtained, estimates can be further
tested for significance to select molecular signatures with the highest predicted
effect on the observed expression changes.

License GPL-2

Encoding UTF-8

LazyData false

Depends R (>= 4.2)

Imports DelayedArray (>= 0.18.0), edgeR (>= 3.34.1), foreach (>=
1.5.1), GenomicRanges (>= 1.44.0), glmnet (>= 4.1.2), IRanges
(>= 2.26.0), iterators (>= 1.0.13), magrittr (>= 2.0.1), Matrix
(>= 1.3.4), methods (>= 4.1.1), MultiAssayExperiment (>=
1.18.0), stats, S4Vectors (>= 0.30.0), utils

Suggests AnnotationHub (>= 3.0.2), BiocGenerics (>= 0.38.0),
BiocParallel (>= 1.28), BiocStyle (>= 2.20.2), data.table (>=
1.14.0), devtools (>= 2.4.2), doParallel (>= 1.0.16),
ExperimentHub (>= 2.2.0), knitr (>= 1.37), pheatmap (>=
1.0.12), proxy (>= 0.4.26), ridge (>= 3.0), rmarkdown (>=
2.11), rtracklayer (>= 1.52.0), testthat (>= 3.0.0), usethis
(>= 2.0.1), xcoredata

VignetteBuilder knitr

Roxygen list(markdown = TRUE)

RoxygenNote 7.1.2

Config/testthat/edition 3

biocViews GeneExpression, GeneRegulation, Epigenetics, Regression,
Sequencing

1

2 Contents

git_url https://git.bioconductor.org/packages/xcore

git_branch devel

git_last_commit a7dbfb4

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Author Maciej Migdał [aut, cre] (ORCID:
<https://orcid.org/0000-0002-8021-7263>),

Bogumił Kaczkowski [aut] (ORCID:
<https://orcid.org/0000-0001-6554-5608>)

Maintainer Maciej Migdał <mcjmigdal@gmail.com>

Contents
addSignatures . 3
applyOverColumnGroups . 4
applyOverDFList . 4
design2factor . 5
estimateStat . 5
filterSignatures . 6
fisherMethod . 7
getCoverage . 8
getInteractionMatrix . 9
getVarianceWeightedAvgCoeff . 10
isTRUEorFALSE . 10
mae . 11
maeSummary . 11
modelGeneExpression . 12
modelGeneExpression_ridge_regression_wraper . 14
modelGeneExpression_significance_testing_wraper . 15
mse . 16
prepareCountsForRegression . 16
regressionData . 18
remap_mini . 19
repVarianceWeightedAvgZscore . 20
ridgePvals . 20
rinderpest_mini . 21
rsq . 21
simplifyInteractionMatrix . 22
stoufferZMethod . 22
subsetWithMissing . 23
translateCounts . 23
%>% . 24

Index 25

https://orcid.org/0000-0002-8021-7263
https://orcid.org/0000-0001-6554-5608

addSignatures 3

addSignatures Add molecular signatures to MultiAssayExperiment

Description

addSignatures extends mae by adding to it new experiments. Rows consistency is ensured by
taking an intersection of rows after new experiments are added.

Usage

addSignatures(mae, ..., intersect_rows = TRUE)

Arguments

mae MultiAssayExperiment object.

... named experiments to be added to mae.

intersect_rows logical flag indicating if only common rows across experiments should be in-
cluded. Only set to FALSE if you know what you are doing.

Value

MultiAssayExperiment object with new experiments added.

Examples

data("rinderpest_mini", "remap_mini")
base_lvl <- "00hr"
design <- matrix(

data = c(1, 0, 0,
1, 0, 0,
1, 0, 0,
0, 1, 0,
0, 1, 0,
0, 1, 0,
0, 0, 1,
0, 0, 1,
0, 0, 1),

ncol = 3,
nrow = 9,
byrow = TRUE,
dimnames = list(colnames(rinderpest_mini), c("00hr", "12hr", "24hr")))

mae <- prepareCountsForRegression(
counts = rinderpest_mini,
design = design,
base_lvl = base_lvl)

mae <- addSignatures(mae, remap = remap_mini)

4 applyOverDFList

applyOverColumnGroups Apply function over groups of columns

Description

Returns a array obtained by applying a function to rows of submatrices of the input matrix, where
the submatrices are divided into specified groups of columns.

