
Package ‘tigre’
February 2, 2026

Version 1.65.0

Date 2021-08-04

Title Transcription factor Inference through Gaussian process
Reconstruction of Expression

Author Antti Honkela, Pei Gao, Jonatan Ropponen, Miika-Petteri
Matikainen, Magnus Rattray, Neil D. Lawrence

Maintainer Antti Honkela <antti.honkela@helsinki.fi>

Depends R (>= 2.11.0), BiocGenerics, Biobase

Imports methods, AnnotationDbi, gplots, graphics, grDevices, stats,
utils, annotate, DBI, RSQLite

Suggests drosgenome1.db, puma, lumi, BiocStyle, BiocManager

Description The tigre package implements our methodology of Gaussian
process differential equation models for analysis of gene
expression time series from single input motif networks. The
package can be used for inferring unobserved transcription
factor (TF) protein concentrations from expression measurements
of known target genes, or for ranking candidate targets of a
TF.

License AGPL-3

URL https://github.com/ahonkela/tigre

BugReports https://github.com/ahonkela/tigre/issues

biocViews Microarray, TimeCourse, GeneExpression, Transcription,
GeneRegulation, NetworkInference, Bayesian

git_url https://git.bioconductor.org/packages/tigre

git_branch devel

git_last_commit 4b818eb

git_last_commit_date 2025-10-29

Repository Bioconductor 3.23

Date/Publication 2026-02-01

1

https://github.com/ahonkela/tigre
https://github.com/ahonkela/tigre/issues

2 tigre-package

Contents
tigre-package . 2
drosophila_gpsim_fragment . 4
drosophila_mmgmos_fragment . 5
export.scores . 5
ExpressionTimeSeries-class . 7
expTransform . 9
generateModels . 10
GPLearn . 11
GPModel-class . 13
GPPlot . 14
GPRankTargets . 15
gpsimCreate . 17
kernCompute . 18
kernCreate . 19
kernDiagGradX . 20
kernGradient . 21
lnDiffErfs . 22
modelDisplay . 23
modelExpandParam . 24
modelExtractParam . 25
modelGradient . 26
modelTieParam . 27
optimiDefaultConstraint . 28
plotTimeseries . 28
processData . 29
SCGoptim . 31
scoreList-class . 32

Index 34

tigre-package tigre - Transcription factor Inference through Gaussian process Re-
construction of Expression

Description

This package implements the method of Gao et al. (2008) and Honkela et al. (2010) for Gaussian
process modelling single input motif regulatory systems with time-series expression data. The
method can be used to rank potential targets of transcription factors based on such data.

tigre-package 3

Details

Package: tigre
Type: Package
Version: 1.12.0
Date: 2012-10-02
License: A-GPL Version 3

For details of using the package please refer to the Vignette.

Author(s)

Antti Honkela, Pei Gao, Jonatan Ropponen, Miika-Petteri Matikainen, Magnus Rattray, Neil D.
Lawrence

Maintainer: Antti Honkela <antti.honkela@hiit.fi>

References

A.~Honkela, P.~Gao, J.~Ropponen, M.~Rattray, and N.~D.~Lawrence. tigre: Transcription factor
Inference through Gaussian process Reconstruction of Expression for Bioconductor. Bioinformatics
27(7):1026-1027, 2011. DOI: 10.1093/bioinformatics/btr057.

P.~Gao, A.~Honkela, M.~Rattray, and N.~D.~Lawrence. Gaussian process modelling of latent
chemical species: applications to inferring transcription factor activities. Bioinformatics 24(16):i70–
i75, 2008. DOI: 10.1093/bioinformatics/btn278.

A.~Honkela, C.~Girardot, E.~H. Gustafson, Y.-H. Liu, E.~E.~M. Furlong, N.~D. Lawrence, and
M.~Rattray. Model-based method for transcription factor target identification with limited data.
Proc Natl Acad Sci USA 107(17):7793-7798, 2010. DOI: 10.1073/pnas.0914285107.

