Package ‘widgetTools’

February 2, 2026
Title Creates an interactive tcltk widget
Version 1.89.0
Date 2008-10-28
Author Jianhua Zhang

Description This packages contains tools to support the construction
of tcltk widgets

Depends R (>=2.4.0), methods, utils, tcltk

Suggests Biobase

biocViews Infrastructure

LazyLoad yes

Maintainer Jianhua Zhang <jzhang@jimmy.harvard.edu>
License LGPL

git_url https://git.bioconductor.org/packages/widgetTools
git_branch devel

git_last_commit 0513252

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

Contents
basicPW-class 2
button L 4
dropdownList L e 7
makeVIewer e e e e 9
oneVScrList 10
safeFileOpen e e e e 11
tOOLLD . . . o . e e e 12
widget-class 13
widgetView-class e e 15
writeTeXt e e e e e e 17

2 basicPW-class

Index 19

basicPW-class Class "basicPW", a basic class for primary widgets

Description

This class defines the behavior shared by primary widget object used to build a GUI type interface

Objects from the Class

Objects can be created by calls of the form new("basicPW”, ...). Constructors have been defined
to create objects of this class for specific widgets such as buttons, list boxes, ..

Slots

wName: Object of class "character” - a string for the name of the object
wType: Object of class "character” - a string defining the type of the primary widget. (e.g. button)
wValue: Object of class "ANY" - the initial value to be associated with the object

wWidth: Object of class "numeric” - an integer for the width of the object to be rendered (if
applicable)

wHeight: Object of class "numeric” - an integer for the height of the object to be rendered (if
applicable)

wFuns: Object of class "1ist"” - a list of R functions to be executed before the widget is activated

wPreFun: Object of class "function” - a list of functions to be executed before the value of the
widget to be updated

wPostFun: Object of class "function” - a list of functions to be executed before the value of the
widget to be retrieved

wNotify: Object of class "1ist” - a list of functions to be executed each time when the value of
the widget changes

wEnv: Object of class "environment” - an R environment object within which the value of the
object is stored

wView: Object of class "widgetView" - a object of the class widgetView to which the widget is
rendered

Methods

wEnv<- signature(object = "basicPW"): Set the value for wEnv slot
wEnv signature(object = "basicPW"): Get the value for wEnv slot
wFuns<- signature(object = "basicPW"): Set the value for wFuns slot
wFuns signature(object = "basicPW"): Get the value for wFuns slot
wHeight<- signature(object = "basicPW"): Set the value for wHeight slot
wHeight signature(object = "basicPW"): Get the value for wHeight slot

basicPW-class

wName<- signature(object = "basicPW"): Set the value for wName slot
wName signature(object = "basicPW"): Get the value for wName slot
wNotify<- signature(object = "basicPW"): Set the value for wNotify slot
wNotify signature(object = "basicPW"): Get the value for wNotify slot
wPostFun<- signature(object = "basicPW"): Set the value for wPostFun slot
wPostFun signature(object = "basicPW"): Get the value for wPostFun slot
wPreFun<- signature(object = "basicPW"): Set the value for wPreFun slot
wPreFun signature(object = "basicPW"): Get the value for wPreFun slot
wType<- signature(object = "basicPW"): Set the value for wType slot
wType signature(object = "basicPW"): Get the value for wType slot
wValue<- signature(object = "basicPW"): Set the value for wValue slot
wValue signature(object = "basicPW"): Get the value for wValue slot
wView<- signature(object = "basicPW"): Set the value for wView slot
view signature(object = "basicPW"): Get the value for wView slot
wWidth<- signature(object = "basicPW"): Set the value for wWidth slot
wWidth signature(object = "basicPW"): Get the value for wWidth slot

Author(s)

Jianhua Zhang

References

Programming with data

See Also

widgetView-class,widget-class

Examples

Create an R environment to store the values of primary widgets
PWEnv <- new.env(hash = TRUE, parent = parent.frame(1))

Create a label
labell <- label(wName = "label1”, wValue = "File Name: ", wEnv = PWEnv)

Create an entry box with "Feed me using brows” as the default value
entryl <- entryBox(wName = "entryl”, wValue = "Feed me using browse”,
wEnv = PWEnv)

4 button

button Functions to construct objects of primary widgets and render them

Description

All the primary widgets such as button, text box, and so on are objects of basicPW class. The
functions are constructors of primary widgets that are subjects of basicPW class with behaviors
specific to primary widgets.