Usage

applyOverColumnGroups(mat, groups, f, ...)

Arguments

mat a matrix.
groups a vector giving columns grouping.
f function to be applied.
... optional arguments to f.

Value

a matrix of dimensions nrow(mat) x nlevels(groups).

applyOverDFList Apply function over selected column in list of data frames

Description

applyOverDFList operates on a list of data frames where all data frames has the same size and
columns. Column of interest is extracted from each data frame and column binded in groups, next
fun is applied over rows. Final result is a matrix with result for each group on a separate column.
Function is parallelized over groups.

Usage

applyOverDFList(list_of_df, col_name, fun, groups)

Arguments

list_of_df list of data.frames.
col_name string specifying column in data.frames to apply fun on.
fun function to apply, should take a single vector as a argument.
groups factor defining how elements of list_of_df should be grouped.

Value

matrix with nrow(list_of_df[[1]]) rows and nlevels(groups) columns.

design2factor 5

design2factor Transform design matrix to factor

Description

Transform design matrix to factor

Usage

design2factor(design)

Arguments

design design matrix

Value

factor

Examples

Not run:
design <- matrix(data = c(1, 1, 0, 0, 0, 0, 1, 1),

nrow = 4,
ncol = 2,
dimnames = list(c(paste("sample", 1:4)), c("gr1", "gr2")))

design2factor(design)

End(Not run)

estimateStat Estimate linear models goodness of fit statistic

Description

Estimate goodness of fit statistic of penalized linear regression models. Works with different good-
ness of fit statistic functions.

Usage

estimateStat(x, y, u, s, method = "cv", nfold = 10, statistic = rsq, alpha = 0)

6 filterSignatures

Arguments

x input matrix, of dimension nobs x nvars; each row is an observation vector. Can
be in sparse matrix format (inherit from class "sparseMatrix" as in package
Matrix)

y response variable. Quantitative for family="gaussian", or family="poisson"
(non-negative counts). For family="binomial" should be either a factor with
two levels, or a two-column matrix of counts or proportions (the second column
is treated as the target class; for a factor, the last level in alphabetical order is
the target class). For family="multinomial", can be a nc>=2 level factor, or
a matrix with nc columns of counts or proportions. For either "binomial" or
"multinomial", if y is presented as a vector, it will be coerced into a factor.
For family="cox", preferably a Surv object from the survival package: see De-
tails section for more information. For family="mgaussian", y is a matrix of
quantitative responses.

u offset vector as in glmnet. "U" experiment in mae.
s user supplied lambda.
method currently only cross-validation is implemented.
nfold number of fold to use in cross-validation.
statistic function computing goodness of fit statistic. Should accept y, x, offset argu-

ments and return a numeric vector of the same length. See rsq, mse for exam-
ples.

alpha The elasticnet mixing parameter, with 0 ≤ α ≤ 1. The penalty is defined as

(1− α)/2||β||22 + α||β||1.

alpha=1 is the lasso penalty, and alpha=0 the ridge penalty.

Value

numeric vector of statistic estimates.

filterSignatures Filter signatures by coverage

Description

Filter signatures overlapping low or high number of promoters. Useful to get rid of signatures that
have very low variance.

Usage

filterSignatures(
mae,
min = 0.05,
max = 0.95,
ref_experiment = "Y",
omit_experiments = c("Y", "U")

)

fisherMethod 7

Arguments

mae MultiAssayExperiment object.

min length one numeric between 0 and 1 defining minimum promoter coverage for
the signature to pass filtering.

max length one numeric between 0 and 1 defining maximum promoter coverage for
the signature to pass filtering.

ref_experiment string giving name of experiment to use for inferring total number of promoters.
omit_experiments

character giving names of experiments to exclude from filtering.

Value

MultiAssayExperiment object with selected experiments filtered.