See Also

puma

Examples

Not run:
Load a mmgmos preprocessed fragment of the Drosophila developmental
time series
data(drosophila_gpsim_fragment)

Get the target probe names
library(annotate)
aliasMapping <- getAnnMap("ALIAS2PROBE",

annotation(drosophila_gpsim_fragment))
twi <- get('twi', env=aliasMapping)
fbgnMapping <- getAnnMap("FLYBASE2PROBE",

annotation(drosophila_gpsim_fragment))
targetProbe <- get('FBgn0035257', env=fbgnMapping)

4 drosophila_gpsim_fragment

Learn the model
model <- GPLearn(drosophila_gpsim_fragment,

TF=twi, targets=targetProbe,
useGpdisim=TRUE, quiet=TRUE)

Plot it
GPPlot(model, nameMapping=getAnnMap("FLYBASE",

annotation(drosophila_gpsim_fragment)))

End(Not run)

drosophila_gpsim_fragment

Fragment of 12 time point Drosophila embryonic development mi-
croarray gene expression time series

Description

Four genes from the 12 time point Drosophila embryonic development Affymetrix microarray gene
expression data set by Tomancak et al. (2002).

The data has been processed using mmgmos from puma package and processData.

Usage

data(drosophila_gpsim_fragment)

Format

An ExpressionTimeSeries object with 3 repeats of the 12 time points for 4 probes.

Source

ftp://ftp.fruitfly.org/pub/embryo_tc_array_data/

References

Tomancak, P et al. Systematic determination of patterns of gene expression during Drosophila
embryogenesis. Genome Biol 3:RESEARCH0088, 2002.

ftp://ftp.fruitfly.org/pub/embryo_tc_array_data/

drosophila_mmgmos_fragment 5

drosophila_mmgmos_fragment

Fragment of 12 time point Drosophila embryonic development mi-
croarray gene expression time series

Description

Four genes from the 12 time point Drosophila embryonic development Affymetrix microarray gene
expression data set by Tomancak et al. (2002).

The data has been processed using mmgmos from the puma package.

Usage

data(drosophila_mmgmos_fragment)

Format

A puma package exprReslt object with 3 repeats of the 12 time points for 4 probes.

Source

ftp://ftp.fruitfly.org/pub/embryo_tc_array_data/

References

Tomancak, P et al. Systematic determination of patterns of gene expression during Drosophila
embryogenesis. Genome Biol 3:RESEARCH0088, 2002.

export.scores Export results to an SQLite database

Description

Exports the results to an SQLite database which can then be browsed with a result browser. The
function will export log likelihoods, z-scores, model figures and gene aliases.

Usage

export.scores(scores, datasetName='', experimentSet='',
databaseFile='database.sqlite', preprocData=NULL, models=NULL,
figpath=NULL, aliasTypes=c("SYMBOL", "GENENAME", "ENTREZID"),
datasetSource='', datasetDescription='',
datasetSaveLocation='', datasetFigureFilename='',
experimentTimestamp=as.character(Sys.Date()),
figureDesc='', figurePrio=0, regulator=NULL)

ftp://ftp.fruitfly.org/pub/embryo_tc_array_data/

6 export.scores

Arguments

scores The scoreList to export.

datasetName Name of the dataset in the database.

experimentSet Name of the experiment set in the database.

databaseFile Filename of the database. New database is created if the file does not exist.

preprocData Preprocessed data. This is required in order to generate models and figures and
to calculate z-scores. Also, inserting aliases requires preprocessed data.

models Learned models. If not given, the function will generate models if preprocessed
data is available.

figpath Figure path. If this is defined, the function will generate figures to the given path
instead of inserting them to the database.

aliasTypes Types of aliases that are inserted to the database.

datasetSource Additional information that is inserted to the database if defined.
datasetDescription

Additional information that is inserted to the database if defined.
datasetSaveLocation

Additional information that is inserted to the database if defined.
datasetFigureFilename

Additional information that is inserted to the database if defined.
experimentTimestamp

Timestamp that is inserted to the database. The default value is current date in
ISO-8601 format.

figureDesc Additional information that is inserted to the database if defined.

figurePrio Additional information that is inserted to the database if defined.

regulator If defined, override the regulator name from scoreList.

Author(s)

Miika-Petteri Matikainen, Antti Honkela

See Also

GPRankTargets, GPRankTFs.

Examples

Not run:
Load a mmgmos preprocessed fragment of the Drosophila developmental
time series
data(drosophila_gpsim_fragment)

FBgn names of target genes
targets <- c('FBgn0003486', 'FBgn0033188', 'FBgn0035257')
Load gene annotations
library(annotate)
aliasMapping <- getAnnMap("ALIAS2PROBE",

ExpressionTimeSeries-class 7

annotation(drosophila_gpsim_fragment))

Get the probe identifier for TF 'twi'
twi <- get('twi', env=aliasMapping)
Load alternative gene annotations
fbgnMapping <- getAnnMap("FLYBASE2PROBE",

annotation(drosophila_gpsim_fragment))

Get the probe identifiers for target genes
targetProbes <- mget(targets, env=fbgnMapping)

