
Package ‘transite’
February 2, 2026

Title RNA-binding protein motif analysis

Version 1.29.0

Maintainer Konstantin Krismer <krismer@mit.edu>

Description transite is a computational method that allows
comprehensive analysis of the regulatory role of RNA-binding proteins
in various cellular processes by leveraging preexisting gene
expression data and current knowledge of binding preferences of
RNA-binding proteins.

License MIT + file LICENSE

URL https://transite.mit.edu

Depends R (>= 3.5)

Imports BiocGenerics (>= 0.26.0), Biostrings (>= 2.48.0), dplyr (>=
0.7.6), GenomicRanges (>= 1.32.6), ggplot2 (>= 3.0.0),
grDevices, gridExtra (>= 2.3), methods, parallel, Rcpp (>=
1.0.4.8), scales (>= 1.0.0), stats, TFMPvalue (>= 0.0.8),
stringr (>= 1.5.1), utils

Suggests knitr (>= 1.20), rmarkdown (>= 1.10), roxygen2 (>= 6.1.0),
testthat (>= 2.1.0)

LinkingTo Rcpp (>= 1.0.4.8)

VignetteBuilder knitr

biocViews GeneExpression, Transcription, DifferentialExpression,
Microarray, mRNAMicroarray, Genetics, GeneSetEnrichment

Encoding UTF-8

RoxygenNote 7.3.3

SystemRequirements C++11

git_url https://git.bioconductor.org/packages/transite

git_branch devel

git_last_commit 9302edb

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

1

https://transite.mit.edu

2 Contents

Date/Publication 2026-02-01

Author Konstantin Krismer [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0001-8994-3416>),

Anna Gattinger [aut] (ORCID: <https://orcid.org/0000-0001-7094-9279>),
Michael Yaffe [ths, cph] (ORCID:

<https://orcid.org/0000-0002-9547-3251>),
Ian Cannell [ths] (ORCID: <https://orcid.org/0000-0001-5832-9210>)

Contents
calculate_kmer_enrichment . 3
calculate_local_consistency . 4
calculate_motif_enrichment . 5
calculate_transcript_mc . 7
check_kmers . 8
classify_spectrum . 9
compute_kmer_enrichment . 11
count_homopolymer_corrected_kmers . 13
create_kmer_motif . 14
create_kmer_origin_list . 14
create_matrix_motif . 15
draw_volcano_plot . 16
estimate_significance . 18
estimate_significance_core . 19
ge . 20
generate_iupac_by_kmers . 20
generate_iupac_by_matrix . 21
generate_kmers . 23
generate_kmers_from_iupac . 24
generate_permuted_enrichments . 25
geometric_mean . 26
get_motifs . 27
get_motifs_meta_info . 27
get_motif_by_id . 28
get_motif_by_rbp . 29
get_ppm . 29
init_iupac_lookup_table . 30
kmers_enrichment . 31
motifs . 32
p_combine . 32
RBPMotif-class . 34
run_kmer_spma . 37
run_kmer_tsma . 39
run_matrix_spma . 42
run_matrix_tsma . 45
score_sequences . 49
score_spectrum . 50

https://orcid.org/0000-0001-8994-3416
https://orcid.org/0000-0001-7094-9279
https://orcid.org/0000-0002-9547-3251
https://orcid.org/0000-0001-5832-9210

calculate_kmer_enrichment 3

score_transcripts . 54
score_transcripts_single_motif . 56
set_motifs . 57
SpectrumScore-class . 58
subdivide_data . 60
toy_motif_matrix . 61
transite . 62

Index 63

calculate_kmer_enrichment

k-mer Enrichment between Foreground and Background Sets

Description

Calls compute_kmer_enrichment to compute k-mer enrichment values for multiple foregrounds.
Calculates enrichment for foreground sets in parallel.

Usage

calculate_kmer_enrichment(
foreground_sets,
background_set,
k,
permutation = FALSE,
chisq_p_value_threshold = 0.05,
p_adjust_method = "BH",
n_cores = 4

)

Arguments

foreground_sets

list of foreground sets; a foreground set is a character vector of DNA or RNA
sequences (not both) and a strict subset of the background_set

background_set character vector of DNA or RNA sequences that constitute the background set

k length of k-mer, either 6 for hexamers or 7 for heptamers

permutation if TRUE, only the enrichment value is returned (efficiency mode used for permu-
tation testing)

chisq_p_value_threshold

threshold below which Fisher’s exact test is used instead of Pearson’s chi-squared
test

p_adjust_method

see p.adjust

n_cores number of computing cores to use

4 calculate_local_consistency

Value

A list with three entries:

dfs a list of data frames with results from compute_kmer_enrichment for each of the foreground sets
kmers a character vector of all k-mers

kmer_origins a list of k-mers and their original sequence(s)

See Also

Other k-mer functions: check_kmers(), compute_kmer_enrichment(), count_homopolymer_corrected_kmers(),
create_kmer_origin_list(), draw_volcano_plot(), estimate_significance(), estimate_significance_core(),
generate_kmers(), generate_permuted_enrichments(), run_kmer_spma(), run_kmer_tsma()

Examples

define simple sequence sets for foreground and background
foreground_set1 <- c(

"CAACAGCCUUAAUU", "CAGUCAAGACUCC", "CUUUGGGGAAU",
"UCAUUUUAUUAAA", "AAUUGGUGUCUGGAUACUUCCCUGUACAU",
"AUCAAAUUA", "AGAU", "GACACUUAAAGAUCCU",
"UAGCAUUAACUUAAUG", "AUGGA", "GAAGAGUGCUCA",
"AUAGAC", "AGUUC", "CCAGUAA"

)
foreground_set2 <- c("UUAUUUA", "AUCCUUUACA", "UUUUUUU", "UUUCAUCAUU")
foreground_sets <- list(foreground_set1, foreground_set2)
background_set <- c(foreground_set1, foreground_set2,

"CCACACAC", "CUCAUUGGAG", "ACUUUGGGACA", "CAGGUCAGCA")

single-threaded
kmer_enrichment_values_st <- calculate_kmer_enrichment(foreground_sets,

background_set, 6, n_cores = 1)
Not run:
multi-threaded
kmer_enrichment_values_mt <- calculate_kmer_enrichment(foreground_sets,

background_set, 6)
End(Not run)

calculate_local_consistency

Local Consistency Score

Description

C++ implementation of Local Consistency Score algorithm.

Usage

calculate_local_consistency(x, numPermutations, minPermutations, e)

calculate_motif_enrichment 5

Arguments

x numeric vector that contains values for shuffling
numPermutations

maximum number of permutations performed in Monte Carlo test for consis-
tency score

minPermutations

minimum number of permutations performed in Monte Carlo test for consis-
tency score

e stop criterion for consistency score Monte Carlo test: aborting permutation pro-
cess after observing e random consistency values with more extreme values than
the actual consistency value

Value

list with score, p_value, and n components, where score is the raw local consistency score (usu-
ally not used), p_value is the associated p-value for that score, obtained by Monte Carlo testing, and
n is the number of permutations performed in the Monte Carlo test (the higher, the more significant)

Examples

poor_enrichment_spectrum <- c(0.1, 0.5, 0.6, 0.4,
0.7, 0.6, 1.2, 1.1, 1.8, 1.6)

local_consistency <- calculate_local_consistency(poor_enrichment_spectrum,
1000000, 1000, 5)

enrichment_spectrum <- c(0.1, 0.3, 0.6, 0.7, 0.8,
0.9, 1.2, 1.4, 1.6, 1.4)

local_consistency <- calculate_local_consistency(enrichment_spectrum,
1000000, 1000, 5)

calculate_motif_enrichment

Binding Site Enrichment Value Calculation

Description

This function is used to calculate binding site enrichment / depletion scores between predefined
foreground and background sequence sets. Significance levels of enrichment values are obtained by
Monte Carlo tests.

Usage

calculate_motif_enrichment(
foreground_scores_df,
background_scores_df,
background_total_sites,
background_absolute_hits,

6 calculate_motif_enrichment

n_transcripts_foreground,
max_fg_permutations = 1e+06,
min_fg_permutations = 1000,
e = 5,
p_adjust_method = "BH"

)

Arguments

foreground_scores_df

result of score_transcripts on foreground sequence set (foreground sequence
sets must be a subset of the background sequence set)

background_scores_df

result of score_transcripts on background sequence set
background_total_sites

number of potential binding sites per sequence (returned by score_transcripts)
background_absolute_hits

number of putative binding sites per sequence (returned by score_transcripts)
n_transcripts_foreground

number of sequences in the foreground set
max_fg_permutations

maximum number of foreground permutations performed in Monte Carlo test
for enrichment score

min_fg_permutations

minimum number of foreground permutations performed in Monte Carlo test
for enrichment score

e integer-valued stop criterion for enrichment score Monte Carlo test: aborting
permutation process after observing e random enrichment values with more ex-
treme values than the actual enrichment value

p_adjust_method

adjustment of p-values from Monte Carlo tests to avoid alpha error accumula-
tion, see p.adjust

Value

A data frame with the following columns:

motif_id the motif identifier that is used in the original motif library
motif_rbps the gene symbol of the RNA-binding protein(s)
enrichment binding site enrichment between foreground and background sequences

p_value unadjusted p-value from Monte Carlo test
p_value_n number of Monte Carlo test permutations

adj_p_value adjusted p-value from Monte Carlo test (usually FDR)

See Also

Other matrix functions: run_matrix_spma(), run_matrix_tsma(), score_transcripts(), score_transcripts_single_motif()

calculate_transcript_mc 7

Examples

foreground_seqs <- c("CAGUCAAGACUCC", "AAUUGGUGUCUGGAUACUUCCCUGUACAU",
"AGAU", "CCAGUAA")

background_seqs <- c(foreground_seqs, "CAACAGCCUUAAUU", "CUUUGGGGAAU",
"UCAUUUUAUUAAA", "AUCAAAUUA", "GACACUUAAAGAUCCU",
"UAGCAUUAACUUAAUG", "AUGGA", "GAAGAGUGCUCA",
"AUAGAC", "AGUUC")

foreground_scores <- score_transcripts(foreground_seqs, cache = FALSE)
background_scores <- score_transcripts(background_seqs, cache = FALSE)
enrichments_df <- calculate_motif_enrichment(foreground_scores$df,

background_scores$df,
background_scores$total_sites, background_scores$absolute_hits,
length(foreground_seqs),
max_fg_permutations = 1000

)

calculate_transcript_mc

Motif Enrichment calculation

Description

C++ implementation of Motif Enrichment calculation

Usage

calculate_transcript_mc(
absoluteHits,
totalSites,
relHitsForeground,
n,
maxPermutations,
minPermutations,
e

)

Arguments

absoluteHits number of putative binding sites per sequence (returned by score_transcripts)

totalSites number of potential binding sites per sequence (returned by score_transcripts)
relHitsForeground

relative number of hits in foreground set

n number of sequences in the foreground set
maxPermutations

maximum number of foreground permutations performed in Monte Carlo test
for enrichment score

8 check_kmers

minPermutations

minimum number of foreground permutations performed in Monte Carlo test
for enrichment score

e stop criterion for enrichment score Monte Carlo test: aborting permutation pro-
cess after observing e random enrichment values with more extreme values than
the actual enrichment value

Value

list with p-value and number of iterations of Monte Carlo sampling for foreground enrichment

Examples

foreground_seqs <- c("CAGUCAAGACUCC", "AAUUGGUUGUGGGGCUUCCCUGUACAU",
"AGAU", "CCAGUAA", "UGUGGGG")

background_seqs <- c(foreground_seqs, "CAACAGCCUUAAUU", "CUUUGGGGAAU",
"UCAUUUUAUUAAA", "AUCAAAUUA", "GACACUUAAAGAUCCU",
"UAGCAUUAACUUAAUG", "AUGGA", "GAAGAGUGCUCA",
"AUAGAC", "AGUUC")

motif_db <- get_motif_by_id("M178_0.6")
fg <- score_transcripts(foreground_seqs, cache = FALSE,

motifs = motif_db)
bg <- score_transcripts(background_seqs, cache = FALSE,

motifs = motif_db)

mc_result <- calculate_transcript_mc(unlist(bg$absolute_hits),
unlist(bg$total_sites),
fgdfabsolute_hits / fgdftotal_sites,
length(foreground_seqs), 1000, 500, 5)

check_kmers Check Validity of Set of k-mers

Description

Checks if the provided set of k-mers is valid. A valid set of k-mers is (1) non-empty, (2) contains
either only hexamers or only heptamers, and (3) contains only characters from the RNA alphabet
(A, C, G, U)

Usage

check_kmers(kmers)

Arguments

kmers set of k-mers

Value

TRUE if set of k-mers is valid

classify_spectrum 9

See Also

Other k-mer functions: calculate_kmer_enrichment(), compute_kmer_enrichment(), count_homopolymer_corrected_kmers(),
create_kmer_origin_list(), draw_volcano_plot(), estimate_significance(), estimate_significance_core(),
generate_kmers(), generate_permuted_enrichments(), run_kmer_spma(), run_kmer_tsma()

Examples

valid set
check_kmers(c("ACGCUC", "AAACCC", "UUUACA"))

invalid set (contains hexamers and heptamers)
check_kmers(c("ACGCUC", "AAACCC", "UUUACAA"))

classify_spectrum Simple spectrum classifier based on empirical thresholds

Description

Spectra can be classified based on the aggregate spectrum classifier score. If sum(score) == 3
spectrum considered non-random, random otherwise.