Usage

button(wName, wEnv, wValue = "", wWidth = 12, wHeight = @, wFuns = list(),
wNotify = list(), wPreFun = function(x) x, wPostFun = function(x) x,

wView = new("widgetView"))

entryBox(wName, wEnv, wValue = "", wWidth = 50, wHeight = @, wFuns
wNotify = list(), wPreFun = function (x) x, wPostFun = function(x) x,

wView = new("widgetView"))

textBox(wName, wEnv, wValue = "", wWidth = 25, wHeight = 12, wFuns = list(),
wNotify = list(), wPreFun = function (x) x, wPostFun = function(x) x,

wView = new("widgetView"))

listBox(wName, wEnv, wValue = "", wWidth = 25, wHeight = 10, wFuns = list(),
wNotify = list(), wPreFun = function (x) x, wPostFun = function(x) x,
wView = new("widgetView"))

checkButton(wName, wEnv, wValue, wWidth = 50, wFuns = list(), wNotify
list(), wPreFun = function (x) x, wPostFun = function(x) x,

wView = new("widgetView"))

radioButton(wName, wEnv, wValue, wWidth = 50, wFuns = list(), wNotify
list(), wPreFun = function (x) x, wPostFun = function(x) x,

wView = new("widgetView"))

label(wName, wEnv, wValue = "", wWidth = @, wHeight = @, wFuns = list(),
wNotify = list(), wPreFun = function (x) x, wPostFun = function(x) x,
wView = new("widgetView"))

widget(wTitle, pWidgets, funs = list(), preFun = function()
print("Hello"), postFun = function() print("Bye"”), env, defaultNames =c(
"Finish"”, "Cancel"))

widgetView(WVTitle, vName, widgetids = list(), theWidget = new("widget"),

list(),

winid)
Arguments
wName wName a character string for the name to be associated with a given primary
widget
vName vName same as wName but for a widget object
wEnv wEnv an R environment object within which the original values for each primary

widget will be stored and updating and retrieval of the values will take place

env env same as WEnv but for a widget object

button 5

wValue wValue the initial values to be associated with a given primary widget

wWidth wWidth an integer for the width of the primary widget (if applicable)

wHeight wHeight an integer for the height of the primary widget (if applicable)

wFuns wFuns a list of R functions that will be associated with a primary widget and
invoked when an operation (e.g. click, get focus, ...) is applied to the primary
widget

funs funs same as wFuns but for a widget object

wNotify wNotify a list of functions defining the actions to be performed when the value
of the primary widget changes

wPreFun wPreFun an R function that should be applied when the widget is activated

preFun preFun same as wPreFun but for a view

wPostFun wPostFun an R function that will be applied when the widget is inactivated

postFun postFun same as wPostFun but for a view

wTitle wTitle a character string for the title to be displayed when the widget is ren-
dered

pWidgets pWidget a list of primary widgets (e.g. button, list box, ...) to be rendered

WVTitle WVTitle same as wTitle

widgetids widgetids a list of tkwin ids for the primary widgets to be rendered

theWidget theWidget a widget object to render the primary widgets

wView wView an object of class widgetView

winid winid an object of class winid

defaultNames defaultName a vector of character string of length two for the text to be shown
on the two default buttons. The first is to end the process and the second to abort
the process

Details

button constructs a button widget object.
button constructs an entry box widget object.
textBox constructs a text box widget object.

listBox constructs a list box widget object. Value for a listbox object should be a named vector
with names being the content to be shown in the list box and values being TRUE (default value) or
FALSE.

checkButton constructs a group of check box widget objects. Value for check button objects should
be a named vector with names being the content to be shown in the list box and values being TRUE
(checked) or FALSE (not checked).

radioButton constructs a group of radio button widget objects. Value for radio button objects
should be a named vector with names being the content to be shown in the list box and values being
TRUE (default) or FALSE.

label constructs a text label widget object with the value displayed as the text.
widget constructs a widget object to render the primary widgets.

widgetView constructs a widgetView object. This class is for internal use by class widget-class.
Users trying to create GUI type widget do not need to use this class.