Rank the targets, filtering weakly expressed genes with average
expression z-score below 1.8
scores <- GPRankTargets(drosophila_gpsim_fragment, TF=twi,

testTargets=targetProbes,
options=list(quiet=TRUE),
filterLimit=1.8)

Export data from scoreList and preprocessed data to a database
export.scores(scores, datasetName='Drosophila',

experimentSet='GPSIM/GPDISIM',
database='database.sqlite',
preprocData=drosophila_gpsim_fragment,
aliasTypes=c('SYMBOL', 'GENENAME', 'FLYBASE', 'ENTREZID'))

End(Not run)

ExpressionTimeSeries-class

Class to contain time series expression assays

Description

Container for time series expression assays and experimental metadata. ExpressionTimeSeries
class is derived from ExpressionSet, and requires fields experiments and modeltime in phenoData.

Extends

Directly extends class ExpressionSet.

Objects from the Class

new("ExpressionTimeSeries")

new("ExpressionTimeSeries", phenoData = new("AnnotatedDataFrame"), featureData = new("AnnotatedDataFrame"),
experimentData = new("MIAME"), annotation = character(0), protocolData = phenoData[,integer(0)],
exprs = new("matrix"), var.exprs = new("matrix"))

This creates an ExpressionTimeSeries with assayData implicitly created to contain exprs and
var.exprs.

8 ExpressionTimeSeries-class

new("ExpressionTimeSeries", assayData = assayDataNew(exprs=new("matrix")), phenoData
= new("AnnotatedDataFrame"), featureData = new("AnnotatedDataFrame"), experimentData
= new("MIAME"), annotation = character(0), protocolData = phenoData[,integer(0)])

This creates an ExpressionTimeSeries with assayData provided explicitly. In this form, the only
required named argument is assayData.

ExpressionTimeSeries instances are usually created through new("ExpressionTimeSeries",
...). Usually the arguments to new include exprs (a matrix of expression data, with features corre-
sponding to rows and samples to columns), var.exprs, phenoData, featureData, experimentData,
annotation, and protocolData. phenoData, featureData, experimentData, annotation, and
protocolData can be missing, in which case they are assigned default values.

Slots

assayData: Inherited from ExpressionSet. The models in gpsim package assume that exprs
contains absolute (i.e. non-logarithmic) expression values. The member var.exprs may
contain variances of the values.

phenoData: Inherited from ExpressionSet. The following fields are required: experiments
which contains integers from 1 to N with measurements from the same biological assay having
the same number; modeltime which contains observation times in model units.

featureData: Inherited from ExpressionSet.

experimentData: Inherited from ExpressionSet.

annotation: Inherited from ExpressionSet.

protocolData: Inherited from ExpressionSet.

.__classVersion__: Inherited from ExpressionSet.

Methods

See also methods for ExpressionSet.

var.exprs(object), var.exprs(object)<- value Access and set var.exprs

initialize("ExpressionTimeSeries") Object instantiation, used by new; not to be called di-
rectly by the user.

Author(s)

Antti Honkela, Jonatan Ropponen

See Also

processData, processRawData.

Examples

showClass("ExpressionTimeSeries")

expTransform 9

expTransform Constrains a parameter.

Description

contains commands to constrain parameters to be positive via exponentiation or within a fixed in-
terval via the sigmoid function.

Usage

expTransform(x, transform)
sigmoidTransform(x, transform)
boundedTransform(x, transform, bounds)

Arguments

x input argument.

transform type of transform, ’atox’ maps a value into the transformed space (i.e. makes it
positive). ’xtoa’ maps the parameter back from transformed space to the original
space. ’gradfact’ gives the factor needed to correct gradients with respect to the
transformed parameter.

bounds a 2-vector of bounds of allowed values in boundedTransform

Value

Return value as selected by tranform

See Also

modelOptimise

Examples

Transform unconstrained parameter -4 to a positive value
expTransform(-4, 'atox')

Transform a bounded parameter in (1,3) to an unconstrained one
boundedTransform(2, 'xtoa', c(1, 3))

10 generateModels

generateModels Generating models with the given data

Description

’generateModels’ recreates models based on the parameters stored in a scoreList.

Usage

generateModels(preprocData, scores)

Arguments

preprocData The preprocessed data to be used.

scores A scoreList object containing data of the models to be generated.

Value

’generateModels’ returns a list of the generated models.

Author(s)

Antti Honkela, Jonatan Ropponen

See Also

GPLearn, GPRankTargets, GPRankTFs, scoreList.