Usage

classify_spectrum(
adj_r_squared,
degree,
slope,
consistency_score_n,
n_significant,
n_bins

)

Arguments

adj_r_squared adjusted R2 of polynomial model, returned by score_spectrum

degree degree of polynomial, returned by score_spectrum

slope coefficient of the linear term of the polynomial model (spectrum "direction"),
returned by score_spectrum

consistency_score_n

number of performed permutations before early stopping, returned by score_spectrum

n_significant number of bins with statistically significant enrichment

n_bins number of bins

10 classify_spectrum

Value

a three-dimensional binary vector with the following components:

coordinate 1 adj_r_squared >= 0.4
coordinate 2 consistency_score_n > 1000000
coordinate 3 n_significant >= floor(n_bins / 10)

See Also

Other SPMA functions: run_kmer_spma(), run_matrix_spma(), score_spectrum(), subdivide_data()

Examples

n_bins <- 40

random spectrum
random_sp <- score_spectrum(runif(n = n_bins, min = -1, max = 1),

max_model_degree = 1)
score <- classify_spectrum(

get_adj_r_squared(random_sp), get_model_degree(random_sp),
get_model_slope(random_sp), get_consistency_score_n(random_sp), 0, n_bins

)
sum(score)

non-random linear spectrum with strong noise component
signal <- seq(-1, 0.99, 2 / 40)
noise <- rnorm(n = 40, mean = 0, sd = 0.5)
linear_sp <- score_spectrum(signal + noise, max_model_degree = 1,

max_cs_permutations = 100000)
score <- classify_spectrum(

get_adj_r_squared(linear_sp), get_model_degree(linear_sp),
get_model_slope(linear_sp), get_consistency_score_n(linear_sp), 10, n_bins

)
sum(score)
Not run:
non-random linear spectrum with weak noise component
signal <- seq(-1, 0.99, 2 / 40)
noise <- rnorm(n = 40, mean = 0, sd = 0.2)
linear_sp <- score_spectrum(signal + noise, max_model_degree = 1,

max_cs_permutations = 100000)
score <- classify_spectrum(

get_adj_r_squared(linear_sp), get_model_degree(linear_sp),
get_model_slope(linear_sp), get_consistency_score_n(linear_sp), 10, n_bins

)
sum(score)

End(Not run)

non-random quadratic spectrum with strong noise component
signal <- seq(-1, 0.99, 2 / 40)^2 - 0.5
noise <- rnorm(n = 40, mean = 0, sd = 0.2)
quadratic_sp <- score_spectrum(signal + noise, max_model_degree = 2,

compute_kmer_enrichment 11

max_cs_permutations = 100000)
score <- classify_spectrum(

get_adj_r_squared(quadratic_sp), get_model_degree(quadratic_sp),
get_model_slope(quadratic_sp),
get_consistency_score_n(quadratic_sp), 10, n_bins

)
sum(score)
Not run:
non-random quadratic spectrum with weak noise component
signal <- seq(-1, 0.99, 2 / 40)^2 - 0.5
noise <- rnorm(n = 40, mean = 0, sd = 0.1)
quadratic_sp <- score_spectrum(signal + noise, max_model_degree = 2)
score <- classify_spectrum(

get_adj_r_squared(quadratic_sp), get_model_degree(quadratic_sp),
get_model_slope(quadratic_sp),
get_consistency_score_n(quadratic_sp), 10, n_bins

)
sum(score)

End(Not run)

compute_kmer_enrichment

k-mer Enrichment between Foreground and Background Sets

Description

Compares foreground sequence set to background sequence set and computes enrichment values
for each possible k-mer.

Usage

compute_kmer_enrichment(
foreground_kmers,
background_kmers,
permutation = FALSE,
chisq_p_value_threshold = 0.05,
p_adjust_method = "BH"

)

Arguments

foreground_kmers

k-mer counts of the foreground set (generated by generate_kmers)
background_kmers

k-mer counts of the background set (generated by generate_kmers)

permutation if TRUE, only the enrichment value is returned (efficiency mode used for permu-
tation testing)

12 compute_kmer_enrichment

chisq_p_value_threshold

threshold below which Fisher’s exact test is used instead of Pearson’s chi-squared
test

p_adjust_method

see p.adjust

Details

Usually uses Pearson’s chi-squared test, but recalculates p-values with Fisher’s exact test for Pear-
son’s chi-squared test p-values <= chisq_p_value_threshold. The reason this is done is compu-
tational efficiency. Fisher’s exact tests are computationally demanding and are only performed in
situations, where exact p-values are preferred, e.g., if expected < 5 or significant p-values.

Value

enrichment of k-mers in specified foreground sequences. A data frame with the following columns
is returned:

foreground_count foreground counts for each k-mer
background_count background counts for each k-mer

enrichment k-mer enrichment
p_value p-value of k-mer enrichment (either from Fisher’s exact test or Pearson’s chi-squared test)

adj_p_value multiple testing corrected p-value

See Also

Other k-mer functions: calculate_kmer_enrichment(), check_kmers(), count_homopolymer_corrected_kmers(),
create_kmer_origin_list(), draw_volcano_plot(), estimate_significance(), estimate_significance_core(),
generate_kmers(), generate_permuted_enrichments(), run_kmer_spma(), run_kmer_tsma()

Examples

define simple sequence sets for foreground and background
foreground_set <- c(

"CAACAGCCUUAAUU", "CAGUCAAGACUCC", "CUUUGGGGAAU",
"UCAUUUUAUUAAA", "AAUUGGUGUCUGGAUACUUCCCUGUACAU",
"AUCAAAUUA", "AGAU", "GACACUUAAAGAUCCU",
"UAGCAUUAACUUAAUG", "AUGGA", "GAAGAGUGCUCA",
"AUAGAC", "AGUUC", "CCAGUAA"

)
background_set <- c(

"CAACAGCCUUAAUU", "CAGUCAAGACUCC", "CUUUGGGGAAU",
"UCAUUUUAUUAAA", "AAUUGGUGUCUGGAUACUUCCCUGUACAU",
"AUCAAAUUA", "AGAU", "GACACUUAAAGAUCCU",
"UAGCAUUAACUUAAUG", "AUGGA", "GAAGAGUGCUCA",
"AUAGAC", "AGUUC", "CCAGUAA",
"UUAUUUA", "AUCCUUUACA", "UUUUUUU", "UUUCAUCAUU",
"CCACACAC", "CUCAUUGGAG", "ACUUUGGGACA", "CAGGUCAGCA"

)
foreground_kmers <- generate_kmers(foreground_set, 6)

count_homopolymer_corrected_kmers 13

background_kmers <- generate_kmers(background_set, 6)

kmer_enrichment_values <- compute_kmer_enrichment(foreground_kmers,
background_kmers)

count_homopolymer_corrected_kmers

Correction for Homopolymeric Stretches

Description

Counts all non-overlapping instances of k-mers in a given set of sequences.

Usage

count_homopolymer_corrected_kmers(sequences, k, kmers, is_rna = FALSE)

Arguments

sequences character vector of DNA or RNA sequences

k length of k-mer, either 6 for hexamers or 7 for heptamers

kmers column sums of return value of Biostrings::oligonucleotideFrequency(sequences)

is_rna if sequences are RNA sequences, this flag needs to be set

Value

Returns a named numeric vector, where the elements are k-mer counts and the names are k-mers.

See Also

Other k-mer functions: calculate_kmer_enrichment(), check_kmers(), compute_kmer_enrichment(),
create_kmer_origin_list(), draw_volcano_plot(), estimate_significance(), estimate_significance_core(),
generate_kmers(), generate_permuted_enrichments(), run_kmer_spma(), run_kmer_tsma()

14 create_kmer_origin_list

create_kmer_motif Creates Transite motif object from character vector of k-mers

Description

Takes a position weight matrix (PWM) and meta info and returns an object of class RBPMotif.

Usage

create_kmer_motif(id, rbps, kmers, type, species, src)

Arguments

id motif id (character vector of length 1)

rbps character vector of names of RNA-binding proteins associated with this motif

kmers character vector of k-mers that are associated with the motif, set of k-mers is
valid if (1) all k-mers must have the same length, (2) only hexamers or heptamers
allowed, (3) allowed characters are A, C, G, U

type type of motif (e.g., 'HITS-CLIP', 'EMSA', 'SELEX', etc.)

species species where motif was discovered (e.g., 'Homo sapiens')

src source of motif (e.g., 'RBPDB v1.3.1')

Value

object of class RBPMotif

Examples

custom_motif <- create_kmer_motif(
"custom_motif", "RBP1",
c("AAAAAAA", "CAAAAAA"), "HITS-CLIP",
"Homo sapiens", "user"

)

create_kmer_origin_list

Create k-mer lists with their original sequences

Description

Counts occurrences of k-mers of length k in the given set of sequences. A list of the sequences the
k-mer originated from is created and returned. If the k-mer does not exist in any of the sequences,
the list is empty for that k-mer.

create_matrix_motif 15

Usage

create_kmer_origin_list(sequences, k)

Arguments

sequences character vector of DNA or RNA sequences that constitute the whole set of
sequences being analyzed

k number of characters in k-mer

Value

A list with k-mers as the identifier and a vector of sequences for each k-mer that the k-mer is found
in

See Also

Other k-mer functions: calculate_kmer_enrichment(), check_kmers(), compute_kmer_enrichment(),
count_homopolymer_corrected_kmers(), draw_volcano_plot(), estimate_significance(),
estimate_significance_core(), generate_kmers(), generate_permuted_enrichments(), run_kmer_spma(),
run_kmer_tsma()

Examples

define simple sequence sets for foreground and background
sequence_set <- c(

"CAACAGCCUUAAUU", "CAGUCAAGACUCC", "CUUUGGGGAAU",
"UCAUUUUAUUAAA", "AAUUGGUGUCUGGAUACUUCCCUGUACAU",
"AUCAAAUUA", "AGAU", "GACACUUAAAGAUCCU",
"UAGCAUUAACUUAAUG", "AUGGA", "GAAGAGUGCUCA",
"AUAGAC", "AGUUC", "CCAGUAA"

)
kmer_origin_list <- create_kmer_origin_list(sequence_set, k = 6)

create_matrix_motif Creates Transite motif object from position weight matrix

Description

Takes a position weight matrix (PWM) and meta info and returns an object of class RBPMotif.

Usage

create_matrix_motif(id, rbps, matrix, type, species, src)

16 draw_volcano_plot

Arguments

id motif id (character vector of length 1)

rbps character vector of names of RNA-binding proteins associated with this motif

matrix data frame with four columns (A, C, G, U) and 6 - 15 rows (positions), where
cell (i, j) contains weight of nucleotide j on position i

type type of motif (e.g., 'HITS-CLIP', 'EMSA', 'SELEX', etc.)

species species where motif was discovered (e.g., 'Homo sapiens')

src source of motif (e.g., 'RBPDB v1.3.1')

Value

object of class RBPMotif

Examples

custom_motif <- create_matrix_motif(
"custom_motif", "RBP1",
transite:::toy_motif_matrix, "HITS-CLIP",
"Homo sapiens", "user"

)

draw_volcano_plot k-mer Enrichment Volcano Plot

Description

Uses a volcano plot to visualize k-mer enrichment. X-axis is log2 enrichment value, y-axis is log1 0
significance, i.e., multiple testing corrected p-value from Fisher’s exact test or Pearson’s chi-squared
test.

Usage

draw_volcano_plot(
kmers,
motif_kmers,
motif_rbps,
significance_threshold = 0.01,
show_legend = TRUE

)

draw_volcano_plot 17

Arguments

kmers data frame with the following columns: kmer, adj_p_value, enrichment

motif_kmers set of k-mers that are associated with a certain motif, will be highlighted in
volcano plot

motif_rbps name of RNA-binding proteins associated with highlighted k-mers (character
vector of length 1)

significance_threshold

p-value threshold for significance, e.g., 0.05 or 0.01

show_legend whether or not a legend should be shown

Value

volcano plot

See Also

Other TSMA functions: run_kmer_tsma(), run_matrix_tsma()

Other k-mer functions: calculate_kmer_enrichment(), check_kmers(), compute_kmer_enrichment(),
count_homopolymer_corrected_kmers(), create_kmer_origin_list(), estimate_significance(),
estimate_significance_core(), generate_kmers(), generate_permuted_enrichments(), run_kmer_spma(),
run_kmer_tsma()

Examples

motif <- get_motif_by_id("951_12324455")
draw_volcano_plot(transite:::kmers_enrichment, get_hexamers(motif[[1]]),

get_rbps(motif[[1]]))

Not run:
foreground_set <- c("UGUGGG", "GUGGGG", "GUGUGG", "UGUGGU")
background_set <- unique(c(foreground_set, c(

"CAACAGCCUUAAUU", "CAGUCAAGACUCC", "CUUUGGGGAAU",
"UCAUUUUAUUAAA", "AAUUGGUGUCUGGAUACUUCCCUGUACAU",
"AUCAAAUUA", "AGAU", "GACACUUAAAGAUCCU",
"UAGCAUUAACUUAAUG", "AUGGA", "GAAGAGUGCUCA",
"AUAGAC", "AGUUC", "CCAGUAA",
"CCACACAC", "CUCAUUGGAG", "ACUUUCCCACA", "CAGGUCAGCA",
"CCACACCAG", "CCACACAUCAGU", "CACACACUCC", "CAGCCCCCCACAGGCA"

)))

motif <- get_motif_by_id("M178_0.6")
results <- run_kmer_tsma(list(foreground_set), background_set,

motifs = motif)
draw_volcano_plot(results[[1]]$motif_kmers_dfs[[1]],

get_hexamers(motif[[1]]), "test RBP")
End(Not run)

18 estimate_significance

estimate_significance Permutation Test Based Significance of Observed Mean

Description

estimate_significance returns an estimate of the significance of the observed mean, given a set
of random permutations of the data.