6 button

Value

Each constructor returns a tkwin object for the primary widget object.

Author(s)
Jianhua Zhang

References

R teltk

See Also

widget-class, basicPW-class

Examples

Create an R environment to store the values of primary widgets
PWEnv <- new.env(hash = TRUE, parent = parent.frame(1))

Create a label
labell <- label(wName = "labell1"”, wValue = "File Name: ", wEnv = PWEnv)

Create an entry box with "Feed me using brows” as the default value
entryl <- entryBox(wName = "entryl”, wValue = "Feed me using browse”,
wEnv = PWEnv)

Create a button that will call the function browse2Entryl when
pressed.
browse2Entry1 <- function(){

tempValue <- tclvalue(tkgetOpenFile())

temp <- get(wName(entry1), env = PWEnv)

wValue(temp) <- paste(tempValue, sep = "", collapse = ";")
assign(wName(entry1), temp, env = PWEnv)

3

buttonl <- button(wName = "buttonl”, wValue = "Browse",

wFuns = list(command = browse2Entryl), wEnv = PWEnv)

Create a list box with "Option1”, "Option2"”, and "Option3"” as the

content and "Option1"” selected

list1 <- listBox(wName = "list1", wValue = c(Option1 = TRUE, Option2 = FALSE,
Option3 = FALSE), wEnv = PWEnv)

Create a text box with "Feed me something” displayed
textl <- textBox(wName = "textl1”, wValue = "Feed me something”,
wEnv = PWEnv)

Create a set of radio buttons with "radiol” as the default

label2 <- label(wName = "label2", wValue = "Select one: ", wEnv = PWEnv)

radios1 <- radioButton(wName = "radios1”, wValue = c(radiol = TRUE,
radio2 = FALSE, radio3 = FALSE), wEnv = PWEnv)

dropdownList 7

Create a set of check boxes with "check1” selected and "check2" and

"check3" not selected

label3 <- label(wName = "label3"”, wValue = "Select one to many: ",

wEnv = PWEnv)

checks1 <- checkButton(wName = "checks1”, wValue = c(checkl = TRUE,
check22 = FALSE, check3 = FALSE), wEnv = PWEnv)

Please not that the name of the primary widget object (e.g. checks1)
should be the same as the value of the name slot of the object
(e. g. name = "checks1")

Render the widgets

pWidgets <- list(topRow = list(labell = labell, entryl = entryl,
button1 = buttonl), textRow = list(listl = listl1,
textl = textl1), radGroup = list(label2 = label2,
radios1 = radios1), chkGroup = list(label3 = label3,

checks1 = checks1))

Not run:

These cannot be run by examples() but should be OK when pasted

into an interactive R session with the widgetTools package loaded

aWidget <- widget(wTitle = "A test widget”, pWidgets, funs = list(),
preFun = function() print("Hello"),
postFun = function() print("Bye"), env = PWEnv)

End(Not run)

dropdownList A widget to mimic a dropdown list

Description
The current tcltk library does not support dropdown lists unless an extension is included. The
function dropdownList provide an alternative.