Examples

data("rinderpest_mini", "remap_mini")
base_lvl <- "00hr"
design <- matrix(

data = c(1, 0, 0,
1, 0, 0,
1, 0, 0,
0, 1, 0,
0, 1, 0,
0, 1, 0,
0, 0, 1,
0, 0, 1,
0, 0, 1),

ncol = 3,
nrow = 9,
byrow = TRUE,
dimnames = list(colnames(rinderpest_mini), c("00hr", "12hr", "24hr")))

mae <- prepareCountsForRegression(
counts = rinderpest_mini,
design = design,
base_lvl = base_lvl)

mae <- addSignatures(mae, remap = remap_mini)
mae <- filterSignatures(mae)

fisherMethod Combine p-values using Fisher method

Description

Fisher’s method is a meta-analysis technique used to combine the results from independent statisti-
cal tests with the same hypothesis (Wikipedia article).

https://en.wikipedia.org/wiki/Fisher%27s_method

8 getCoverage

Usage

fisherMethod(p.value, lower.tail = FALSE, log.p = TRUE)

Arguments

p.value a numeric vector of p-values to combine.
lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].
log.p logical; if TRUE, probabilities p are given as log(p).

Value

a number giving combined p-value.

getCoverage Calculate regions coverage

Description

getCoverage calculates coverage of regions (rows in interaction matrix) by features (columns). It
is possible to specify features grouping variable gr then coverage tells how many distinct groups
the region overlap with.

Usage

getCoverage(mat, gr)

Arguments

mat dgCMatrix interaction matrix such as produced by getInteractionMatrix.
gr factor specifying features groups. Must have length equal to number of columns

in mat.

Value

Numeric vector.

Examples

data("remap_mini")
y <- colnames(remap_mini)

simple coverage
gr <- seq_along(y) %>% as.factor()
getCoverage(remap_mini, gr)

per cell type coverage
gr <- sub(".*\\.", "", y) %>% as.factor()
getCoverage(remap_mini, gr)

getInteractionMatrix 9

getInteractionMatrix Compute interaction matrix

Description

getInteractionMatrix construct interaction matrix between two Granges objects. Names of ob-
ject a became row names and names of b column names.

Usage

getInteractionMatrix(a, b, ext = 500, count = FALSE)

Arguments

a GRanges object.

b GRanges object.

ext Integer specifying number of base pairs the a coordinates should be extended in
upstream and downstream directions.

count Logical indicating if matrix should hold number of overlaps between a and b or
if FALSE presence / absence indicators.

Value

Sparse matrix of class dgCMatrix, with rows corresponding to a and columns to b. Each cell holds
a number indicating how many times a and b overlapped.

Examples

a <- GenomicRanges::GRanges(
seqnames = c("chr20", "chr4"),
ranges = IRanges::IRanges(
start = c(62475984L, 173530220L),
end = c(62476001L, 173530236L)),

strand = c("-", "-"),
name = c("hg19::chr20:61051039..61051057,-;hg_188273.1",

"hg19::chr4:174451370..174451387,-;hg_54881.1"))
b <- GenomicRanges::GRanges(

seqnames = c("chr4", "chr20"),
ranges = IRanges::IRanges(
start = c(173530229L, 63864270L),
end = c(173530236L, 63864273L)),

strand = c("-", "-"),
name = c("HAND2", "GATA5"))

getInteractionMatrix(a, b)

10 isTRUEorFALSE

getVarianceWeightedAvgCoeff

Calculate variance weighted average coefficients matrix

Description

Calculate variance weighted average coefficients matrix

Usage

getVarianceWeightedAvgCoeff(pvalues, groups)

Arguments

pvalues list of data.frames outputs from ridgePvals.

groups factor giving the grouping.

Value

variance weighted average coefficients matrix

isTRUEorFALSE Check if argument is a binary flag

Description

Check if argument is a binary flag

Usage

isTRUEorFALSE(x)

Arguments

x object to test

Value

binary flag

mae 11

mae Calculate Mean Absolute Error

Description

Calculate Mean Absolute Error

Usage

mae(y, yhat, ...)

Arguments

y numeric vector of observed expression values.

yhat numeric vector of predicted expression values.

... not used.

Value

numeric vector

maeSummary Helper summarizing MAE object

Description

Helper summarizing MAE object

Usage

maeSummary(mae)

Arguments

mae MultiAssayExperiment object.

Value

named list giving number of rows and columns, overall mean and standard deviation in mae’s ex-
periments.

12 modelGeneExpression

modelGeneExpression Gene expression modeling pipeline

Description

modelGeneExpression uses parallelization if parallel backend is registered. For that reason we
advise against passing parallel argument to internally called cv.glmnet routine.

Usage

modelGeneExpression(
mae,
yname = "Y",
uname = "U",
xnames,
design = NULL,
standardize = TRUE,
parallel = FALSE,
pvalues = TRUE,
precalcmodels = NULL,
...