Usage

estimate_significance(
actual_mean,
motif_kmers,
random_permutations,
alternative = c("two_sided", "less", "greater"),
conf_level = 0.95,
produce_plot = TRUE

)

Arguments

actual_mean observed mean

motif_kmers set of k-mers that were used to compute the actual_mean

random_permutations

a set of random permutations of the original data, used to generate an empirical
null distribution.

alternative side of the test, one of the following: "two_sided", "less", "greater"

conf_level confidence level for the returned confidence interval

produce_plot if distribution plot should be part of the returned list

Value

A list with the following components:

p_value_estimate the estimated p-value of the observed mean
conf_int the confidence interval around that estimate

plot plot of the empirical distribution of geometric means of the enrichment values

See Also

Other k-mer functions: calculate_kmer_enrichment(), check_kmers(), compute_kmer_enrichment(),
count_homopolymer_corrected_kmers(), create_kmer_origin_list(), draw_volcano_plot(),
estimate_significance_core(), generate_kmers(), generate_permuted_enrichments(), run_kmer_spma(),
run_kmer_tsma()

estimate_significance_core 19

estimate_significance_core

Significance of Observed Mean

Description

estimate_significance_core returns an estimate of the significance of the observed mean, given
a vector of means based on random permutations of the data.

Usage

estimate_significance_core(
random_means,
actual_mean,
alternative = c("two_sided", "less", "greater"),
conf_level = 0.95

)

Arguments

random_means numeric vector of means based on random permutations of the data (empirical
null distribution)

actual_mean observed mean

alternative side of the test, one of the following: "two_sided", "less", "greater"

conf_level confidence level for the returned confidence interval

Value

A list with the following components:

p_value_estimate the estimated p-value of the observed mean
conf_int the confidence interval around that estimate

See Also

Other k-mer functions: calculate_kmer_enrichment(), check_kmers(), compute_kmer_enrichment(),
count_homopolymer_corrected_kmers(), create_kmer_origin_list(), draw_volcano_plot(),
estimate_significance(), generate_kmers(), generate_permuted_enrichments(), run_kmer_spma(),
run_kmer_tsma()

Examples

test_sd <- 1.0
test_null_distribution <- rnorm(n = 10000, mean = 1.0, sd = test_sd)

estimate_significance_core(test_null_distribution, test_sd * 2, "greater")

20 generate_iupac_by_kmers

ge Toy Gene Expression Data Set

Description

This object contains a toy data set based on gene expression measurements and 3’-UTR sequences
of 1000 genes. It comprises three data frames with RefSeq identifiers, log fold change values, and
3’-UTR sequences of genes, which are either upregulated or downregulated after some hypothetical
treatment, as well as all measured genes. The actual values are not important. This data set merely
serves as an example input for various functions.

Usage

data(ge)

Format

A list with the following components:

foreground1_df data frame that contains down-regulated genes after treatment
foreground2_df data frame that contains up-regulated genes after treatment
background_df data frame that contains all genes measured

generate_iupac_by_kmers

Generates IUPAC code for a character vector of k-mers

Description

Generates a compact logo of a motif based on IUPAC codes given by a character vector of k-mers

Usage

generate_iupac_by_kmers(kmers, code = NULL)

Arguments

kmers character vector of k-mers

code if IUPAC code table has already been initialized by init_iupac_lookup_table,
it can be specified here

generate_iupac_by_matrix 21

Details

IUPAC RNA nucleotide code:

A Adenine
C Cytosine
G Guanine
U Uracil
R A or G
Y C or U
S G or C
W A or U
K G or U
M A or C
B C or G or U
D A or G or U
H A or C or U
V A or C or G
N any base

Value

the IUPAC string of the binding site

References

http://www.chem.qmul.ac.uk/iubmb/misc/naseq.html

See Also

Other motif functions: generate_iupac_by_matrix(), generate_kmers_from_iupac(), get_motif_by_id(),
get_motif_by_rbp(), get_motifs(), get_motifs_meta_info(), get_ppm(), init_iupac_lookup_table(),
set_motifs()

Examples

generate_iupac_by_kmers(c("AACCAA", "AACCGG", "CACCGA"))

generate_iupac_by_matrix

Generates IUPAC code for motif matrix

Description

Generates a compact logo of a motif based on IUPAC codes given by a position weight matrix

Usage

generate_iupac_by_matrix(matrix, threshold = 0.215, code = NULL)

http://www.chem.qmul.ac.uk/iubmb/misc/naseq.html

22 generate_iupac_by_matrix

Arguments

matrix the position probability matrix of an RNA-binding protein

threshold the threshold probability (nucleotides with lower probabilities are ignored)

code if IUPAC code table has already been initialized by init_iupac_lookup_table,
it can be specified here

Details

IUPAC RNA nucleotide code:

A Adenine
C Cytosine
G Guanine
U Uracil
R A or G
Y C or U
S G or C
W A or U
K G or U
M A or C
B C or G or U
D A or G or U
H A or C or U
V A or C or G
N any base

Value

the IUPAC string of the binding site

References

http://www.chem.qmul.ac.uk/iubmb/misc/naseq.html

See Also

Other motif functions: generate_iupac_by_kmers(), generate_kmers_from_iupac(), get_motif_by_id(),
get_motif_by_rbp(), get_motifs(), get_motifs_meta_info(), get_ppm(), init_iupac_lookup_table(),
set_motifs()

Examples

generate_iupac_by_matrix(get_motif_matrix(get_motif_by_id("M178_0.6")[[1]]))

http://www.chem.qmul.ac.uk/iubmb/misc/naseq.html

generate_kmers 23

generate_kmers k-mer Counts for Sequence Set

Description

Counts occurrences of k-mers of length k in the given set of sequences. Corrects for homopolymeric
stretches.

Usage

generate_kmers(sequences, k)

Arguments

sequences character vector of DNA or RNA sequences

k length of k-mer, either 6 for hexamers or 7 for heptamers

Value

Returns a named numeric vector, where the elements are k-mer counts and the names are DNA
k-mers.

Warning

generate_kmers always returns DNA k-mers, even if sequences contains RNA sequences. RNA
sequences are internally converted to DNA sequences. It is not allowed to mix DNA and RNA
sequences.

See Also

Other k-mer functions: calculate_kmer_enrichment(), check_kmers(), compute_kmer_enrichment(),
count_homopolymer_corrected_kmers(), create_kmer_origin_list(), draw_volcano_plot(),
estimate_significance(), estimate_significance_core(), generate_permuted_enrichments(),
run_kmer_spma(), run_kmer_tsma()

Examples

count hexamers in set of RNA sequences
rna_sequences <- c(

"CAACAGCCUUAAUU", "CAGUCAAGACUCC", "CUUUGGGGAAU",
"UCAUUUUAUUAAA", "AAUUGGUGUCUGGAUACUUCCCUGUACAU",
"AUCAAAUUA", "AGAU", "GACACUUAAAGAUCCU",
"UAGCAUUAACUUAAUG", "AUGGA", "GAAGAGUGCUCA",
"AUAGAC", "AGUUC", "CCAGUAA",
"UUAUUUA", "AUCCUUUACA", "UUUUUUU", "UUUCAUCAUU",
"CCACACAC", "CUCAUUGGAG", "ACUUUGGGACA", "CAGGUCAGCA"

)
hexamer_counts <- generate_kmers(rna_sequences, 6)

24 generate_kmers_from_iupac

count heptamers in set of DNA sequences
dna_sequences <- c(

"CAACAGCCTTAATT", "CAGTCAAGACTCC", "CTTTGGGGAAT",
"TCATTTTATTAAA", "AATTGGTGTCTGGATACTTCCCTGTACAT",
"ATCAAATTA", "AGAT", "GACACTTAAAGATCCT",
"TAGCATTAACTTAATG", "ATGGA", "GAAGAGTGCTCA",
"ATAGAC", "AGTTC", "CCAGTAA",
"TTATTTA", "ATCCTTTACA", "TTTTTTT", "TTTCATCATT",
"CCACACAC", "CTCATTGGAG", "ACTTTGGGACA", "CAGGTCAGCA"

)
hexamer_counts <- generate_kmers(dna_sequences, 7)

generate_kmers_from_iupac

Generates all k-mers for IUPAC string

Description

Generates all possible k-mers for a given IUPAC string.

Usage

generate_kmers_from_iupac(iupac, k)

Arguments

iupac IUPAC string

k length of k-mer, 6 (hexamers) or 7 (heptamers)

Details

IUPAC RNA nucleotide code:

A Adenine
C Cytosine
G Guanine
U Uracil
R A or G
Y C or U
S G or C
W A or U
K G or U
M A or C
B C or G or U
D A or G or U
H A or C or U

generate_permuted_enrichments 25

V A or C or G
N any base

Value

list of k-mers

References

http://www.chem.qmul.ac.uk/iubmb/misc/naseq.html

See Also

Other motif functions: generate_iupac_by_kmers(), generate_iupac_by_matrix(), get_motif_by_id(),
get_motif_by_rbp(), get_motifs(), get_motifs_meta_info(), get_ppm(), init_iupac_lookup_table(),
set_motifs()

Examples

generate_kmers_from_iupac(get_iupac(get_motif_by_id("M178_0.6")[[1]]), k = 6)

generate_permuted_enrichments

Generate Random Permutations of the Enrichment Data

Description

Calculates k-mer enrichment values for randomly sampled (without replacement) foreground sets.

Usage

generate_permuted_enrichments(
n_transcripts_foreground,
background_set,
k,
n_permutations = 1000,
n_cores = 4

)

Arguments

n_transcripts_foreground

number of transcripts in the original foreground set

background_set character vector of DNA or RNA sequences that constitute the background set

k length of k-mer, either 6 for hexamers or 7 for heptamers

n_permutations number of permutations to perform

n_cores number of computing cores to use

http://www.chem.qmul.ac.uk/iubmb/misc/naseq.html

26 geometric_mean

Value

The result of calculate_kmer_enrichment for the random foreground sets.

See Also

Other k-mer functions: calculate_kmer_enrichment(), check_kmers(), compute_kmer_enrichment(),
count_homopolymer_corrected_kmers(), create_kmer_origin_list(), draw_volcano_plot(),
estimate_significance(), estimate_significance_core(), generate_kmers(), run_kmer_spma(),
run_kmer_tsma()

geometric_mean Geometric Mean

Description

Calculates the geometric mean of the specified values.

Usage

geometric_mean(x, na_rm = TRUE)

Arguments

x numeric vector of values for which the geometric mean will be computed

na_rm logical. Should missing values (including NaN) be removed?

Value

Geometric mean of x or 1 if length of x is 0

Examples

geometric_mean(c(0.123, 0.441, 0.83))

get_motifs 27

get_motifs Retrieve list of all motifs

Description

Retrieves all Transite motifs

Usage

get_motifs()

Value

A list of objects of class Motif

See Also

Other motif functions: generate_iupac_by_kmers(), generate_iupac_by_matrix(), generate_kmers_from_iupac(),
get_motif_by_id(), get_motif_by_rbp(), get_motifs_meta_info(), get_ppm(), init_iupac_lookup_table(),
set_motifs()

Examples

transite_motifs <- get_motifs()

get_motifs_meta_info Displays motif meta information.

Description

Generates a data frame with meta information about all Transite motifs.

Usage

get_motifs_meta_info()

Value

A data frame containing meta information for all Transite motifs, with the following columns:

• id

• rbps

• length

• iupac

• type

• species

• src

28 get_motif_by_id

See Also

Other motif functions: generate_iupac_by_kmers(), generate_iupac_by_matrix(), generate_kmers_from_iupac(),
get_motif_by_id(), get_motif_by_rbp(), get_motifs(), get_ppm(), init_iupac_lookup_table(),
set_motifs()

Examples

get_motifs_meta_info()

get_motif_by_id Retrieve motif objects by id

Description

Retrieves one or more motif objects identified by motif id.