Usage

dropdownList(base, options, textvariable, width = 10, default, editable
= FALSE)
getListOption(targetWidget, options, height, vScroll = FALSE)

Arguments
base base a tkwin object that is the parent frame of the dropdown list to be created
options options a vector of character strings for the content of the dropdown list

textvariable textvariable a tclVar object to be associated with the selected item of the
dropdown list

width width an integer for the width in number of characters of the selection contain-
ing part of the dropdown list

8 dropdownlList

default default a character string for the default selection that is going to be shown in
the selection containing window of the dropdown list

targetWidget targetWidget a tkwin object for an entry box to which a button will be associ-
ated to make the look of a dropdown list

editable editable a boolean indicating whether the dropdown list will be editable or not

height height an integer for the height of the dropdown list box. If missing, height
will be assigned the length of the options to be shown in the list box

vScroll vScroll a boolean indicating whether a vertical scroll bar will be associated
with the dropdown list box

Details

base can be a top window or a frame.

The widget returns a frame that contains a dropdown list. The frame need to be placed using any
of the layout methods of tcltk. The value of the selection will be accessed through the tclVar object
passed to the function.

getListOptions is called by dropdown list to get the selected item

Value

dropdownList returns a tkwin object for the frame that contains a dropdown list

getListOptions returns a character string for the selected item

Author(s)

Jianhua Zhang

References

tcltk

See Also

tooltip

Examples

Not run:
These cannot be run by examples() but should be OK when pasted
into an interactive R session with the widgetTools package loaded

base <- tktoplevel()

selection <- tclVar()

dropdownList(base, c("Option 1", "Option 2", "Option 3"),
selection, 15, "Option 2")

tclvalue(selection)

Destroy toplevel widget

tkdestroy(base)

End(Not run)

make Viewer 9

makeViewer Put a Scrollable List Box into a tkWidget.

Description

This function associates a tk listbox with a scroll bar and then puts them into a given tk widget.

Usage
makeViewer (target, vWidth = "", vHeight = "", hScroll = FALSE,
vScroll = TRUE, what = "list”, side = "left”, text = "")
Arguments
target tk widget that can accommodate a list box.

vWidth, vHeight integers giving width and height of the listbox.

hScroll, vScroll
logicals indicating whether a horizontal or vertical scroll bar should be associ-
ated with the list box.

what A character string indicating the type of the viewer to be put on a widget. Valid
types include "list" for list box, "canvas", and "text" for text box

side A character string for the geometry management of the viewer on the widget.

non

Valid values include "left", "right", "top", and "bottom"

text A character string to be displayed

Details
Tk list boxes (or canvas, text box) and scroll bars are separate widgets. This function provides a
common interface to put them together and functionally associated.

Value

This function does not return any value.

Author(s)

Jianhua (John) Zhang

See Also

tklistbox (from the ‘tcltk’ package).

10 oneVScrList

Examples

Not run:
These cannot be run by examples() but should be OK when pasted
into an interactive R session with the widgetTools package loaded

Create a top level window and put a list box in it
base <- tktoplevel()

listBox <- makeViewer(base)

Destroy toplevel widget
tkdestroy(base)

End(Not run)

oneVScrList A function that creates a groups of list boxes sharing a single vertical
scroll bar

Description
This function creates a group of list boxes what share a common vertical scroll bar. Values in all
the list boxes scroll up or down when the scroll bar is dragged

Usage

oneVScrList(base, data)

Arguments
base base a tkwin object that will be the container of the list boxes to be created
data data a matrix with data to be put in the list boxes

Details

The matrix should have names for its columns. The names of the list boxes to be created will be the
same as the corresponding columns of the matrix.

Data in the list boxes can be sorted based on values in any of the list boxes.

Value

This function returns a list containing the tkwin objects of the list boxes created.

Author(s)
Jianhua Zhang

References

tcltk

safeFileOpen 11

See Also

dropdownList, tooltip

Examples

Not run:
These cannot be run by examples() but should be OK when pasted
into an interactive R session with the widgetTools package loaded

testData <- matrix(c(1:50, 100:51), ncol = 2)
colnames(testData) <- c(”"Column 1", "Column 2")
base <- tktoplevel()

tt <- oneVScrList(base, testData)

Destroy toplevel widget
tkdestroy(base)

End(Not run)

safeFileOpen A function that checks to see if a connection can be made to a given

file

Description
This function checks to see if a given file name exists. If so, the function returns a connection to the
file. Otherwise, it returns "fileName doest exist".