)

Arguments

mae MultiAssayExperiment object such as produced by prepareCountsForRegression.

yname string indicating experiment in mae to use as the expression input.

uname string indicating experiment in mae to use as the basal expression level.

xnames character indicating experiments in mae to use as molecular signatures.

design matrix giving the design matrix for the samples. Default (NULL) is to use design
found in mae metadata. Columns corresponds to samples groups and rows to
samples names. Only samples included in the design will be processed.

standardize logical flag indicating if the molecular signatures should be scaled. Advised to
be set to TRUE.

parallel parallel argument to internally used cv.glmnet function. Advised to be set to
FALSE as it might interfere with parallelization used in modelGeneExpression.

pvalues logical flag indicating if significance testing for the estimated molecular signa-
tures activities should be performed.

precalcmodels optional list of precomputed 'cv.glmnet' objects for each molecular signature
and sample. The elements of this list should be matching the xnames vector.
Each of those elements should be a named list holding 'cv.glmnet' objects for
each sample. If provided those models will be used instead of running regression
from scratch.

... arguments passed to glmnet::cv.glmnet.

modelGeneExpression 13

Details

For speeding up the calculations consider lowering number of folds used in internally run cv.glmnet
by specifying nfolds argument. By default 10 fold cross validation is used.

The relationship between the expression (Y) and molecular signatures (X) is described using linear
model formulation. The pipeline attempts to model the change in expression between basal expres-
sion level (u) and each sample, with the goal of finding the unknown molecular signatures activities.
Linear models are fit using popular ridge regression implementation glmnet (Friedman, Hastie, and
Tibshirani 2010).

If pvalues is set to TRUE the significance of the estimated molecular signatures activities is tested
using methodology introduced by (Cule, Vineis, and De Iorio 2011) which original implementation
can be found in ridge-package.

If replicates are available the signatures activities estimates and their standard error estimates can be
combined. This is done by averaging signatures activities estimates and pooling their significance
estimates using Stouffer’s method for the Z-scores and Fisher’s method for the p-values.

For detailed pipeline description we refer interested user to paper accompanying this package.

Value

Nested list with following elements

regression_models Named list with elements corresponding to signatures specified in xnames.
Each of these is a list holding 'cv.glmnet' objects corresponding to each sample.

pvalues Named list with elements corresponding to signatures specified in xnames. Each of these is
a list holding data.frame of signature’s p-values and test statistics estimated for each sample.

zscore_avg Named list with elements corresponding to signatures specified in xnames. Each of
these is a matrix holding replicate average Z-scores with columns corresponding to groups in
the design.

coef_avg Named list with elements corresponding to signatures specified in xnames. Each of these
is a matrix holding replicate averaged signatures activities with columns corresponding to
groups in the design.

results Named list of a data.frames holding replicate average molecular signatures, overall molec-
ular signatures Z-score and p-values calculated over groups using Stouffer’s and Fisher’s meth-
ods.

Examples

data("rinderpest_mini", "remap_mini")
base_lvl <- "00hr"
design <- matrix(

data = c(1, 0, 0,
1, 0, 0,
1, 0, 0,
0, 1, 0,
0, 1, 0,
0, 1, 0,
0, 0, 1,
0, 0, 1,

14 modelGeneExpression_ridge_regression_wraper

0, 0, 1),
ncol = 3,
nrow = 9,
byrow = TRUE,
dimnames = list(colnames(rinderpest_mini), c("00hr", "12hr", "24hr")))

mae <- prepareCountsForRegression(
counts = rinderpest_mini,
design = design,
base_lvl = base_lvl)

mae <- addSignatures(mae, remap = remap_mini)
mae <- filterSignatures(mae)
res <- modelGeneExpression(

mae = mae,
xnames = "remap",
nfolds = 5)

modelGeneExpression_ridge_regression_wraper

Ridge regression wrapper for modelGeneExpression

Description

Internal function used in modelGeneExpression. It runs ridge regression parallelly across signa-
tures and samples as specified by experiment design.

Usage

modelGeneExpression_ridge_regression_wraper(
mae,
yname,
uname,
xnames,
groups,
standardize,
parallel,
precalcmodels,
...