Examples

Not run:
Load a mmgmos preprocessed fragment of the Drosophila developmental
time series
data(drosophila_gpsim_fragment)

Get the target probe names
targets <- c('FBgn0003486', 'FBgn0033188', 'FBgn0035257')
library(annotate)
aliasMapping <- getAnnMap("ALIAS2PROBE",

annotation(drosophila_gpsim_fragment))
twi <- get('twi', env=aliasMapping)
fbgnMapping <- getAnnMap("FLYBASE2PROBE",

annotation(drosophila_gpsim_fragment))
targetProbes <- mget(targets, env=fbgnMapping)

scores <- GPRankTargets(drosophila_gpsim_fragment, TF=twi,
testTargets=targetProbes,
options=list(quiet=TRUE),
filterLimit=1.8)

GPLearn 11

models <- generateModels(drosophila_gpsim_fragment, scores)

End(Not run)

GPLearn Fit a GP model

Description

Forms an optimized model of the desired genes. The function can form a model with GPsim or
GPdisim and it’s also possible to use initial parameters or fix parameters for future use. The genes
can also be filtered based on ratios calculated from the expression values. The given data can also
be searched for the data of specific genes.

Usage

GPLearn(preprocData, TF = NULL, targets = NULL,
useGpdisim = !is.null(TF), randomize = FALSE, addPriors = FALSE,
fixedParams = FALSE, initParams = NULL, initialZero = TRUE,
fixComps = NULL, dontOptimise = FALSE,
allowNegativeSensitivities = FALSE, quiet = FALSE,
gpsimOptions = NULL, allArgs = NULL)

Arguments

preprocData The preprocessed data to be used.

TF The probe corresponding to the transcription factor (TF) mRNA if TF protein
translation model is used, or NULL (default) if the translation model is not used.

targets The target genes of the model.

useGpdisim A logical value determining whether a model of translation is included. By
default TRUE if TF is set, FALSE if TF is unset.

randomize A logical value determining whether the parameters of the model are random-
ized before optimization.

addPriors A logical value determining whether priors are added to the model.

fixedParams A logical value determining whether the initial parameters are fixed.

initParams The initial parameters for the model. In combination with fixedParams a value
NA denotes parameters to learn.

initialZero Assume a zero initial TF protein concentration, default = TRUE.

fixComps The blocks of the kernel the parameters of which are to be fixed. To be used
together with fixedParams and initParams.

dontOptimise Just create the model, do not run optimisation.
allowNegativeSensitivities

Allow sensitivities to go negative. This is an experimental feature, and the neg-
ative values have no physical interpretation.

12 GPLearn

quiet Suppress optimiser output.

gpsimOptions Internal: additional options to pass to gp[di]simCreate.

allArgs A list of arguments that can be used to override ones with the same name.

Value

Returns the optimized model.

Author(s)

Antti Honkela, Pei Gao, Jonatan Ropponen, Magnus Rattray, Neil D. Lawrence

See Also

GPRankTargets, GPRankTFs.

Examples

Load a mmgmos preprocessed fragment of the Drosophila developmental
time series
data(drosophila_gpsim_fragment)

Get the target probe names
library(annotate)
aliasMapping <- getAnnMap("ALIAS2PROBE",

annotation(drosophila_gpsim_fragment))
twi <- get('twi', env=aliasMapping)
fbgnMapping <- getAnnMap("FLYBASE2PROBE",

annotation(drosophila_gpsim_fragment))
targetProbe <- get('FBgn0035257', env=fbgnMapping)

Create the model but do not optimise (rarely needed...)
model <- GPLearn(drosophila_gpsim_fragment,

TF=twi, targets=targetProbe,
useGpdisim=TRUE, quiet=TRUE,
dontOptimise=TRUE)

Not run:
Create and learn the model
model <- GPLearn(drosophila_gpsim_fragment,

TF=twi, targets=targetProbe,
useGpdisim=TRUE, quiet=TRUE)

End(Not run)

GPModel-class 13

GPModel-class A container for gpsim models

Description

The class is a container for the internal representation of models used by the gpsim package.

Objects from the Class

Objects can be created by calls of the form new("GPModel", model).

Slots

model: A model object used internally by the code of the gpsim package

type: Type of the model object

Methods

modelStruct(object), modelStruct(object)<- value Access and set the internal model struc-
ture

modelType(object) Access the internal type values

show(object) Informatively display object contents.

is.GPModel(object) Check if object is a GPModel.

initialize("GPModel") Object instantiation, used by new; not to be called directly by the user.