Usage

get_motif_by_id(id)

Arguments

id character vector of motif identifiers

Value

A list of objects of class RBPMotif

See Also

Other motif functions: generate_iupac_by_kmers(), generate_iupac_by_matrix(), generate_kmers_from_iupac(),
get_motif_by_rbp(), get_motifs(), get_motifs_meta_info(), get_ppm(), init_iupac_lookup_table(),
set_motifs()

Examples

get_motif_by_id("M178_0.6")

get_motif_by_id(c("M178_0.6", "M188_0.6"))

get_motif_by_rbp 29

get_motif_by_rbp Retrieve motif objects by gene symbol

Description

Retrieves one or more motif objects identified by gene symbol.

Usage

get_motif_by_rbp(rbp)

Arguments

rbp character vector of gene symbols of RNA-binding proteins

Value

A list of objects of class RBPMotif

See Also

Other motif functions: generate_iupac_by_kmers(), generate_iupac_by_matrix(), generate_kmers_from_iupac(),
get_motif_by_id(), get_motifs(), get_motifs_meta_info(), get_ppm(), init_iupac_lookup_table(),
set_motifs()

Examples

get_motif_by_rbp("ELAVL1")

get_motif_by_rbp(c("ELAVL1", "ELAVL2"))

get_ppm Get Position Probability Matrix (PPM) from motif object

Description

Return the position probability matrix of the specified motif.

Usage

get_ppm(motif)

Arguments

motif object of class RBPMotif

30 init_iupac_lookup_table

Value

The position probability matrix of the specified motif

See Also

Other motif functions: generate_iupac_by_kmers(), generate_iupac_by_matrix(), generate_kmers_from_iupac(),
get_motif_by_id(), get_motif_by_rbp(), get_motifs(), get_motifs_meta_info(), init_iupac_lookup_table(),
set_motifs()

Examples

get_ppm(get_motif_by_id("M178_0.6")[[1]])

init_iupac_lookup_table

Initializes the IUPAC lookup table

Description

Initializes a hash table that serves as a IUPAC lookup table for the generate_iupac_by_matrix
function.

Usage

init_iupac_lookup_table()

Details

IUPAC RNA nucleotide code:

A Adenine
C Cytosine
G Guanine
U Uracil
R A or G
Y C or U
S G or C
W A or U
K G or U
M A or C
B C or G or U
D A or G or U
H A or C or U
V A or C or G
N any base

kmers_enrichment 31

Value

an environment, the IUPAC lookup hash table

References

http://www.chem.qmul.ac.uk/iubmb/misc/naseq.html

See Also

Other motif functions: generate_iupac_by_kmers(), generate_iupac_by_matrix(), generate_kmers_from_iupac(),
get_motif_by_id(), get_motif_by_rbp(), get_motifs(), get_motifs_meta_info(), get_ppm(),
set_motifs()

Examples

generate_iupac_by_matrix(get_motif_matrix(get_motif_by_id("M178_0.6")[[1]]),
code = init_iupac_lookup_table())

kmers_enrichment Example k-mer Enrichment Data

Description

This data frame with k-mer enrichment data (as produced by run_kmer_tsma) is used in a code
example for k-mer volcano plot function draw_volcano_plot.

Usage

data(kmers_enrichment)

Format

A data frame with the following columns:

kmer contains all hexamers (AAAAAA to UUUUUU)
foreground_count absolute k-mer frequency in foreground set
background_count absolute k-mer frequency in background set

enrichment enrichment of k-mer in foreground relative to background
p_value associated p-value of enrichment

adj_p_value multiple testing corrected p-value

http://www.chem.qmul.ac.uk/iubmb/misc/naseq.html

32 p_combine

motifs Transite Motif Database

Description

The Transite motif database contains sequence motifs and associated k-mers of more than 100
different RNA-binding proteins, obtained from publicly available motif databases.

Usage

data(motifs)

Format

A list of lists with the following components:

id motif id
rbps gene symbols of RNA-binding proteins associated with motif

matrix data frame of sequence motif (position weight matrix)
hexamers all motif-associated hexamers

heptamers all motif-associated heptamers
length length of motif in nucleotides
iupac IUPAC string of sequence motif
type type of motif, e.g., RNAcompete

species usually human
src source of motif, e.g., RNA Zoo

References

http://cisbp-rna.ccbr.utoronto.ca/

http://rbpdb.ccbr.utoronto.ca/

p_combine P-value aggregation

Description

p_combine is used to combine the p-values of independent significance tests.

Usage

p_combine(p, method = c("fisher", "SL", "MG", "tippett"), w = NULL)

http://cisbp-rna.ccbr.utoronto.ca/
http://rbpdb.ccbr.utoronto.ca/

p_combine 33

Arguments

p vector of p-values

method one of the following: Fisher (1932) ('fisher'), Stouffer (1949), Liptak (1958)
('SL'), Mudholkar and George (1979) ('MG'), and Tippett (1931) ('tippett')

w weights, only used in combination with Stouffer-Liptak. If is.null(w) then
weights are set in an unbiased way

Details

The problem can be specified as follows: Given a vector of n p-values p1, ..., pn, find pc, the
combined p-value of the n significance tests. Most of the methods introduced here combine the p-
values in order to obtain a test statistic, which follows a known probability distribution. The general
procedure can be stated as:

T (h,C) =

n∑
i=1

h(pi) ∗ C

The function T , which returns the test statistic t, takes two arguments. h is a function defined on
the interval [0, 1] that transforms the individual p-values, and C is a correction term.

Fisher’s method (1932), also known as the inverse chi-square method is probably the most widely
used method for combining p-values. Fisher used the fact that if pi is uniformly distributed (which
p-values are under the null hypothesis), then −2 log pi follows a chi-square distribution with two
degrees of freedom. Therefore, if p-values are transformed as follows,

h(p) = −2 log p,

and the correction term C is neutral, i.e., equals 1, the following statement can be made about the
sampling distribution of the test statistic Tf under the null hypothesis: tf is distributed as chi-square
with 2n degrees of freedom, where n is the number of p-values.

Stouffer’s method, or the inverse normal method, uses a p-value transformation function h that leads
to a test statistic that follows the standard normal distribution by transforming each p-value to its
corresponding normal score. The correction term scales the sum of the normal scores by the root of
the number of p-values.

h(p) = Φ−1(1− p)

C =
1√
n

Under the null hypothesis, ts is distributed as standard normal. Φ−1 is the inverse of the cumulative
standard normal distribution function.

An extension of Stouffer’s method with weighted p-values is called Liptak’s method.

The logit method by Mudholkar and George uses the following transformation:

h(p) = − ln(p/(1− p))

When the sum of the transformed p-values is corrected in the following way:

C =

√
3(5n+ 4)

π2n(5n+ 2)
,

34 RBPMotif-class

the test statistic tm is approximately t-distributed with 5n+ 4 degrees of freedom.

In Tippett’s method the smallest p-value is used as the test statistic tt and the combined significance
is calculated as follows:

Pr(tt) = 1− (1− tt)
n

Value

A list with the following components:

statistic the test statistic
p_value the corresponding p-value
method the method used

statistic_name the name of the test statistic

Examples

p_combine(c(0.01, 0.05, 0.5))

p_combine(c(0.01, 0.05, 0.5), method = "tippett")

RBPMotif-class An S4 class to represent a RBPMotif

Description

An S4 class to represent a RBPMotif

Getter Method get_id

Getter Method get_rbps

Getter Method get_motif_matrix

Getter Method get_hexamers

Getter Method get_heptamers

Getter Method get_width

Getter Method get_iupac

Getter Method get_type

Getter Method get_species

Getter Method get_source

RBPMotif-class 35

Usage

get_id(object)

S4 method for signature 'RBPMotif'
get_id(object)

get_rbps(object)

S4 method for signature 'RBPMotif'
get_rbps(object)

get_motif_matrix(object)

S4 method for signature 'RBPMotif'
get_motif_matrix(object)

get_hexamers(object)

S4 method for signature 'RBPMotif'
get_hexamers(object)

get_heptamers(object)

S4 method for signature 'RBPMotif'
get_heptamers(object)

get_width(object)

S4 method for signature 'RBPMotif'
get_width(object)

get_iupac(object)

S4 method for signature 'RBPMotif'
get_iupac(object)

get_type(object)

S4 method for signature 'RBPMotif'
get_type(object)

get_species(object)

S4 method for signature 'RBPMotif'
get_species(object)

get_source(object)

36 RBPMotif-class

S4 method for signature 'RBPMotif'
get_source(object)

S4 method for signature 'RBPMotif'
show(object)

Arguments

object RBPMotif object

Value

Object of type RBPMotif

Slots

id motif id (character vector of length 1)

rbps character vector of names of RNA-binding proteins associated with this motif

matrix data frame with four columns (A, C, G, U) and 6 - 15 rows (positions), where cell (i, j)
contains weight of nucleotide j on position i

hexamers character vector of hexamers associated with this motif

heptamers character vector of heptamers associated with this motif

length length of the motif (i.e., nrow(matrix))

iupac IUPAC code for motif matrix (see generate_iupac_by_matrix)

type type of motif (e.g., 'HITS-CLIP', 'EMSA', 'SELEX', etc.)

species species where motif was discovered (e.g., 'Homo sapiens')

src source of motif (e.g., 'RBPDB v1.3.1')

Examples

kmers <- c("AAAAAAA", "CAAAAAA")
iupac <- generate_iupac_by_kmers(kmers,

code = init_iupac_lookup_table())
hexamers <- generate_kmers_from_iupac(iupac, 6)
heptamers <- generate_kmers_from_iupac(iupac, 7)
new("RBPMotif", id = "custom_motif", rbps = "RBP1",

matrix = NULL, hexamers = hexamers, heptamers = heptamers, length = 7L,
iupac = iupac, type = "HITS-CLIP", species = "Homo sapiens", src = "user"

)

run_kmer_spma 37

run_kmer_spma k-mer-based Spectrum Motif Analysis

Description

SPMA helps to illuminate the relationship between RBP binding evidence and the transcript sorting
criterion, e.g., fold change between treatment and control samples.

Usage

run_kmer_spma(
sorted_transcript_sequences,
sorted_transcript_values = NULL,
transcript_values_label = "transcript value",
motifs = NULL,
k = 6,
n_bins = 40,
midpoint = 0,
x_value_limits = NULL,
max_model_degree = 1,
max_cs_permutations = 1e+07,
min_cs_permutations = 5000,
fg_permutations = 5000,
p_adjust_method = "BH",
p_combining_method = "fisher",
n_cores = 1

)

Arguments

sorted_transcript_sequences

character vector of ranked sequences, either DNA (only containing upper case
characters A, C, G, T) or RNA (A, C, G, U). The sequences in sorted_transcript_sequences
must be ranked (i.e., sorted). Commonly used sorting criteria are measures of
differential expression, such as fold change or signal-to-noise ratio (e.g., be-
tween treatment and control samples in gene expression profiling experiments).

sorted_transcript_values

vector of sorted transcript values, i.e., the fold change or signal-to-noise ra-
tio or any other quantity that was used to sort the transcripts that were passed
to run_matrix_spma or run_kmer_spma (default value is NULL). These values
are displayed as a semi-transparent area over the enrichment value heatmaps of
spectrum plots.

transcript_values_label

label of transcript sorting criterion (e.g., "log fold change", default value is
"transcript value"), only shown if !is.null(sorted_transcript_values)

motifs a list of motifs that is used to score the specified sequences. If is.null(motifs)
then all Transite motifs are used.

38 run_kmer_spma

k length of k-mer, either 6 for hexamers or 7 for heptamers

n_bins specifies the number of bins in which the sequences will be divided, valid values
are between 7 and 100

midpoint for enrichment values the midpoint should be 1, for log enrichment values 0
(defaults to 0)

x_value_limits sets limits of the x-value color scale (used to harmonize color scales of different
spectrum plots), see limits argument of continuous_scale (defaults to NULL,
i.e., the data-dependent default scale range)

max_model_degree

maximum degree of polynomial

max_cs_permutations

maximum number of permutations performed in Monte Carlo test for consis-
tency score

min_cs_permutations

minimum number of permutations performed in Monte Carlo test for consis-
tency score

fg_permutations

numer of foreground permutations

p_adjust_method

see p.adjust

p_combining_method

one of the following: Fisher (1932) ("fisher"), Stouffer (1949), Liptak (1958)
("SL"), Mudholkar and George (1979) ("MG"), and Tippett (1931) ("tippett")
(see p_combine)

n_cores number of computing cores to use

Details

In order to investigate how motif targets are distributed across a spectrum of transcripts (e.g., all
transcripts of a platform, ordered by fold change), Spectrum Motif Analysis visualizes the gradient
of RBP binding evidence across all transcripts.

The k-mer-based approach differs from the matrix-based approach by how the sequences are scored.
Here, sequences are broken into k-mers, i.e., oligonucleotide sequences of k bases. And only sta-
tistically significantly enriched or depleted k-mers are then used to calculate a score for each RNA-
binding protein, which quantifies its target overrepresentation.