Usage

safeFileOpen(fileName)

Arguments
fileName fileName a character string for the name of a file to which a connection is to be
oppened
Details

When this function is used, users have to make sure to check to see if the returnd object inherits
object "connection". Otherwise, the file doest not exist or a connection has not be made.
Value

The function returns a connection object that inherits class "connection" if the file exists and is
opend. Otherwise, the string "fileName doest not exist"

12 tooltip

Note

This function is no placed here to be used by various widgets. May be mored to a more suitable
place later

Author(s)

Jianhua Zhang

See Also
file

Examples

write("A test file"”, "testFile4safeFileOpen")
tt <- safeFileOpen("testFile4safeFileOpen")
inherits(tt, "connection”)
unlink("testFile4safeFileOpen”)

tt <- safeFileOpen("testFile4safeFileOpen")
inherits(tt, "connection”)

tooltip A tcltk widget to mimic a tooltip

Description

Current tcltk library does not support tooltip unless an extension is included. The function tooltip
is implemented as an alternative.

Usage

tooltip(text, targetWidget, width = 350)

Arguments

text text a character string for the content of the tooltip

targetWidget targetWidget a tkwin object for the target tcltk widget to which a tool tip will
be associated

width width an integer for the width (in pixels) of the tooltip

Details

Given a target tcltk widget, a tooltip will be associated with the widget. The content of the tooltip
will be shown when mouse moves over the widget and disappear when mouse moves out of the
widget.

widget-class 13

Value

This function returns invisible()

Author(s)

Jianhua Zhang

References

tcltk

See Also

dropdownList

Examples

Not run:
These cannot be run by examples() but should be OK when pasted
into an interactive R session with the widgetTools package loaded

base <- tktoplevel()

but <- tkbutton(base, text = "Move Mouse Over Me")

tkpack(but)

tkbind(but, "<Enter>", expression(tooltip("Move mouse off me"”, but)))

Destroy toplevel widget
tkdestroy(base)

End(Not run)

widget-class Class "widget" creates a widget with primary widgets contained in the
list pWidgets rendered

Description
This class takes a list of primary widgets and then creates a "widgetView" object that renders the
primary widgets

Objects from the Class

Objects can be created by calls of the form new("widget”, ...).

14 widget-class

Slots

wTitle: Object of class "character” - a character string for the title of the widget to be created

pWwidgets: Object of class "1ist"” - alist of "basicPW" objects representing widget elements to be
rendered

env: Object of class "environment” - an R environment for the object to work within

funs: Object of class "1ist” - a list of functions that will be associated with buttons on the widget
to be rendered. The name of the function in the list will be the text appears on the button and
the function will be executed when the button is pressed

preFun: Object of class "function” - a function that will be executed before the widget is con-
structed

postFun: Object of class "function” - a function that will be executed before the widget is de-
stroyed

Methods

env<- signature(object = "widget"): set the value for env

wEnv signature(object = "widget"): get the value for env

funs<- signature(object = "widget"): set the value for funs

funs signature(object = "widget"): get the value for funs
postFuns<- signature(object = "widget"): set the value for postFuns
postFun signature(object = "widget"): get the value for postFuns
preFuns<- signature(object = "widget"): set the value for preFun
preFun signature(object = "widget"): get the value for preFun
pWidgets<- signature(object = "widget"): set the value for pWidgets
pWidgets signature(object = "widget"): get the value for pWidgets

updateCheck signature(object = "widget"): update the value of check buttons of the widget
to be rendered

updateList signature(object = "widget"): update the value of list box/entry of the widget to
be rendered

updateRadio signature(object = "widget"): update the value of radio buttons of the widget to
be rendered

updateText signature(object = "widget"): update the value of text box of the widget to be
rendered

wTitle<- signature(object = "widget"): set the value of wTitle

wTitle signature(object = "widget"): get the value of wTitle

Author(s)