Author(s)

Antti Honkela, Jonatan Ropponen

See Also

GPLearn, GPRankTargets, GPRankTFs, generateModels, modelExtractParam, modelLogLikelihood.

Examples

showClass("GPModel")

14 GPPlot

GPPlot Plot GP(DI)SIM models

Description

Plots GP(DI)SIM models.

Usage

GPPlot(data, savepath = '', nameMapping = NULL, predt = NULL,
fileOutput=FALSE, plotTime=NULL)

Arguments

data The model to plot as returned by GPLearn.

savepath The location in the file system where the images are saved.

nameMapping The annotation used for mapping the names of the genes for the figures.

predt The set of time points to use in plotting (default: the time interval covering the
data).

fileOutput Is the plot being saved to a file? If yes, do not open new interactive devices for
each plot.

plotTime The times of observations to use in the plot. Should usually not be changed!

Details

The function plots the fitted expression level of the transcription factor (if applicable), the inferred
activity of the transcription factor, and the fitted expression level of the target(s).

Author(s)

Antti Honkela

See Also

GPLearn.

Examples

Not run:
Load a mmgmos preprocessed fragment of the Drosophila developmental
time series
data(drosophila_gpsim_fragment)

Get the target probe names
library(annotate)
aliasMapping <- getAnnMap("ALIAS2PROBE",

annotation(drosophila_gpsim_fragment))

GPRankTargets 15

twi <- get('twi', env=aliasMapping)
fbgnMapping <- getAnnMap("FLYBASE2PROBE",

annotation(drosophila_gpsim_fragment))
targetProbe <- get('FBgn0035257', env=fbgnMapping)

Learn the model
model <- GPLearn(drosophila_gpsim_fragment,

TF=twi, targets=targetProbe,
useGpdisim=TRUE, quiet=TRUE)

Plot it
GPPlot(model, nameMapping=getAnnMap("FLYBASE",

annotation(drosophila_gpsim_fragment)))

End(Not run)

GPRankTargets Ranking possible target genes or regulators

Description

GPRankTargets ranks possible target genes by forming optimized models with a fixed transcription
factor, a set of known target genes and targets to be tested. The transcription factor and the known
targets are always included in the models while the tested targets are tested by including them in the
models one at a time. The function determines itself whether to use GPSIM or GPDISIM based on
the input arguments.

Usage

GPRankTargets(preprocData, TF = NULL, knownTargets = NULL,
testTargets = NULL, filterLimit = 1.8,
returnModels = FALSE, options = NULL,
scoreSaveFile = NULL,
datasetName = "", experimentSet = "")

GPRankTFs(preprocData, TFs, targets,
filterLimit = 1.8, returnModels = FALSE, options = NULL,
scoreSaveFile = NULL, datasetName = "", experimentSet = "")

Arguments

preprocData The preprocessed data to be used.

TF The transcription factor (TF) probe present in all models when TF protein trans-
lation model is used. Set to NULL (default) when translation model is not used.

knownTargets The target genes present in all models.

testTargets Target genes that are tested by including them in the models one at a time. Can
be names of genes, or a set of indices in preprocData.

16 GPRankTargets

filterLimit Genes with an average expression z-score above this figure are accepted after
filtering. If this value is 0, all genes will be accepted.

returnModels A logical value determining whether the function returns the calculated models.

options A list of additional arguments to pass to GPLearn.

scoreSaveFile Name of file to save the scores to after processing each gene.

TFs The transcription factors that are tested by including them in the models one at
a time.

targets The target genes present in all models.

datasetName For exporting the scores using export.scores: Name of the dataset in the
database.

experimentSet For exporting the scores using export.scores: Name of the experiment set in
the database.

Details

The models are formed by calling GPLearn. If there is no value given to the transcription factor, a
model without protein translation is used. Without protein translation model, some known targets
are needed. If known targets are given, a model is first created with only the transcription factor and
the known targets. The parameters extracted from this model are used as initial parameters of the
models with test targets.

GPRankTFs is very similar to GPRankTargets, except it loops over candidate regulators, not candi-
date targets.

Value

The function returns a scoreList containing the genes, parameters and log-likelihoods of the models
If returnModels is true, the function returns a list of the calculated models.

Author(s)

Antti Honkela, Jonatan Ropponen, Magnus Rattray, Neil D. Lawrence

See Also

GPLearn, scoreList, generateModels, export.scores.