)

Arguments

mae MultiAssayExperiment object such as produced by prepareCountsForRegression.

yname string indicating experiment in mae to use as the expression input.

uname string indicating experiment in mae to use as the basal expression level.

xnames character indicating experiments in mae to use as molecular signatures.

groups factor representation of design matrix.

modelGeneExpression_significance_testing_wraper 15

standardize logical flag indicating if the molecular signatures should be scaled. Advised to
be set to TRUE.

parallel parallel argument to internally used cv.glmnet function. Advised to be set to
FALSE as it might interfere with parallelization used in modelGeneExpression.

precalcmodels optional list of precomputed 'cv.glmnet' objects for each molecular signature
and sample. The elements of this list should be matching the xnames vector.
Each of those elements should be a named list holding 'cv.glmnet' objects for
each sample. If provided those models will be used instead of running regression
from scratch.

... arguments passed to glmnet::cv.glmnet.

Value

Named list with elements corresponding to signatures specified in xnames. Each of these is a list
holding 'cv.glmnet' objects corresponding to each sample.

modelGeneExpression_significance_testing_wraper

Statistical testing of ridge regression estimates wrapper for modelGe-
neExpression

Description

Internal function used in modelGeneExpression. It runs ridgePvals parallelly across signatures
and samples as specified by experiment design.

Usage

modelGeneExpression_significance_testing_wraper(
mae,
yname,
uname,
xnames,
groups,
standardize,
regression_models

)

Arguments

mae MultiAssayExperiment object such as produced by prepareCountsForRegression.

yname string indicating experiment in mae to use as the expression input.

uname string indicating experiment in mae to use as the basal expression level.

xnames character indicating experiments in mae to use as molecular signatures.

groups factor representation of design matrix.

16 prepareCountsForRegression

standardize logical flag indicating if the molecular signatures should be scaled. Advised to
be set to TRUE.

regression_models

Named list with elements corresponding to signatures specified in xnames. Each
of these is a list holding 'cv.glmnet' objects corresponding to each sample.
Usually returned by modelGeneExpression_ridge_regression_wraper.

Value

Named list with elements corresponding to signatures specified in xnames. Each of these is a list
holding data.frame of signature’s p-values and test statistics estimated for each sample.

mse Calculate Mean Squared Error

Description

Calculate Mean Squared Error

Usage

mse(y, yhat, ...)

Arguments

y numeric vector of observed expression values.

yhat numeric vector of predicted expression values.

... not used.

Value

numeric vector

prepareCountsForRegression

Process count matrix for expression modeling

Description

Expression counts are processed using edgeR following User’s Guide. Shortly, counts for each
sample are filtered for lowly expressed promoters, normalized for the library size and transformed
into counts per million (CPM). Optionally, CPM are log2 transformed with addition of pseudo
count. Basal level expression is calculated by averaging base_lvl samples expression values.

https://bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf

prepareCountsForRegression 17

Usage

prepareCountsForRegression(
counts,
design,
base_lvl,
log2 = TRUE,
pseudo_count = 1L,
drop_base_lvl = TRUE

)

Arguments

counts matrix of read counts.

design matrix giving the design matrix for the samples. Columns corresponds to sam-
ples groups and rows to samples names.

base_lvl string indicating group in design corresponding to basal expression level. The
reference samples to which expression change will be compared.

log2 logical flag indicating if counts should be log2(counts per million) should be
returned.

pseudo_count integer count to be added before taking log2.

drop_base_lvl logical flag indicating if base_lvl samples should be dropped from resulting
MultiAssayExperiment object.

Value

MultiAssayExperiment object with two experiments:

U matrix giving expression values averaged over basal level samples

Y matrix of expression values

design with base_lvl dropped is stored in metadata and directly available for modelGeneExpression.

Examples

data("rinderpest_mini")
base_lvl <- "00hr"
design <- matrix(

data = c(1, 0, 0,
1, 0, 0,
1, 0, 0,
0, 1, 0,
0, 1, 0,
0, 1, 0,
0, 0, 1,
0, 0, 1,
0, 0, 1),

ncol = 3,
nrow = 9,
byrow = TRUE,

18 regressionData

dimnames = list(colnames(rinderpest_mini), c("00hr", "12hr", "24hr")))
mae <- prepareCountsForRegression(

counts = rinderpest_mini,
design = design,
base_lvl = base_lvl)

regressionData Create MultiAssayExperiment object for expression modeling

Description

regressionData orgnize expression data and experiment design into MultiAssayExperiment object
that can be further used in xcore framework. Additionally, function calculate basal expression level,
for latter use in expression modeling, by averaging base_lvl samples expression values.