Jianhua Zhang

References

Programming with data

widgetView-class

See Also

basicPW-class, widgetView-class

Examples

PWEnv <- new.env(hash = TRUE, parent

15

parent.frame(1))

labell <- label(wName = "labell1”, wValue = "File Name: ", wEnv = PWEnv)
entryl <- entryBox(wName = "entryl”, wValue = "Feed me using browse”,
wEnv = PWEnv)

browse2Entryl <- function(){

tempValue <- fileBrowser()

temp <- get(wName(entryl), wEnv = PWEnv)

wValue(temp) <- paste(tempValue, sep = "", collapse = ";")

assign(wName(entry1), temp, env = PWEnv)
3
buttonl <- button(wName = "buttonl”, wValue = "Browse",

wFuns = list(command = browse2Entry1), wEnv = PWEnv)
list1 <- listBox(wName = "list1", wValue = c(Option1 = TRUE, Option2 = FALSE,
Option3 = FALSE), wEnv = PWEnv)
textl <- textBox(wName = "text1"”, wValue = "Feed me something”,
wEnv = PWEnv)
label2 <- label(wName = "label2", wValue = "Select one: ", wEnv = PWEnv)
radios1 <- radioButton(wName = "radios1”, wValue = c(radiol = TRUE,
radio2 = FALSE, radio3 = FALSE), wEnv = PWEnv)
label3 <- label(wName = "label3"”, wValue = "Select one to many: ",
wEnv = PWEnv)
checks1 <- checkButton(wName = "checks1”, wValue = c(checkl = TRUE,
check22 = FALSE, check3 = FALSE), wEnv = PWEnv)

pWidgets <- list(topRow = list(labell = labell, entryl
buttonl = buttonl), textRow

text1), radGroup = list(label2 = label2,
radios1), chkGroup = list(label3 = label3,
checks1

textl
radiosi

Not run:
These cannot be run by examples() but

entryl,
list(list1 = 1list1,

checks1))

should be OK when pasted

into an interactive R session with the widgetTools package loaded

aWidget <- widget(wTitle = "A test widget”, pWidgets, funs

list(),

preFun = function() print("Hello"),

postFun

End(Not run)

function() print("Bye"), env

PWENV)

widgetView-class
ements

Class "widgetView", a class for a GUI type widget holding widget el-

16 widgetView-class

Description

"widgetView" renders element widgets

Objects from the Class

Objects can be created by calls of the form new("widgetView"”, ...). This class is for internal use
by class widget-class. Users trying to create GUI type widget do not need to use this class.

Slots
WVTitle: Object of class "character” - a character string that will be displayed as the title of the
widget to be created
vName: Object of class "character” - a character string for the vName of the widget
winid: Object of class "tkwin" - a tkwin object for the id of the top window for the widget
widgetids: Object of class "1ist" - a list of tkwin ids for element widgets

theWidget: Object of class "widget"” - a widget object that creates the widgetView

Methods

killWin signature(tkWidget = "widgetView"): destroys the window representing the widgetView
vName<- signature(object = "widgetView"): set the value for viName
vName signature(object = "widgetView"): get the value for vName

renderWidgets signature(widgetView = "widgetView" pWidgets ="1list"): takes a list of
"basicPW" objects (pWidgets) and renders them accordingly

renewView signature(widgetView = "widgetView", pWidgets = "1list"): using values con-
tained by the "basicPW" objects of pWidgets to update the values of widget elements dis-
played

theWidget<- signature(object = "widgetView"): set the value for theWidget

theWidget signature(object = "widgetView"): get the value for theWidget

updateDisplay signature(widgetView = "widgetView"): update the value of list box or text
box element widgets

widgetids<- signature(object = "widgetView"): set the value of widgetids
widgetids signature(object = "widgetView"): get the value of widgetids
winid<- signature(object = "widgetView"): set the value of winid

winid signature(object = "widgetView"): set the value of winid

winWait signature(tkWidget = "widgetView"): make widgetView modal
WVTitle signature(object = "widgetView"): get the value for WVTitle

Author(s)