Value

A list with the following components:

foreground_scores the result of run_kmer_tsma for the binned data
spectrum_info_df a data frame with the SPMA results
spectrum_plots a list of spectrum plots, as generated by score_spectrum

classifier_scores a list of classifier scores, as returned by classify_spectrum

run_kmer_tsma 39

See Also

Other SPMA functions: classify_spectrum(), run_matrix_spma(), score_spectrum(), subdivide_data()

Other k-mer functions: calculate_kmer_enrichment(), check_kmers(), compute_kmer_enrichment(),
count_homopolymer_corrected_kmers(), create_kmer_origin_list(), draw_volcano_plot(),
estimate_significance(), estimate_significance_core(), generate_kmers(), generate_permuted_enrichments(),
run_kmer_tsma()

Examples

example data set
background_df <- transite:::ge$background_df
sort sequences by signal-to-noise ratio
background_df <- dplyr::arrange(background_df, value)
character vector of named and ranked (by signal-to-noise ratio) sequences
background_seqs <- gsub("T", "U", background_df$seq)
names(background_seqs) <- paste0(background_df$refseq, "|",

background_df$seq_type)

results <- run_kmer_spma(background_seqs,
sorted_transcript_values = background_df$value,
transcript_values_label = "signal-to-noise ratio",
motifs = get_motif_by_id("M178_0.6"),
n_bins = 20,
fg_permutations = 10)

Not run:
results <- run_kmer_spma(background_seqs,

sorted_transcript_values = background_df$value,
transcript_values_label = "signal-to-noise ratio")

End(Not run)

run_kmer_tsma k-mer-based Transcript Set Motif Analysis

Description

Calculates the enrichment of putative binding sites in foreground sets versus a background set using
k-mers to identify putative binding sites

Usage

run_kmer_tsma(
foreground_sets,
background_set,
motifs = NULL,
k = 6,
fg_permutations = 5000,

40 run_kmer_tsma

kmer_significance_threshold = 0.01,
produce_plot = TRUE,
p_adjust_method = "BH",
p_combining_method = "fisher",
n_cores = 1

)

Arguments

foreground_sets

list of foreground sets; a foreground set is a character vector of DNA or RNA
sequences (not both) and a strict subset of the background_set

background_set character vector of DNA or RNA sequences that constitute the background set

motifs a list of motifs that is used to score the specified sequences. If is.null(motifs)
then all Transite motifs are used.

k length of k-mer, either 6 for hexamers or 7 for heptamers

fg_permutations

numer of foreground permutations

kmer_significance_threshold

p-value threshold for significance, e.g., 0.05 or 0.01 (used for volcano plots)

produce_plot if TRUE volcano plots and distribution plots are created

p_adjust_method

see p.adjust

p_combining_method

one of the following: Fisher (1932) ("fisher"), Stouffer (1949), Liptak (1958)
("SL"), Mudholkar and George (1979) ("MG"), and Tippett (1931) ("tippett")
(see p_combine)

n_cores number of computing cores to use

Details

Motif transcript set analysis can be used to identify RNA binding proteins, whose targets are signif-
icantly overrepresented or underrepresented in certain sets of transcripts.

The aim of Transcript Set Motif Analysis (TSMA) is to identify the overrepresentation and un-
derrepresentation of potential RBP targets (binding sites) in a set (or sets) of sequences, i.e., the
foreground set, relative to the entire population of sequences. The latter is called background set,
which can be composed of all sequences of the genes of a microarray platform or all sequences of
an organism or any other meaningful superset of the foreground sets.

The k-mer-based approach breaks the sequences of foreground and background sets into k-mers
and calculates the enrichment on a k-mer level. In this case, motifs are not represented as position
weight matrices, but as lists of k-mers.

Statistically significantly enriched or depleted k-mers are then used to calculate a score for each
RNA-binding protein, which quantifies its target overrepresentation.

run_kmer_tsma 41

Value

A list of lists (one for each transcript set) with the following components:

enrichment_df the result of compute_kmer_enrichment
motif_df

motif_kmers_dfs
volcano_plots volcano plots for each motif (see draw_volcano_plot)

perm_test_plots plots of the empirical distribution of k-mer enrichment values for each motif
enriched_kmers_combined_p_values
depleted_kmers_combined_p_values

See Also

Other TSMA functions: draw_volcano_plot(), run_matrix_tsma()

Other k-mer functions: calculate_kmer_enrichment(), check_kmers(), compute_kmer_enrichment(),
count_homopolymer_corrected_kmers(), create_kmer_origin_list(), draw_volcano_plot(),
estimate_significance(), estimate_significance_core(), generate_kmers(), generate_permuted_enrichments(),
run_kmer_spma()

Examples

define simple sequence sets for foreground and background
foreground_set1 <- c(

"CAACAGCCUUAAUU", "CAGUCAAGACUCC", "CUUUGGGGAAU",
"UCAUUUUAUUAAA", "AAUUGGUGUCUGGAUACUUCCCUGUACAU",
"AUCAAAUUA", "AGAU", "GACACUUAAAGAUCCU",
"UAGCAUUAACUUAAUG", "AUGGA", "GAAGAGUGCUCA",
"AUAGAC", "AGUUC", "CCAGUAA"

)
foreground_set2 <- c("UUAUUUA", "AUCCUUUACA", "UUUUUUU", "UUUCAUCAUU")
foreground_sets <- list(foreground_set1, foreground_set2)
background_set <- unique(c(foreground_set1, foreground_set2, c(

"CCACACAC", "CUCAUUGGAG", "ACUUUGGGACA", "CAGGUCAGCA",
"CCACACCGG", "GUCAUCAGU", "GUCAGUCC", "CAGGUCAGGGGCA"

)))

run k-mer based TSMA with all Transite motifs (recommended):
results <- run_kmer_tsma(foreground_sets, background_set)

run TSMA with one motif:
motif_db <- get_motif_by_id("M178_0.6")
results <- run_kmer_tsma(foreground_sets, background_set, motifs = motif_db)
Not run:
define example sequence sets for foreground and background
foreground_set1 <- gsub("T", "U", transite:::ge$foreground1_df$seq)
foreground_set2 <- gsub("T", "U", transite:::ge$foreground2_df$seq)
foreground_sets <- list(foreground_set1, foreground_set2)
background_set <- gsub("T", "U", transite:::ge$background_df$seq)

run TSMA with all Transite motifs
results <- run_kmer_tsma(foreground_sets, background_set)

42 run_matrix_spma

run TSMA with a subset of Transite motifs
results <- run_kmer_tsma(foreground_sets, background_set,

motifs = get_motif_by_rbp("ELAVL1"))

run TSMA with user-defined motif
toy_motif <- create_kmer_motif(

"toy_motif", "example RBP",
c("AACCGG", "AAAACG", "AACACG"), "example type", "example species", "user"

)
results <- run_matrix_tsma(foreground_sets, background_set,

motifs = list(toy_motif))

End(Not run)

run_matrix_spma Matrix-based Spectrum Motif Analysis

Description

SPMA helps to illuminate the relationship between RBP binding evidence and the transcript sorting
criterion, e.g., fold change between treatment and control samples.

Usage

run_matrix_spma(
sorted_transcript_sequences,
sorted_transcript_values = NULL,
transcript_values_label = "transcript value",
motifs = NULL,
n_bins = 40,
midpoint = 0,
x_value_limits = NULL,
max_model_degree = 1,
max_cs_permutations = 1e+07,
min_cs_permutations = 5000,
max_hits = 5,
threshold_method = "p_value",
threshold_value = 0.25^6,
max_fg_permutations = 1e+06,
min_fg_permutations = 1000,
e = 5,
p_adjust_method = "BH",
n_cores = 1,
cache = paste0(tempdir(), "/sc/")

)

run_matrix_spma 43

Arguments

sorted_transcript_sequences

named character vector of ranked sequences (only containing upper case charac-
ters A, C, G, T), where the names are RefSeq identifiers and sequence type qual-
ifiers ("3UTR", "5UTR" or "mRNA"), separated by "|", e.g. "NM_010356|3UTR".
Names are only used to cache results. The sequences in sorted_transcript_sequences
must be ranked (i.e., sorted). Commonly used sorting criteria are measures of
differential expression, such as fold change or signal-to-noise ratio (e.g., be-
tween treatment and control samples in gene expression profiling experiments).

sorted_transcript_values

vector of sorted transcript values, i.e., the fold change or signal-to-noise ra-
tio or any other quantity that was used to sort the transcripts that were passed
to run_matrix_spma or run_kmer_spma (default value is NULL). These values
are displayed as a semi-transparent area over the enrichment value heatmaps of
spectrum plots.

transcript_values_label

label of transcript sorting criterion (e.g., "log fold change", default value is
"transcript value"), only shown if !is.null(sorted_transcript_values)

motifs a list of motifs that is used to score the specified sequences. If is.null(motifs)
then all Transite motifs are used.

n_bins specifies the number of bins in which the sequences will be divided, valid values
are between 7 and 100

midpoint for enrichment values the midpoint should be 1, for log enrichment values 0
(defaults to 0)

x_value_limits sets limits of the x-value color scale (used to harmonize color scales of different
spectrum plots), see limits argument of continuous_scale (defaults to NULL,
i.e., the data-dependent default scale range)

max_model_degree

maximum degree of polynomial
max_cs_permutations

maximum number of permutations performed in Monte Carlo test for consis-
tency score

min_cs_permutations

minimum number of permutations performed in Monte Carlo test for consis-
tency score

max_hits maximum number of putative binding sites per mRNA that are counted
threshold_method

either "p_value" (default) or "relative". If threshold_method equals "p_value",
the default threshold_value is 0.25^6, which is lowest p-value that can be
achieved by hexamer motifs, the shortest supported motifs. If threshold_method
equals "relative", the default threshold_value is 0.9, which is 90% of the
maximum PWM score.

threshold_value

semantics of the threshold_value depend on threshold_method (default is
0.25^6)

44 run_matrix_spma

max_fg_permutations

maximum number of foreground permutations performed in Monte Carlo test
for enrichment score

min_fg_permutations

minimum number of foreground permutations performed in Monte Carlo test
for enrichment score

e integer-valued stop criterion for enrichment score Monte Carlo test: aborting
permutation process after observing e random enrichment values with more ex-
treme values than the actual enrichment value

p_adjust_method

adjustment of p-values from Monte Carlo tests to avoid alpha error accumula-
tion, see p.adjust

n_cores the number of cores that are used

cache either logical or path to a directory where scores are cached. The scores of each
motif are stored in a separate file that contains a hash table with RefSeq iden-
tifiers and sequence type qualifiers as keys and the number of putative binding
sites as values. If cache is FALSE, scores will not be cached.

Details

In order to investigate how motif targets are distributed across a spectrum of transcripts (e.g., all
transcripts of a platform, ordered by fold change), Spectrum Motif Analysis visualizes the gradient
of RBP binding evidence across all transcripts.

The matrix-based approach skips the k-merization step of the k-mer-based approach and instead
scores the transcript sequence as a whole with a position specific scoring matrix.

For each sequence in foreground and background sets and each sequence motif, the scoring algo-
rithm evaluates the score for each sequence position. Positions with a relative score greater than a
certain threshold are considered hits, i.e., putative binding sites.

By scoring all sequences in foreground and background sets, a hit count for each motif and each set
is obtained, which is used to calculate enrichment values and associated p-values in the same way
in which motif-compatible hexamer enrichment values are calculated in the k-mer-based approach.
P-values are adjusted with one of the available adjustment methods.

An advantage of the matrix-based approach is the possibility of detecting clusters of binding sites.
This can be done by counting regions with many hits using positional hit information or by simply
applying a hit count threshold per sequence, e.g., only sequences with more than some number of
hits are considered. Homotypic clusters of RBP binding sites may play a similar role as clusters of
transcription factors.