Examples

Not run:
Load a mmgmos preprocessed fragment of the Drosophila developmental
time series
data(drosophila_gpsim_fragment)

Get the target probe names
targets <- c('FBgn0003486', 'FBgn0033188', 'FBgn0035257')
library(annotate)
aliasMapping <- getAnnMap("ALIAS2PROBE",

annotation(drosophila_gpsim_fragment))

gpsimCreate 17

twi <- get('twi', env=aliasMapping)
fbgnMapping <- getAnnMap("FLYBASE2PROBE",

annotation(drosophila_gpsim_fragment))
targetProbes <- mget(targets, env=fbgnMapping)

scores <- GPRankTargets(drosophila_gpsim_fragment, TF=twi,
testTargets=targetProbes,
options=list(quiet=TRUE),
filterLimit=1.8)

End(Not run)

gpsimCreate Create a GPSIM/GPDISIM model.

Description

creates a model for single input motifs with Gaussian processes.

Usage

gpsimCreate(Ngenes, Ntf, times, y,
yvar, options, genes=NULL, annotation=NULL)

gpdisimCreate(Ngenes, Ntf, times, y,
yvar, options, genes=NULL, annotation=NULL)

Arguments

Ngenes number of genes to be modelled in the system.

Ntf number of proteins to be modelled in the system.

times the time points where the data is to be modelled.

y the values of each gene at the different time points.

yvar the variances of each gene at the different time points.

options options structure (optional).

genes names of the probes the model is for

annotation (optional) annotation for the probe names

Details

These functions are meant to be used through GPLearn.

Value

model model structure containing default parameterisation.

18 kernCompute

See Also

modelExtractParam, modelOptimise, GPLearn.

Examples

missing, see GPLearn

kernCompute Compute the kernel given the parameters and X.

Description

Compute the kernel given the parameters and X.

Usage

kernCompute(kern, x, x2)
kernDiagCompute(kern, x)

Arguments

kern kernel structure to be computed.

x first or only input data matrix (rows are data points) to the kernel computation.

x2 (optional) second input matrix to the kernel computation (forms the columns of
the kernel).

Details

K <- kernCompute(kern, X) computes a kernel matrix for the given kernel type given an input data
matrix.

K <- kernCompute(kern, X1, X2) computes a kernel matrix for the given kernel type given two
input data matrices, one for the rows and one for the columns.

K <- kernDiagCompute(kern, X) computes the diagonal of a kernel matrix for the given kernel.

K <- *X*kernCompute(kern1, kern2, X) K <- *X*kernCompute(kern1, kern2, X1, X2) same as
above, but for cross combinations of two kernels, kern1 and kern2.

Value

K computed elements of the kernel structure.

Kd vector containing computed diagonal elements of the kernel structure.

See Also

kernCreate

kernCreate 19

Examples

kern <- kernCreate(1, 'rbf')
K <- kernCompute(kern, as.matrix(3:8))

kernCreate Initialise a kernel structure.

Description

Initialise a kernel structure.

Usage

kernCreate(x, kernType, kernOptions=NULL)

Arguments

x If list, array or matrix: input data values (from which kernel will later be com-
puted). If scalar: input dimension of the design matrix (i.e. number of features
in the design matrix).

kernType Type of kernel to be created, some standard types are ’rbf’, ’white’, ’sim’ and
’disim’. If a list of the form list(type='cmpnd', comp=c('rbf', 'rbf',
'white')) is used a compound kernel based on the sum of the individual kernels
will be created. Parameters can be passed to kernels using type list(type='parametric',
options=list(opt=val), realType=...), where realType is the type that
would be used otherwise.

kernOptions (optional) list of kernel options

Details

kern <- kernCreate(X, type) input points and a kernel type.

kern <- kernCreate(dim, type) creates a kernel matrix structure given the dimensions of the
design matrix and the kernel type.

The *KernParamInit functions perform initialisation specific to different types of kernels. They
should not be called directly.

Value

kern The kernel structure.

See Also

kernDisplay, modelTieParam.

20 kernDiagGradX

Examples

Create a multi kernel with two rbf blocks with bounded inverse widths
invWidthBounds <- c(0.5, 2)
kernType <- list(type="multi", comp=list())
for (i in 1:2)

kernType$comp[[i]] <- list(type="parametric", realType="rbf",
options=list(isNormalised=TRUE,

inverseWidthBounds=invWidthBounds))
kern <- kernCreate(1, kernType)

Tie the inverse with parameters of the component RBF kernels
kern <- modelTieParam(kern, list(tieWidth="inverseWidth"))
kernDisplay(kern)

kernDiagGradX Compute the gradient of the kernel wrt X.

Description

computes the gradient of the (diagonal of the) kernel matrix with respect to the elements of the
design matrix given in X.