Jianhua Zhang

References

Programming with data

writeText 17

See Also

widget-class,basicPW-class

Examples

Not run:
These cannot be run by examples() but should be OK when pasted
into an interactive R session with the widgetTools package loaded

widgetView <- widgetView(WVTitle = "demo"”, vName = "widget1")

End(Not run)

writeText Functions that read from and write to tcltk widgets

Description

These functions provide some of the common read and write operations for tcltk widgets

Usage
writeText(widget, value, clear = TRUE)
writeList(widget, value, clear = TRUE)
getlListValue(which)
getTextValue(which)
getEntryValue(which)
Arguments
widget widget a tkwin object for the tcltk widget to be read or written to
value value the text of numerical value to be written to a tcltk widget
clear clear a boolean to indicate whether a value will append to the existing one
(FALSE)
which which a tkwin object for the tcltk widget whose value will be retrieved
Details

writeText writes to a given tcltk text box widget.

writelList writes to a given tcltk list or entry box widget.
getListValue retrieves the selected value in a tcltk list widget.
getTextValue retrieves the value of a text box.

getEntryValue retrieves the value of an entry box.

18 writeText

Value

getListValue returns the selected value in a tcltk list widget.
getTextValue returns the value of a text box.

getEntryValue returns the value of an entry box.

Author(s)
Jianhua Zhang

References

R tcltk

See Also

basicPW-class, widget-class

Examples

Not run:
These cannot be run by examples() but should be OK when pasted
into an interactive R session with the widgetTools package loaded

Create the widgets
base <- tktoplevel()
list <- tklistbox(base, width = 20, height = 5)

entry <- tkentry(base)
text <- tktext(base, width = 20, height = 5)
tkpack(list, entry, text)
Write and read from the widgets
writeList(list, c("Option1”, "Option2"”, "Option3"))
writeList(entry, "An Entry box")
writeText(text, "A text box")
Will be NULL if not selected
getListValue(list)
getTextValue(text)
getEntryValue(entry)

Destroy toplevel widget

tkdestroy(base)

End(Not run)

Index

* classes
basicPW-class, 2
widget-class, 13
widgetView-class, 15

x file
safeFileOpen, 11

x interface
button, 4
makeViewer, 9
oneVScrlList, 10
writeText, 17

* misc
dropdownList, 7
tooltip, 12

basicPW-class, 2
button, 4, 5

checkButton, 5
checkButton (button), 4

dropdownList, 7,11, 13

entryBox (button), 4
env<- (widget-class), 13
env<-,widget-method (widget-class), 13

file, 12

funs (widget-class), 13
funs,widget-method (widget-class), 13
funs<- (widget-class), 13
funs<-,widget-method (widget-class), 13

getEntryValue, 17, 18
getEntryValue (writeText), 17
getlListOption (dropdownlList), 7
getListValue, 17, 18
getlistValue (writeText), 17
getTextValue, 17, 18
getTextValue (writeText), 17

19

killWin (widgetView-class), 15
killWin,widgetView-method
(widgetView-class), 15

label, 5

label (button), 4
listBox, 5

listBox (button), 4

makeViewer, 9
oneVScrList, 10

postFun (widget-class), 13

postFun,widget-method (widget-class), 13

postFuns<- (widget-class), 13

postFuns<-,widget-method
(widget-class), 13

preFun (widget-class), 13

preFun,widget-method (widget-class), 13

preFuns<- (widget-class), 13

preFuns<-,widget-method (widget-class),
13

pWidgets (widget-class), 13

pWidgets,widget-method (widget-class),
13

pWidgets<- (widget-class), 13

pWidgets<-,widget-method
(widget-class), 13

radioButton, 5

radioButton (button), 4

renderWidgets (widgetView-class), 15

renderWidgets,widgetView, list-method
(widgetView-class), 15

renewView (widgetView-class), 15

renewView,widgetView,list-method
(widgetView-class), 15

safeFileOpen, 11

20

textBox, 5

textBox (button), 4

theWidget (widgetView-class), 15

theWidget,widgetView-method
(widgetView-class), 15

theWidget<- (widgetView-class), 15

theWidget<-,widgetView-method
(widgetView-class), 15

tklistbox, 9

tooltip, 8, 11, 12

updateCheck (widget-class), 13
updateCheck,widget-method
(widget-class), 13
updateDisplay (widgetView-class), 15
updateDisplay,widgetView-method
(widgetView-class), 15
updatelist (widget-class), 13
updatelList,widget-method
(widget-class), 13
updateRadio (widget-class), 13
updateRadio,widget-method
(widget-class), 13
updateText (widget-class), 13
updateText,widget-method
(widget-class), 13