Value

A list with the following components:

foreground_scores the result of score_transcripts for the foreground sets (the bins)
background_scores the result of score_transcripts for the background set

enrichment_dfs a list of data frames, returned by calculate_motif_enrichment
spectrum_info_df a data frame with the SPMA results
spectrum_plots a list of spectrum plots, as generated by score_spectrum

run_matrix_tsma 45

classifier_scores a list of classifier scores, as returned by classify_spectrum

See Also

Other SPMA functions: classify_spectrum(), run_kmer_spma(), score_spectrum(), subdivide_data()

Other matrix functions: calculate_motif_enrichment(), run_matrix_tsma(), score_transcripts(),
score_transcripts_single_motif()

Examples

example data set
background_df <- transite:::ge$background_df
sort sequences by signal-to-noise ratio
background_df <- dplyr::arrange(background_df, value)
character vector of named and ranked (by signal-to-noise ratio) sequences
background_seqs <- gsub("T", "U", background_df$seq)
names(background_seqs) <- paste0(background_df$refseq, "|",

background_df$seq_type)

results <- run_matrix_spma(background_seqs,
sorted_transcript_values = background_df$value,
transcript_values_label = "signal-to-noise ratio",
motifs = get_motif_by_id("M178_0.6"),
n_bins = 20,
max_fg_permutations = 10000)

Not run:
results <- run_matrix_spma(background_seqs,

sorted_transcript_values = background_df$value,
transcript_values_label = "SNR")

End(Not run)

run_matrix_tsma Matrix-based Transcript Set Motif Analysis

Description

Calculates motif enrichment in foreground sets versus a background set using position weight ma-
trices to identify putative binding sites

Usage

run_matrix_tsma(
foreground_sets,
background_set,
motifs = NULL,
max_hits = 5,
threshold_method = "p_value",

46 run_matrix_tsma

threshold_value = 0.25^6,
max_fg_permutations = 1e+06,
min_fg_permutations = 1000,
e = 5,
p_adjust_method = "BH",
n_cores = 1,
cache = paste0(tempdir(), "/sc/")

)

Arguments

foreground_sets

a list of named character vectors of foreground sequences (only containing upper
case characters A, C, G, T), where the names are RefSeq identifiers and sequence
type qualifiers ("3UTR", "5UTR", "mRNA"), e.g. "NM_010356|3UTR". Names are
only used to cache results.

background_set a named character vector of background sequences (naming follows same rules
as foreground set sequences)

motifs a list of motifs that is used to score the specified sequences. If is.null(motifs)
then all Transite motifs are used.

max_hits maximum number of putative binding sites per mRNA that are counted
threshold_method

either "p_value" (default) or "relative". If threshold_method equals "p_value",
the default threshold_value is 0.25^6, which is lowest p-value that can be
achieved by hexamer motifs, the shortest supported motifs. If threshold_method
equals "relative", the default threshold_value is 0.9, which is 90% of the
maximum PWM score.

threshold_value

semantics of the threshold_value depend on threshold_method (default is
0.25^6)

max_fg_permutations

maximum number of foreground permutations performed in Monte Carlo test
for enrichment score

min_fg_permutations

minimum number of foreground permutations performed in Monte Carlo test
for enrichment score

e integer-valued stop criterion for enrichment score Monte Carlo test: aborting
permutation process after observing e random enrichment values with more ex-
treme values than the actual enrichment value

p_adjust_method

adjustment of p-values from Monte Carlo tests to avoid alpha error accumula-
tion, see p.adjust

n_cores the number of cores that are used

cache either logical or path to a directory where scores are cached. The scores of each
motif are stored in a separate file that contains a hash table with RefSeq iden-
tifiers and sequence type qualifiers as keys and the number of putative binding
sites as values. If cache is FALSE, scores will not be cached.

run_matrix_tsma 47

Details

Motif transcript set analysis can be used to identify RNA binding proteins, whose targets are signif-
icantly overrepresented or underrepresented in certain sets of transcripts.

The aim of Transcript Set Motif Analysis (TSMA) is to identify the overrepresentation and un-
derrepresentation of potential RBP targets (binding sites) in a set (or sets) of sequences, i.e., the
foreground set, relative to the entire population of sequences. The latter is called background set,
which can be composed of all sequences of the genes of a microarray platform or all sequences of
an organism or any other meaningful superset of the foreground sets.

The matrix-based approach skips the k-merization step of the k-mer-based approach and instead
scores the transcript sequence as a whole with a position specific scoring matrix.

For each sequence in foreground and background sets and each sequence motif, the scoring algo-
rithm evaluates the score for each sequence position. Positions with a relative score greater than a
certain threshold are considered hits, i.e., putative binding sites.

By scoring all sequences in foreground and background sets, a hit count for each motif and each set
is obtained, which is used to calculate enrichment values and associated p-values in the same way
in which motif-compatible hexamer enrichment values are calculated in the k -mer-based approach.
P-values are adjusted with one of the available adjustment methods.

An advantage of the matrix-based approach is the possibility of detecting clusters of binding sites.
This can be done by counting regions with many hits using positional hit information or by simply
applying a hit count threshold per sequence, e.g., only sequences with more than some number of
hits are considered. Homotypic clusters of RBP binding sites may play a similar role as clusters of
transcription factors.

Value

A list with the following components:

foreground_scores the result of score_transcripts for the foreground sets
background_scores the result of score_transcripts for the background set

enrichment_dfs a list of data frames, returned by calculate_motif_enrichment

See Also

Other TSMA functions: draw_volcano_plot(), run_kmer_tsma()

Other matrix functions: calculate_motif_enrichment(), run_matrix_spma(), score_transcripts(),
score_transcripts_single_motif()

Examples

define simple sequence sets for foreground and background
foreground_set1 <- c(

"CAACAGCCUUAAUU", "CAGUCAAGACUCC", "CUUUGGGGAAU",
"UCAUUUUAUUAAA", "AAUUGGUGUCUGGAUACUUCCCUGUACAU",
"AUCAAAUUA", "AGAU", "GACACUUAAAGAUCCU",
"UAGCAUUAACUUAAUG", "AUGGA", "GAAGAGUGCUCA",
"AUAGAC", "AGUUC", "CCAGUAA"

)

48 run_matrix_tsma

names(foreground_set1) <- c(
"NM_1_DUMMY|3UTR", "NM_2_DUMMY|3UTR", "NM_3_DUMMY|3UTR",
"NM_4_DUMMY|3UTR", "NM_5_DUMMY|3UTR", "NM_6_DUMMY|3UTR",
"NM_7_DUMMY|3UTR",
"NM_8_DUMMY|3UTR", "NM_9_DUMMY|3UTR", "NM_10_DUMMY|3UTR",
"NM_11_DUMMY|3UTR",
"NM_12_DUMMY|3UTR", "NM_13_DUMMY|3UTR", "NM_14_DUMMY|3UTR"

)

foreground_set2 <- c("UUAUUUA", "AUCCUUUACA", "UUUUUUU", "UUUCAUCAUU")
names(foreground_set2) <- c(

"NM_15_DUMMY|3UTR", "NM_16_DUMMY|3UTR", "NM_17_DUMMY|3UTR",
"NM_18_DUMMY|3UTR"

)

foreground_sets <- list(foreground_set1, foreground_set2)

background_set <- c(
"CAACAGCCUUAAUU", "CAGUCAAGACUCC", "CUUUGGGGAAU",
"UCAUUUUAUUAAA", "AAUUGGUGUCUGGAUACUUCCCUGUACAU",
"AUCAAAUUA", "AGAU", "GACACUUAAAGAUCCU",
"UAGCAUUAACUUAAUG", "AUGGA", "GAAGAGUGCUCA",
"AUAGAC", "AGUUC", "CCAGUAA",
"UUAUUUA", "AUCCUUUACA", "UUUUUUU", "UUUCAUCAUU",
"CCACACAC", "CUCAUUGGAG", "ACUUUGGGACA", "CAGGUCAGCA"

)
names(background_set) <- c(

"NM_1_DUMMY|3UTR", "NM_2_DUMMY|3UTR", "NM_3_DUMMY|3UTR",
"NM_4_DUMMY|3UTR", "NM_5_DUMMY|3UTR", "NM_6_DUMMY|3UTR",
"NM_7_DUMMY|3UTR",
"NM_8_DUMMY|3UTR", "NM_9_DUMMY|3UTR", "NM_10_DUMMY|3UTR",
"NM_11_DUMMY|3UTR",
"NM_12_DUMMY|3UTR", "NM_13_DUMMY|3UTR", "NM_14_DUMMY|3UTR",
"NM_15_DUMMY|3UTR",
"NM_16_DUMMY|3UTR", "NM_17_DUMMY|3UTR", "NM_18_DUMMY|3UTR",
"NM_19_DUMMY|3UTR",
"NM_20_DUMMY|3UTR", "NM_21_DUMMY|3UTR", "NM_22_DUMMY|3UTR"

)

run cached version of TSMA with all Transite motifs (recommended):
results <- run_matrix_tsma(foreground_sets, background_set)

run uncached version with one motif:
motif_db <- get_motif_by_id("M178_0.6")
results <- run_matrix_tsma(foreground_sets, background_set, motifs = motif_db,
cache = FALSE)

Not run:
define example sequence sets for foreground and background
foreground1_df <- transite:::ge$foreground1_df
foreground_set1 <- gsub("T", "U", foreground1_df$seq)
names(foreground_set1) <- paste0(foreground1_df$refseq, "|",

foreground1_df$seq_type)

score_sequences 49

foreground2_df <- transite:::ge$foreground2_df
foreground_set2 <- gsub("T", "U", foreground2_df$seq)
names(foreground_set2) <- paste0(foreground2_df$refseq, "|",

foreground2_df$seq_type)

foreground_sets <- list(foreground_set1, foreground_set2)

background_df <- transite:::ge$background_df
background_set <- gsub("T", "U", background_df$seq)
names(background_set) <- paste0(background_df$refseq, "|",

background_df$seq_type)

run cached version of TSMA with all Transite motifs (recommended)
results <- run_matrix_tsma(foreground_sets, background_set)

run uncached version of TSMA with all Transite motifs
results <- run_matrix_tsma(foreground_sets, background_set, cache = FALSE)

run TSMA with a subset of Transite motifs
results <- run_matrix_tsma(foreground_sets, background_set,

motifs = get_motif_by_rbp("ELAVL1"))

run TSMA with user-defined motif
toy_motif <- create_matrix_motif(

"toy_motif", "example RBP", toy_motif_matrix,
"example type", "example species", "user"

)
results <- run_matrix_tsma(foreground_sets, background_set,

motifs = list(toy_motif))

End(Not run)

score_sequences Score Sequences with PWM

Description

C++ implementation of PWM scoring algorithm

Usage

score_sequences(sequences, pwm)

Arguments

sequences list of sequences

pwm position weight matrix

50 score_spectrum

Value

list of PWM scores for each sequence

Examples

motif <- get_motif_by_id("M178_0.6")[[1]]
sequences <- c("CAACAGCCUUAAUU", "CAGUCAAGACUCC", "CUUUGGGGAAU",

"UCAUUUUAUUAAA", "AAUUGGUGUCUGGAUACUUCCCUGUACAU",
"AUCAAAUUA", "UGUGGGG", "GACACUUAAAGAUCCU",
"UAGCAUUAACUUAAUG", "AUGGA", "GAAGAGUGCUCA", "AUAGAC",
"AGUUC", "CCAGUAA")

seq_char_vectors <- lapply(sequences, function(seq) {
unlist(strsplit(seq, ""))

})
score_sequences(seq_char_vectors, as.matrix(get_motif_matrix(motif)))

score_spectrum Calculates spectrum scores and creates spectrum plots

Description

Spectrum scores are a means to evaluate if a spectrum has a meaningful (i.e., biologically relevant)
or a random pattern.

Usage

score_spectrum(
x,
p_values = array(1, length(x)),
x_label = "log enrichment",
sorted_transcript_values = NULL,
transcript_values_label = "transcript value",
midpoint = 0,
x_value_limits = NULL,
max_model_degree = 3,
max_cs_permutations = 1e+07,
min_cs_permutations = 5000,
e = 5

)

Arguments

x vector of values (e.g., enrichment values, normalized RBP scores) per bin

p_values vector of p-values (e.g., significance of enrichment values) per bin

x_label label of values (e.g., "enrichment value")

score_spectrum 51

sorted_transcript_values

vector of sorted transcript values, i.e., the fold change or signal-to-noise ra-
tio or any other quantity that was used to sort the transcripts that were passed
to run_matrix_spma or run_kmer_spma (default value is NULL). These values
are displayed as a semi-transparent area over the enrichment value heatmaps of
spectrum plots.

transcript_values_label

label of transcript sorting criterion (e.g., "log fold change", default value is
"transcript value"), only shown if !is.null(sorted_transcript_values)

midpoint for enrichment values the midpoint should be 1, for log enrichment values 0
(defaults to 0)

x_value_limits sets limits of the x-value color scale (used to harmonize color scales of different
spectrum plots), see limits argument of continuous_scale (defaults to NULL,
i.e., the data-dependent default scale range)

max_model_degree

maximum degree of polynomial
max_cs_permutations

maximum number of permutations performed in Monte Carlo test for consis-
tency score

min_cs_permutations

minimum number of permutations performed in Monte Carlo test for consis-
tency score

e integer-valued stop criterion for consistency score Monte Carlo test: aborting
permutation process after observing e random consistency values with more ex-
treme values than the actual consistency value

Details

One way to quantify the meaningfulness of a spectrum is to calculate the deviance between the
linear interpolation of the scores of two adjoining bins and the score of the middle bin, for each
position in the spectrum. The lower the score, the more consistent the trend in the spectrum plot.
Formally, the local consistency score xc is defined as

xc =
1

n

n−2∑
i=1

|si + si+2

2
− si+1|.

In order to obtain an estimate of the significance of a particular score x′
c, Monte Carlo sampling is

performed by randomly permuting the coordinates of the scores vector s and recomputing xc. The
probability estimate p̂ is given by the lower tail version of the cumulative distribution function

P̂ r(T (x)) =

∑n
i=1 1(T (yi) ≤ T (x)) + 1

n+ 1
,

where 1 is the indicator function, n is the sample size, i.e., the number of performed permutations,
and T equals xc in the above equation.