Usage

kernDiagGradX(kern, x)
kernGradX(kern, x, x2)

Arguments

kern the kernel structure for which gradients are being computed.

x if only argument: the input data in the form of a design matrix, if two arguments:
row locations against which gradients are being computed.

x2 (optional) column locations against which gradients are being computed.

Value

gX the gradients of the diagonal with respect to each element of X. The returned
matrix has the same dimensions as X.

gX2 the returned gradients. The gradients are returned in a matrix which is numData
x numInputs x numData. Where numData is the number of data points and
numInputs is the number of input dimensions in X.

See Also

kernGradient

kernGradient 21

Examples

kern <- kernCreate(1, 'mlp')
g <- kernDiagGradX(kern, as.matrix(3:8))

kernGradient Compute the gradient wrt the kernel parameters.

Description

Compute the gradient wrt the kernel parameters.

Usage

kernGradient(kern, x, ...)

Arguments

kern the kernel structure for which the gradients are being computed.

x the input locations for which the gradients are being computed, specifically those
associated with the rows of the kernel matrix if there are two arguments of input
locations.

... optional arguments including potentially: the input locations associated with
the columns of the kernel matrix; matrix of partial derivatives of the function
of interest with respect to the kernel matrix. With single input, the argument
takes the form of a square matrix of dimension numData, where numData is the
number of rows in x, with two input arguments the matrix should have the same
number of rows as the first and the same number of columns as the second has
rows.

Details

g <- kernGradient(kern, x, partial) g <- *kernGradient(kern, x, partial) computes the
gradient of functions with respect to the kernel parameters. As well as the kernel structure and
the input positions, the user provides a matrix PARTIAL which gives the partial derivatives of the
function with respect to the relevant elements of the kernel matrix.

g <- kernGradient(kern, x1, x2, partial_) g <- *kernGradient(kern, x1, x2, partial_) com-
putes the derivatives as above, but input locations are now provided in two matrices associated with
rows and columns of the kernel matrix.

g <- *X*kernGradient(kern1, kern2, x, partial) g <- *X*kernGradient(kern1, kern2, x1,
x2, partial_) same as above, but for cross combinations of two kernels, kern1 and kern2.

Value

g gradients of the function of interest with respect to the kernel parameters. The
ordering of the vector should match that provided by the function kernExtract-
Param.

22 lnDiffErfs

See Also

kernCompute, kernExtractParam.

Examples

kern <- kernCreate(1, 'rbf')
g <- kernGradient(kern, as.matrix(c(1, 4)), array(1, c(2, 2)))

lnDiffErfs Helper function for computing the log of difference

Description

Helper function for computing the log of difference

Usage

lnDiffErfs(x1, x2)

Arguments

x1 argument of the positive erf

x2 argument of the negative erf

Details

v <- lnDiffErfs(x1, x2) computes the log of the difference of two erfs in a numerically stable
manner.

Value

v list(c(log(abs(erf(x1) - erf(x2))), sign(erf(x1) - erf(x2))))

Examples

lnDiffErfs(100, 10)

modelDisplay 23

modelDisplay Display a model.

Description

displays the parameters of the model/kernel and the model/kernel type to the console.

Usage

modelDisplay(model, ...)

Arguments

model the model/kernel structure to be displayed.

... (optional) indent level for the display.

See Also

modelExtractParam

Examples

Load a mmgmos preprocessed fragment of the Drosophila developmental
time series
data(drosophila_gpsim_fragment)

The probe identifier for TF 'twi'
twi <- "143396_at"
The probe identifier for the target gene
targetProbe <- "152715_at"

Create the model, but do not optimise
model <- GPLearn(drosophila_gpsim_fragment,

TF=twi, targets=targetProbe,
useGpdisim=TRUE, quiet=TRUE,
dontOptimise=TRUE)

Display the initial model
modelDisplay(model)

24 modelExpandParam

modelExpandParam Update a model structure with new parameters or update the posterior
processes.

Description

Update a model structure or component with new parameters, or update the posterior processes.

Usage

modelExpandParam(model, params)
modelUpdateProcesses(model, predt=NULL)

Arguments

model the model structure to be updated.

params vector of parameters.

predt (optional) a vector of times to infer the posterior at. By default this is 100 points
spanning the time range of the data.

Details

model <- modelExpandParam(model, param) returns a model structure filled with the parameters
in the given vector. This is used as a helper function to enable parameters to be optimised in, for
example, the optimisation functions.

model <- modelUpdateProcesses(model) updates posterior processes of the given model.