vName (widgetView-class), 15
vName ,widgetView-method
(widgetView-class), 15
vName<- (widgetView-class), 15
vName<-,widgetView-method
(widgetView-class), 15

wEnv (basicPW-class), 2
wEnv,basicPW-method (basicPW-class), 2
wEnv,widget-method (widget-class), 13
wEnv<- (basicPW-class), 2
WEnv<-,basicPW-method (basicPW-class), 2
wFuns (basicPW-class), 2
wFuns,basicPW-method (basicPW-class), 2
wFuns<- (basicPW-class), 2
wFuns<-,basicPW-method (basicPW-class),
2
wHeight (basicPW-class), 2
wHeight,basicPW-method (basicPW-class),
2
wHeight<- (basicPW-class), 2

INDEX

wHeight<-,basicPW-method
(basicPW-class), 2

widget, 5

widget (button), 4

widget-class, 13

widgetids (widgetView-class), 15

widgetids,widgetView-method
(widgetView-class), 15

widgetids<- (widgetView-class), 15

widgetids<-,widgetView-method
(widgetView-class), 15

widgetView, 5

widgetView (button), 4

widgetView-class, 15

winid (widgetView-class), 15

winid,widgetView-method
(widgetView-class), 15

winid<- (widgetView-class), 15

winid<-,widgetView-method
(widgetView-class), 15

winWait (widgetView-class), 15

winWait,widgetView-method
(widgetView-class), 15

wName (basicPW-class), 2

wName, basicPW-method (basicPW-class), 2

wName<- (basicPW-class), 2

wName<-,basicPW-method (basicPW-class),
2

wNotify (basicPW-class), 2

wNotify,basicPW-method (basicPW-class),
2

wNotify<- (basicPW-class), 2

wNotify<-,basicPW-method
(basicPW-class), 2

wPostFun (basicPW-class), 2

wPostFun,basicPW-method
(basicPW-class), 2

wPostFun<- (basicPW-class), 2

wPostFun<-,basicPW-method
(basicPW-class), 2

wPreFun (basicPW-class), 2

wPreFun,basicPW-method (basicPW-class),
2

wPreFun<- (basicPW-class), 2

wPreFun<-,basicPW-method
(basicPW-class), 2

writelList, /7

writeList (writeText), 17

INDEX

writeText, 17,17
wTitle (widget-class), 13
wTitle,widget-method (widget-class), 13
wTitle<- (widget-class), 13
wTitle<-,widget-method (widget-class),
13
wType (basicPW-class), 2
wType,basicPW-method (basicPW-class), 2
wType<- (basicPW-class), 2
wType<-,basicPW-method (basicPW-class),
2
wValue (basicPW-class), 2
wValue,basicPW-method (basicPW-class), 2
wValue<- (basicPW-class), 2
wValue<-,basicPW-method
(basicPW-class), 2
wView (basicPW-class), 2
wView,basicPW-method (basicPW-class), 2
wView<- (basicPW-class), 2
wView<-,basicPW-method (basicPW-class),
2
WVTitle (widgetView-class), 15
WVTitle,widgetView-method
(widgetView-class), 15
wWidth (basicPW-class), 2
wWidth,basicPW-method (basicPW-class), 2
wWidth<- (basicPW-class), 2
wWidth<-,basicPW-method
(basicPW-class), 2

21

	basicPW-class
	button
	dropdownList
	makeViewer
	oneVScrList
	safeFileOpen
	tooltip
	widget-class
	widgetView-class
	writeText
	Index