An alternative approach to assess the consistency of a spectrum plot is via polynomial regression. In
a first step, polynomial regression models of various degrees are fitted to the data, i.e., the dependent

52 score_spectrum

variable s (vector of scores), and orthogonal polynomials of the independent variable b (vector of
bin numbers). Secondly, the model that reflects best the true nature of the data is selected by means
of the F-test. And lastly, the adjusted R2 and the sum of squared residuals are calculated to indicate
how well the model fits the data. These statistics are used as scores to rank the spectrum plots. In
general, the polynomial regression equation is

yi = β0 + β1xi + β2x
2
i + · · ·+ βmxm

i + ϵi,

where m is the degree of the polynomial (usually m ≤ 5), and ϵi is the error term. The dependent
variable y is the vector of scores s and x to xm are the orthogonal polynomials of the vector of
bin numbers b. Orthogonal polynomials are used in order to reduce the correlation between the
different powers of b and therefore avoid multicollinearity in the model. This is important, because
correlated predictors lead to unstable coefficients, i.e., the coefficients of a polynomial regression
model of degree m can be greatly different from a model of degree m+ 1.

The orthogonal polynomials of vector b are obtained by centering (subtracting the mean), QR de-
composition, and subsequent normalization. Given the dependent variable y and the orthogonal
polynomials of b x to xm, the model coefficients β are chosen in a way to minimize the deviance
between the actual and the predicted values characterized by

M(x) = β0 + β1x+ β2x
2 + · · ·+ βmxm

M = argminM (

n∑
i=1

L(yi,M(xi))),

where L(actual value, predicted value) denotes the loss function.

Ordinary least squares is used as estimation method for the model coefficients β. The loss func-
tion of ordinary least squares is the sum of squared residuals (SSR) and is defined as follows
SSR(y, ŷ) =

∑n
i=1 (yi − ŷi)

2, where y are the observed data and ŷ the model predictions.

Thus the ordinary least squares estimate of the coefficients β̂ (including the intercept β̂0) of the
model M is defined by

β̂ = argminβ(

n∑
i=1

(yi − β0 −
m∑
j=1

βjx
j
i)

2).

After polynomial models of various degrees have been fitted to the data, the F-test is used to select
the model that best fits the data. Since the SSR monotonically decreases with increasing model
degree (model complexity), the relative decrease of the SSR between the simpler model and the
more complex model must outweigh the increase in model complexity between the two models.
The F-test gives the probability that a relative decrease of the SSR between the simpler and the
more complex model given their respective degrees of freedom is due to chance. A low p-value
indicates that the additional degrees of freedom of the more complex model lead to a better fit of
the data than would be expected after a mere increase of degrees of freedom.

The F-statistic is calculated as follows

F =
(SSR1 − SSR2)/(p2 − p1)

SSR2/(n− p2)
,

where SSRi is the sum of squared residuals and pi is the number of parameters of model i. The
number of data points, i.e., bins, is denoted as n. F is distributed according to the F-distribution
with df1 = p2 − p1 and df2 = n− p2.

score_spectrum 53

Value

A list object of class SpectrumScore with the following components:

adj_r_squared adjusted R2 of polynomial model
degree maximum degree of polynomial

residuals residuals of polynomial model
slope coefficient of the linear term of the polynomial model (spectrum "direction")

f_statistic statistic of the F-test
f_statistic_p_value p-value of F-test
consistency_score normalized sum of deviance between the linear interpolation of the scores of two adjoining bins and the score of the middle bin, for each position in the spectrum

consistency_score_p_value obtained by Monte Carlo sampling (randomly permuting the coordinates of the scores vector)
consistency_score_n number of permutations

plot

See Also

Other SPMA functions: classify_spectrum(), run_kmer_spma(), run_matrix_spma(), subdivide_data()

Examples

random spectrum
score_spectrum(runif(n = 40, min = -1, max = 1), max_model_degree = 1)

two random spectrums with harmonized color scales
plot(score_spectrum(runif(n = 40, min = -1, max = 1), max_model_degree = 1,

x_value_limits = c(-2.0, 2.0)))
plot(score_spectrum(runif(n = 40, min = -2, max = 2), max_model_degree = 1,

x_value_limits = c(-2.0, 2.0)))

random spectrum with p-values
score_spectrum(runif(n = 40, min = -1, max = 1),

p_values = runif(n = 40, min = 0, max = 1),
max_model_degree = 1)

random spectrum with sorted transcript values
log_fold_change <- log(runif(n = 1000, min = 0, max = 1) /

runif(n = 1000, min = 0, max = 1))
score_spectrum(runif(n = 40, min = -1, max = 1),

sorted_transcript_values = sort(log_fold_change),
max_model_degree = 1)

non-random linear spectrum
signal <- seq(-1, 0.99, 2 / 40)
noise <- rnorm(n = 40, mean = 0, sd = 0.5)
score_spectrum(signal + noise, max_model_degree = 1,

max_cs_permutations = 100000)

non-random quadratic spectrum
signal <- seq(-1, 0.99, 2 / 40)^2 - 0.5
noise <- rnorm(n = 40, mean = 0, sd = 0.2)
score_spectrum(signal + noise, max_model_degree = 2,

54 score_transcripts

max_cs_permutations = 100000)

score_transcripts Scores transcripts with position weight matrices

Description

This function is used to count the binding sites in a set of sequences for all or a subset of RNA-
binding protein sequence motifs and returns the result in a data frame, which is subsequently used
by calculate_motif_enrichment to obtain binding site enrichment scores.

Usage

score_transcripts(
sequences,
motifs = NULL,
max_hits = 5,
threshold_method = c("p_value", "relative"),
threshold_value = 0.25^6,
n_cores = 1,
cache = paste0(tempdir(), "/sc/")

)

Arguments

sequences character vector of named sequences (only containing upper case characters A,
C, G, T), where the names are RefSeq identifiers and sequence type qualifiers
("3UTR", "5UTR", "mRNA"), e.g. "NM_010356|3UTR"

motifs a list of motifs that is used to score the specified sequences. If is.null(motifs)
then all Transite motifs are used.

max_hits maximum number of putative binding sites per mRNA that are counted
threshold_method

either "p_value" (default) or "relative". If threshold_method equals "p_value",
the default threshold_value is 0.25^6, which is lowest p-value that can be
achieved by hexamer motifs, the shortest supported motifs. If threshold_method
equals "relative", the default threshold_value is 0.9, which is 90% of the
maximum PWM score.

threshold_value

semantics of the threshold_value depend on threshold_method (default is
0.25^6)

n_cores the number of cores that are used

cache either logical or path to a directory where scores are cached. The scores of each
motif are stored in a separate file that contains a hash table with RefSeq iden-
tifiers and sequence type qualifiers as keys and the number of putative binding
sites as values. If cache is FALSE, scores will not be cached.

score_transcripts 55

Value

A list with three entries:

(1) df: a data frame with the following columns:

motif_id the motif identifier that is used in the original motif library
motif_rbps the gene symbol of the RNA-binding protein(s)

absolute_hits the absolute frequency of putative binding sites per motif in all transcripts
relative_hits the relative, i.e., absolute divided by total, frequency of binding sites per motif in all transcripts

total_sites the total number of potential binding sites
one_hit, two_hits, ... number of transcripts with one, two, three, ... putative binding sites

(2) total_sites: a numeric vector with the total number of potential binding sites per transcript

(3) absolute_hits: a numeric vector with the absolute (not relative) number of putative binding sites
per transcript

See Also

Other matrix functions: calculate_motif_enrichment(), run_matrix_spma(), run_matrix_tsma(),
score_transcripts_single_motif()

Examples

foreground_set <- c(
"CAACAGCCUUAAUU", "CAGUCAAGACUCC", "CUUUGGGGAAU",
"UCAUUUUAUUAAA", "AAUUGGUGUCUGGAUACUUCCCUGUACAU",
"AUCAAAUUA", "AGAU", "GACACUUAAAGAUCCU",
"UAGCAUUAACUUAAUG", "AUGGA", "GAAGAGUGCUCA",
"AUAGAC", "AGUUC", "CCAGUAA"

)
names are used as keys in the hash table (cached version only)
ideally sequence identifiers (e.g., RefSeq ids) and region labels
(e.g., 3UTR for 3'-UTR)
names(foreground_set) <- c(

"NM_1_DUMMY|3UTR", "NM_2_DUMMY|3UTR", "NM_3_DUMMY|3UTR",
"NM_4_DUMMY|3UTR", "NM_5_DUMMY|3UTR", "NM_6_DUMMY|3UTR",
"NM_7_DUMMY|3UTR", "NM_8_DUMMY|3UTR", "NM_9_DUMMY|3UTR",
"NM_10_DUMMY|3UTR", "NM_11_DUMMY|3UTR", "NM_12_DUMMY|3UTR",
"NM_13_DUMMY|3UTR", "NM_14_DUMMY|3UTR"

)

specific motifs, uncached
motifs <- get_motif_by_rbp("ELAVL1")
scores <- score_transcripts(foreground_set, motifs = motifs, cache = FALSE)
Not run:
all Transite motifs, cached (writes scores to disk)
scores <- score_transcripts(foreground_set)

all Transite motifs, uncached
scores <- score_transcripts(foreground_set, cache = FALSE)

56 score_transcripts_single_motif

foreground_df <- transite:::ge$foreground1_df
foreground_set <- foreground_df$seq
names(foreground_set) <- paste0(foreground_df$refseq, "|",

foreground_df$seq_type)
scores <- score_transcripts(foreground_set)

End(Not run)

score_transcripts_single_motif

Scores transadsadscripts with position weight matrices

Description

This function is used to count the putative binding sites (i.e., motifs) in a set of sequences for the
specified RNA-binding protein sequence motifs and returns the result in a data frame, which is
aggregated by score_transcripts and subsequently used by calculate_motif_enrichment to
obtain binding site enrichment scores.

Usage

score_transcripts_single_motif(
motif,
sequences,
max_hits = 5,
threshold_method = c("p_value", "relative"),
threshold_value = 0.25^6,
cache_path = paste0(tempdir(), "/sc/")

)

Arguments

motif a Transite motif that is used to score the specified sequences

sequences character vector of named sequences (only containing upper case characters A,
C, G, T), where the names are RefSeq identifiers and sequence type qualifiers
("3UTR", "5UTR", "mRNA"), e.g. "NM_010356|3UTR"

max_hits maximum number of putative binding sites per mRNA that are counted
threshold_method

either "p_value" (default) or "relative". If threshold_method equals "p_value",
the default threshold_value is 0.25^6, which is lowest p-value that can be
achieved by hexamer motifs, the shortest supported motifs. If threshold_method
equals "relative", the default threshold_value is 0.9, which is 90% of the
maximum PWM score.

threshold_value

semantics of the threshold_value depend on threshold_method (default is
0.25^6)

set_motifs 57

cache_path the path to a directory where scores are cached. The scores of each motif are
stored in a separate file that contains a hash table with RefSeq identifiers and
sequence type qualifiers as keys and the number of binding sites as values. If
is.null(cache_path), scores will not be cached.

Value

A list with the following items:

motif_id the motif identifier of the specified motif
motif_rbps the gene symbol of the RNA-binding protein(s)

absolute_hits the absolute frequency of binding sites per motif in all transcripts
relative_hits the relative, i.e., absolute divided by total, frequency of binding sites per motif in all transcripts

total_sites the total number of potential binding sites
one_hit, two_hits, ... number of transcripts with one, two, three, ... binding sites

See Also

Other matrix functions: calculate_motif_enrichment(), run_matrix_spma(), run_matrix_tsma(),
score_transcripts()

set_motifs Set Transite motif database

Description

Globally sets Transite motif database, use with care.

Usage

set_motifs(value)

Arguments

value list of Motif objects

Value

void

See Also

Other motif functions: generate_iupac_by_kmers(), generate_iupac_by_matrix(), generate_kmers_from_iupac(),
get_motif_by_id(), get_motif_by_rbp(), get_motifs(), get_motifs_meta_info(), get_ppm(),
init_iupac_lookup_table()

58 SpectrumScore-class

Examples

custom_motif <- create_kmer_motif(
"custom_motif", "RBP1",
c("AAAAAAA", "CAAAAAA"), "HITS-CLIP",
"Homo sapiens", "user"

)
set_motifs(list(custom_motif))

SpectrumScore-class An S4 class to represent a scored spectrum

Description

An S4 class to represent a scored spectrum

Getter Method get_adj_r_squared

Getter Method get_model_degree

Getter Method get_model_residuals

Getter Method get_model_slope

Getter Method get_model_f_statistic

Getter Method get_model_f_statistic_p_value

Getter Method get_consistency_score

Getter Method get_consistency_score_p_value

Getter Method get_consistency_score_n

Usage

get_adj_r_squared(object)

S4 method for signature 'SpectrumScore'
get_adj_r_squared(object)

get_model_degree(object)

S4 method for signature 'SpectrumScore'
get_model_degree(object)

get_model_residuals(object)

S4 method for signature 'SpectrumScore'
get_model_residuals(object)

get_model_slope(object)

S4 method for signature 'SpectrumScore'

SpectrumScore-class 59

get_model_slope(object)

get_model_f_statistic(object)

S4 method for signature 'SpectrumScore'
get_model_f_statistic(object)

get_model_f_statistic_p_value(object)

S4 method for signature 'SpectrumScore'
get_model_f_statistic_p_value(object)

get_consistency_score(object)

S4 method for signature 'SpectrumScore'
get_consistency_score(object)

get_consistency_score_p_value(object)

S4 method for signature 'SpectrumScore'
get_consistency_score_p_value(object)

get_consistency_score_n(object)

S4 method for signature 'SpectrumScore'
get_consistency_score_n(object)

S4 method for signature 'SpectrumScore'
show(object)

S4 method for signature 'SpectrumScore,ANY'
plot(x)

Arguments

object SpectrumScore object

x SpectrumScore object

Value

Object of type SpectrumScore

Slots

adj_r_squared adjusted R2 of polynomial model

degree degree of polynomial (integer between 0 and 5)

residuals residuals of the polynomial model

slope coefficient of the linear term of the polynomial model (spectrum "direction")

60 subdivide_data

f_statistic F statistic from the F test used to determine the degree of the polynomial model

f_statistic_p_value p-value associated with the F statistic

consistency_score raw local consistency score of the spectrum

consistency_score_p_value p-value associated with the local consistency score

consistency_score_n number of permutations performed to calculate p-value of local consis-
tency score (permutations performed before early stopping criterion reached)

plot spectrum plot

Examples

new("SpectrumScore",
adj_r_squared = 0,
degree = 0L,
residuals = 0,
slope = 0,
f_statistic = 0,
f_statistic_p_value = 1,
consistency_score = 1,
consistency_score_p_value = 1,
consistency_score_n = 1000L,
plot = NULL

)

subdivide_data Subdivides Sequences into n Bins

Description

Preprocessing function for SPMA, divides transcript sequences into n bins.