Usage

regressionData(expr_mat, design, base_lvl, drop_base_lvl = TRUE)

Arguments

expr_mat matrix of expression values.

design matrix giving the design matrix for the samples. Columns corresponds to sam-
ples groups and rows to samples names.

base_lvl string indicating group in design corresponding to basal expression level. The
reference samples to which expression change will be compared.

drop_base_lvl logical flag indicating if base_lvl samples should be dropped from resulting
MultiAssayExperiment object.

Details

Note that regressionData does not apply any normalization or transformation to the input data!
Use prepareCountsForRegression if you want to start with raw expression counts.

Value

MultiAssayExperiment object with two experiments:

U matrix giving expression values averaged over basal level samples

Y matrix of expression values

design with base_lvl dropped is stored in metadata and directly available for modelGeneExpression.

remap_mini 19

Examples

data("rinderpest_mini")
base_lvl <- "00hr"
design <- matrix(

data = c(1, 0, 0,
1, 0, 0,
1, 0, 0,
0, 1, 0,
0, 1, 0,
0, 1, 0,
0, 0, 1,
0, 0, 1,
0, 0, 1),

ncol = 3,
nrow = 9,
byrow = TRUE,
dimnames = list(colnames(rinderpest_mini), c("00hr", "12hr", "24hr")))

mae <- regressionData(
expr_mat = rinderpest_mini,
design = design,
base_lvl = base_lvl)

remap_mini xcore example molecular signatures

Description

Molecular signatures data intended for use in xcore vignette and examples. It is build ReMap2020
molecular signatures constructed against FANTOM5 annotation, which can be found in xcoredata
package. Here the data is only a subset limited to core promoters (promoters_f5_core) and ran-
domly selected 600 signatures.

Usage

data(remap_mini)

Format

A dgCMatrix with 14191 rows and 600 columns holding interaction matrix for subset of ReMap2020
molecular signatures against FANTOM5 annotation. Rows corresponds to FANTOM5 promoters
and columns to signatures.

20 ridgePvals

repVarianceWeightedAvgZscore

Calculate replicate variance weighted averaged Z-scores

Description

Replicate averaged Z-scores is calculated by dividing replicate average coefficient by replicate
pooled standard error.

Usage

repVarianceWeightedAvgZscore(pvalues, groups)

Arguments

pvalues Data frame with 'se' (standard error) and 'coef' (coefficient) columns. Such
as in pvalues output of modelGeneExpression .

groups Factor giving group membership for samples in pvalues.

Value

Numeric matrix of averaged Z-scores. Columns correspond to groups and rows to predictors.

ridgePvals Significance testing in linear ridge regression

Description

Standard error estimation and significance testing for coefficients estimated in linear ridge regres-
sion. ridgePvals re-implement original method by (Cule et al. BMC Bioinformatics 2011.) found
in ridge-package. This function is intended to use with cv.glmnet output.

Usage

ridgePvals(x, y, beta, lambda, standardizex = TRUE, svdX = NULL)

Arguments

x input matrix, same as used in cv.glmnet.
y response variable, same as used in cv.glmnet.
beta matrix of coefficients, estimated using cv.glmnet.
lambda lambda value for which beta was estimated.
standardizex logical flag for x variable standardization, should be set to same value as standarize

flag in cv.glmnet.
svdX optional singular-value decomposition of x matrix. One can be obtained using

link[base]{svd}. Passing this argument omits internal call to link[base]{svd},
this is useful when calling ridgePvals repeatedly using same x.

rinderpest_mini 21

Value

a data.frame with columns

coef beta’s names
se beta’s standard errors
tstat beta’s test statistic
pval beta’s p-values

rinderpest_mini xcore example expression data

Description

Expression data intended for use in xcore vignette and examples. It is build from FANTOM5’s
293SLAM rinderpest infection time course dataset. Here the data is only a subset limited to core
promoters (promoters_f5_core).