Usage

subdivide_data(sorted_transcript_sequences, n_bins = 40)

Arguments

sorted_transcript_sequences

character vector of named sequences (names are usually RefSeq identifiers and
sequence region labels, e.g., "NM_1_DUMMY|3UTR"). It is important that the
sequences are already sorted by fold change, signal-to-noise ratio or any other
meaningful measure.

n_bins specifies the number of bins in which the sequences will be divided, valid values
are between 7 and 100

Value

An array of n_bins length, containing the binned sequences

toy_motif_matrix 61

See Also

Other SPMA functions: classify_spectrum(), run_kmer_spma(), run_matrix_spma(), score_spectrum()

Examples

toy example
toy_seqs <- c(

"CAACAGCCUUAAUU", "CAGUCAAGACUCC", "CUUUGGGGAAU", "UCAUUUUAUUAAA",
"AAUUGGUGUCUGGAUACUUCCCUGUACAU", "AUCAAAUUA", "AGAU", "GACACUUAAAGAUCCU",
"UAGCAUUAACUUAAUG", "AUGGA", "GAAGAGUGCUCA", "AUAGAC", "AGUUC", "CCAGUAA"

)
names are used as keys in the hash table (cached version only)
ideally sequence identifiers (e.g., RefSeq ids) and
sequence region labels (e.g., 3UTR for 3'-UTR)
names(toy_seqs) <- c(

"NM_1_DUMMY|3UTR", "NM_2_DUMMY|3UTR", "NM_3_DUMMY|3UTR",
"NM_4_DUMMY|3UTR", "NM_5_DUMMY|3UTR", "NM_6_DUMMY|3UTR",
"NM_7_DUMMY|3UTR",
"NM_8_DUMMY|3UTR", "NM_9_DUMMY|3UTR", "NM_10_DUMMY|3UTR",
"NM_11_DUMMY|3UTR",
"NM_12_DUMMY|3UTR", "NM_13_DUMMY|3UTR", "NM_14_DUMMY|3UTR"

)

foreground_sets <- subdivide_data(toy_seqs, n_bins = 7)

example data set
background_df <- transite:::ge$background_df
sort sequences by signal-to-noise ratio
background_df <- dplyr::arrange(background_df, value)
character vector of named sequences
background_seqs <- background_df$seq
names(background_seqs) <- paste0(background_df$refseq, "|",

background_df$seq_type)

foreground_sets <- subdivide_data(background_seqs)

toy_motif_matrix Toy Motif Matrix

Description

This toy motif matrix is used in code examples for various functions.

Usage

data(toy_motif_matrix)

Format

A data frame with four columns (A, C, G, U) and seven rows (position 1 - 7)

62 transite

transite transite

Description

transite is a computational method that allows comprehensive analysis of the regulatory role of
RNA-binding proteins in various cellular processes by leveraging preexisting gene expression data
and current knowledge of binding preferences of

Author(s)

Konstantin Krismer

See Also

Useful links:

• https://transite.mit.edu

https://transite.mit.edu

Index

∗ -mer functions
calculate_kmer_enrichment, 3
check_kmers, 8
compute_kmer_enrichment, 11
count_homopolymer_corrected_kmers,

13
create_kmer_origin_list, 14
draw_volcano_plot, 16
estimate_significance, 18
estimate_significance_core, 19
generate_kmers, 23
generate_permuted_enrichments, 25
run_kmer_spma, 37
run_kmer_tsma, 39

∗ SPMA functions
classify_spectrum, 9
run_kmer_spma, 37
run_matrix_spma, 42
score_spectrum, 50
subdivide_data, 60

∗ TSMA functions
draw_volcano_plot, 16
run_kmer_tsma, 39
run_matrix_tsma, 45

∗ datasets
ge, 20
kmers_enrichment, 31
motifs, 32
toy_motif_matrix, 61

∗ internal
transite, 62

∗ list(k)
calculate_kmer_enrichment, 3
check_kmers, 8
compute_kmer_enrichment, 11
count_homopolymer_corrected_kmers,

13
create_kmer_origin_list, 14
draw_volcano_plot, 16

estimate_significance, 18
estimate_significance_core, 19
generate_kmers, 23
generate_permuted_enrichments, 25
run_kmer_spma, 37
run_kmer_tsma, 39

∗ matrix functions
calculate_motif_enrichment, 5
run_matrix_spma, 42
run_matrix_tsma, 45
score_transcripts, 54
score_transcripts_single_motif, 56

∗ motif functions
generate_iupac_by_kmers, 20
generate_iupac_by_matrix, 21
generate_kmers_from_iupac, 24
get_motif_by_id, 28
get_motif_by_rbp, 29
get_motifs, 27
get_motifs_meta_info, 27
get_ppm, 29
init_iupac_lookup_table, 30
set_motifs, 57

.RBPMotif (RBPMotif-class), 34

.SpectrumScore (SpectrumScore-class), 58

calculate_kmer_enrichment, 3, 9, 12, 13,
15, 17–19, 23, 26, 39, 41

calculate_local_consistency, 4
calculate_motif_enrichment, 5, 44, 45, 47,

54–57
calculate_transcript_mc, 7
check_kmers, 4, 8, 12, 13, 15, 17–19, 23, 26,

39, 41
classify_spectrum, 9, 38, 39, 45, 53, 61
compute_kmer_enrichment, 3, 4, 9, 11, 13,

15, 17–19, 23, 26, 39, 41
continuous_scale, 38, 43, 51
count_homopolymer_corrected_kmers, 4, 9,

12, 13, 15, 17–19, 23, 26, 39, 41

63

64 INDEX

create_kmer_motif, 14
create_kmer_origin_list, 4, 9, 12, 13, 14,

17–19, 23, 26, 39, 41
create_matrix_motif, 15

draw_volcano_plot, 4, 9, 12, 13, 15, 16, 18,
19, 23, 26, 31, 39, 41, 47

estimate_significance, 4, 9, 12, 13, 15, 17,
18, 19, 23, 26, 39, 41

estimate_significance_core, 4, 9, 12, 13,
15, 17, 18, 19, 23, 26, 39, 41

ge, 20
generate_iupac_by_kmers, 20, 22, 25,

27–31, 57
generate_iupac_by_matrix, 21, 21, 25,

27–31, 36, 57
generate_kmers, 4, 9, 11–13, 15, 17–19, 23,

26, 39, 41
generate_kmers_from_iupac, 21, 22, 24,

27–31, 57
generate_permuted_enrichments, 4, 9, 12,

13, 15, 17–19, 23, 25, 39, 41
geometric_mean, 26
get_adj_r_squared

(SpectrumScore-class), 58
get_adj_r_squared,SpectrumScore-method

(SpectrumScore-class), 58
get_consistency_score

(SpectrumScore-class), 58
get_consistency_score,SpectrumScore-method

(SpectrumScore-class), 58
get_consistency_score_n

(SpectrumScore-class), 58
get_consistency_score_n,SpectrumScore-method

(SpectrumScore-class), 58
get_consistency_score_p_value

(SpectrumScore-class), 58
get_consistency_score_p_value,SpectrumScore-method

(SpectrumScore-class), 58
get_heptamers (RBPMotif-class), 34
get_heptamers,RBPMotif-method

(RBPMotif-class), 34
get_hexamers (RBPMotif-class), 34
get_hexamers,RBPMotif-method

(RBPMotif-class), 34
get_id (RBPMotif-class), 34

get_id,RBPMotif-method
(RBPMotif-class), 34

get_iupac (RBPMotif-class), 34
get_iupac,RBPMotif-method

(RBPMotif-class), 34
get_model_degree (SpectrumScore-class),

58
get_model_degree,SpectrumScore-method

(SpectrumScore-class), 58
get_model_f_statistic

(SpectrumScore-class), 58
get_model_f_statistic,SpectrumScore-method

(SpectrumScore-class), 58
get_model_f_statistic_p_value

(SpectrumScore-class), 58
get_model_f_statistic_p_value,SpectrumScore-method

(SpectrumScore-class), 58
get_model_residuals

(SpectrumScore-class), 58
get_model_residuals,SpectrumScore-method

(SpectrumScore-class), 58
get_model_slope (SpectrumScore-class),

58
get_model_slope,SpectrumScore-method

(SpectrumScore-class), 58
get_motif_by_id, 21, 22, 25, 27, 28, 28,

29–31, 57
get_motif_by_rbp, 21, 22, 25, 27, 28, 29, 30,

31, 57
get_motif_matrix (RBPMotif-class), 34
get_motif_matrix,RBPMotif-method

(RBPMotif-class), 34
get_motifs, 21, 22, 25, 27, 28–31, 57
get_motifs_meta_info, 21, 22, 25, 27, 27,

28–31, 57
get_ppm, 21, 22, 25, 27–29, 29, 31, 57
get_rbps (RBPMotif-class), 34
get_rbps,RBPMotif-method

(RBPMotif-class), 34
get_source (RBPMotif-class), 34
get_source,RBPMotif-method

(RBPMotif-class), 34
get_species (RBPMotif-class), 34
get_species,RBPMotif-method

(RBPMotif-class), 34
get_type (RBPMotif-class), 34
get_type,RBPMotif-method

(RBPMotif-class), 34

INDEX 65

get_width (RBPMotif-class), 34
get_width,RBPMotif-method

(RBPMotif-class), 34

init_iupac_lookup_table, 20–22, 25,
27–30, 30, 57

kmers_enrichment, 31

motifs, 32

p.adjust, 3, 6, 12, 38, 40, 44, 46
p_combine, 32, 38, 40
plot,SpectrumScore,ANY-method

(SpectrumScore-class), 58
plot,SpectrumScore-method

(SpectrumScore-class), 58

RBPMotif-class, 34
run_kmer_spma, 4, 9, 10, 12, 13, 15, 17–19,

23, 26, 37, 41, 45, 53, 61
run_kmer_tsma, 4, 9, 12, 13, 15, 17–19, 23,

26, 31, 38, 39, 39, 47
run_matrix_spma, 6, 10, 39, 42, 47, 53, 55,

57, 61
run_matrix_tsma, 6, 17, 41, 45, 45, 55, 57

score_sequences, 49
score_spectrum, 9, 10, 38, 39, 44, 45, 50, 61
score_transcripts, 6, 7, 44, 45, 47, 54, 56,

57
score_transcripts_single_motif, 6, 45,

47, 55, 56
set_motifs, 21, 22, 25, 27–31, 57
show,RBPMotif-method (RBPMotif-class),

34
show,SpectrumScore-method

(SpectrumScore-class), 58
SpectrumScore-class, 58
subdivide_data, 10, 39, 45, 53, 60

toy_motif_matrix, 61
transite, 62
transite-package (transite), 62

	calculate_kmer_enrichment
	calculate_local_consistency
	calculate_motif_enrichment
	calculate_transcript_mc
	check_kmers
	classify_spectrum
	compute_kmer_enrichment
	count_homopolymer_corrected_kmers
	create_kmer_motif
	create_kmer_origin_list
	create_matrix_motif
	draw_volcano_plot
	estimate_significance
	estimate_significance_core
	ge
	generate_iupac_by_kmers
	generate_iupac_by_matrix
	generate_kmers
	generate_kmers_from_iupac
	generate_permuted_enrichments
	geometric_mean
	get_motifs
	get_motifs_meta_info
	get_motif_by_id
	get_motif_by_rbp
	get_ppm
	init_iupac_lookup_table
	kmers_enrichment
	motifs
	p_combine
	RBPMotif-class
	run_kmer_spma
	run_kmer_tsma
	run_matrix_spma
	run_matrix_tsma
	score_sequences
	score_spectrum
	score_transcripts
	score_transcripts_single_motif
	set_motifs
	SpectrumScore-class
	subdivide_data
	toy_motif_matrix
	transite
	Index