Usage

data(rinderpest_mini)

Format

A matrix with 14191 rows and 6 columns holding expression counts from CAGE-seq experiment.
Rows corresponds to FANTOM5 promoters and columns to time points at which expression was
measured 0 and 24 hours post infection.

rsq Calculate R^2

Description

Calculate R^2

Usage

rsq(y, yhat, offset)

Arguments

y numeric vector of observed expression values.
yhat numeric vector of predicted expression values.
offset numeric vector giving basal expression level.

Value

numeric vector

22 stoufferZMethod

simplifyInteractionMatrix

Simplify Interaction Matrix

Description

Simplify Interaction Matrix

Usage

simplifyInteractionMatrix(mat, alpha = 0.5, colname = NA)

Arguments

mat dgCMatrix interaction matrix such as produced by getInteractionMatrix.

alpha Number between 0 and 1 specifying voting threshold. Eg. for 3 column matrix
alpha 0.5 will give voting criteria >= 2.

colname character giving new column name.

Value

dgCMatrix

stoufferZMethod Combine Z-scores using Stouffer’s method

Description

Stouffer’s Z-score method is a meta-analysis technique used to combine the results from indepen-
dent statistical tests with the same hypothesis. It is closely related to Fisher’s method, but operates
on Z-scores instead of p-values (Wikipedia article).

Usage

stoufferZMethod(z)

Arguments

z a numeric vector of Z-score to combine.

Value

a number giving combined Z-score.

https://en.wikipedia.org/wiki/Fisher%27s_method

subsetWithMissing 23

subsetWithMissing Subset keeping missing

Description

Subset matrix keeping unmatched rows as NA.

Usage

subsetWithMissing(mat, rows)

Arguments

mat matrix

rows character

Value

a matrix

translateCounts Translate counts matrix rownames

Description

translateCounts renames counts matrix rownames according to supplied dictionary. Function
can handle many to one assignments by taking a sum or an average over counts rows. Other types
of ambiguous assignments are not supported.

Usage

translateCounts(counts, dict)

Arguments

counts matrix of expression values.

dict named character vector mapping counts rownames to new values. Values of
vector should correspond to new desired rownames, and its names to current
rownames.

Value

matrix of expression values with new rownames.

24 %>%

Examples

counts <- matrix(
data = c(5, 4, 3, 2),
nrow = 2,

dimnames = list(
c("ENSG00000130700", "ENSG00000089225"),
c("treatment", "control")

)
)

dict <- c(ENSG00000130700 = "GATA5", ENSG00000089225 = "TBX5")
translateCounts(counts, dict)

%>% re-export magrittr pipe operator

Description

re-export magrittr pipe operator

Index

∗ datasets
remap_mini, 19
rinderpest_mini, 21

%>%, 24

addSignatures, 3
applyOverColumnGroups, 4
applyOverDFList, 4

cv.glmnet, 12, 13, 15, 20

design2factor, 5

edgeR, 16
estimateStat, 5

filterSignatures, 6
fisherMethod, 7

getCoverage, 8
getInteractionMatrix, 8, 9, 22
getVarianceWeightedAvgCoeff, 10
glmnet, 6, 13

isTRUEorFALSE, 10

mae, 11
maeSummary, 11
modelGeneExpression, 12
modelGeneExpression_ridge_regression_wraper,

14
modelGeneExpression_significance_testing_wraper,

15
mse, 16

prepareCountsForRegression, 12, 14, 15,
16

regressionData, 18
remap_mini, 19
repVarianceWeightedAvgZscore, 20

ridge-package, 13, 20
ridgePvals, 20
rinderpest_mini, 21
rsq, 21

simplifyInteractionMatrix, 22
stoufferZMethod, 22
subsetWithMissing, 23

translateCounts, 23

25

	addSignatures
	applyOverColumnGroups
	applyOverDFList
	design2factor
	estimateStat
	filterSignatures
	fisherMethod
	getCoverage
	getInteractionMatrix
	getVarianceWeightedAvgCoeff
	isTRUEorFALSE
	mae
	maeSummary
	modelGeneExpression
	modelGeneExpression_ridge_regression_wraper
	modelGeneExpression_significance_testing_wraper
	mse
	prepareCountsForRegression
	regressionData
	remap_mini
	repVarianceWeightedAvgZscore
	ridgePvals
	rinderpest_mini
	rsq
	simplifyInteractionMatrix
	stoufferZMethod
	subsetWithMissing
	translateCounts
	>
	Index