Value

model updated model structure.

See Also

GPLearn, modelExtractParam

Examples

Not run:
Learn the model
model <- GPLearn(...)
params <- modelExtractParam(model, only.values=TRUE)
params[1] <- 0
new_model <- modelExpandParam(model, params)
new_model <- modelUpdateProcesses(new_model)

End(Not run)

modelExtractParam 25

modelExtractParam Extract the parameters of a model.

Description

Extract parameters from the model into a vector of parameters for optimisation.

Usage

modelExtractParam(model, only.values=TRUE, untransformed.values=FALSE)

Arguments

model the model structure containing the parameters to be extracted.

only.values include parameter names in the returned vector.
untransformed.values

return actual values, not transformed values used by the optimisers.

Value

param vector of parameters extracted from the model.

See Also

modelExpandParam

Examples

Load a mmgmos preprocessed fragment of the Drosophila developmental
time series
data(drosophila_gpsim_fragment)

The probe identifier for TF 'twi'
twi <- "143396_at"
The probe identifier for the target gene
targetProbe <- "152715_at"

Create the model, but do not optimise
model <- GPLearn(drosophila_gpsim_fragment,

TF=twi, targets=targetProbe,
useGpdisim=TRUE, quiet=TRUE,
dontOptimise=TRUE)

Get the initial parameter values
params <- modelExtractParam(model, only.values=FALSE)

26 modelGradient

modelGradient Model log-likelihood/objective error function and its gradient.

Description

modeGradient gives the gradient of the objective function for a model. By default the objective
function (modelObjective) is a negative log likelihood (modelLogLikelihood).

Usage

modelObjective(params, model, ...)
modelLogLikelihood(model)
modelGradient(params, model, ...)

Arguments

params parameter vector to evaluate at.

model model structure.

... optional additional arguments.

Value

g the gradient of the error function to be minimised.

v the objective function value (lower is better).

ll the log-likelihood value.

See Also

modelOptimise.

Examples

Load a mmgmos preprocessed fragment of the Drosophila developmental
time series
data(drosophila_gpsim_fragment)

The probe identifier for TF 'twi'
twi <- "143396_at"
The probe identifier for the target gene
targetProbe <- "152715_at"

Create the model but do not optimise
model <- GPLearn(drosophila_gpsim_fragment,

TF=twi, targets=targetProbe,
useGpdisim=TRUE, quiet=TRUE,
dontOptimise=TRUE)

params <- modelExtractParam(model, only.values=FALSE)
ll <- modelLogLikelihood(model)

modelTieParam 27

paramValues <- modelExtractParam(model, only.values=TRUE)
modelGradient(paramValues, model)

modelTieParam Tie parameters of a model together.

Description

groups of parameters of a model to be seen as one parameter during optimisation of the model.

Usage

modelTieParam(model, paramsList)

Arguments

model the model for which parameters are being tied together.

paramsList indices of parameteres to group together. The indices are provided in a list.
Each element in the list contains a vector of indices of parameters that should
be considered as one parameter. Each group of parameters in each cell should
obviously be mutually exclusive.
Alternatively, the specification may consist of strings, which are interpreted as
regular expressions that are matched against the parameter names returned by
modelExtractParam or kernExtractParam, as appropriate fot the current ob-
ject.

Value

model the model with the parameters grouped together.

See Also

modelExtractParam, modelExpandParam, modelGradient.

Examples

Create a multi kernel with two rbf blocks with bounded inverse widths
invWidthBounds <- c(0.5, 2)
kernType <- list(type="multi", comp=list())
for (i in 1:2)

kernType$comp[[i]] <- list(type="parametric", realType="rbf",
options=list(isNormalised=TRUE,

inverseWidthBounds=invWidthBounds))
kern <- kernCreate(1, kernType)

Tie the inverse with parameters of the component RBF kernels
kern <- modelTieParam(kern, list(tieWidth="inverseWidth"))
kernDisplay(kern)

28 plotTimeseries

optimiDefaultConstraint

Returns function for parameter constraint.

Description

returns the current default function for constraining a parameter.

Usage

optimiDefaultConstraint(constraint)

Arguments

constraint the type of constraint you want to place on the parameter, options include ’pos-
itive’ (gives an ’exp’ constraint) and ’zeroone’ (gives a ’sigmoid’ constraint).

Value

val a list with two components: ’func’ for the name of function used to apply the
constraint, and ’hasArgs’ for a boolean flag if the function requires additional
arguments.

See Also

expTransform, sigmoidTransform.

Examples

optimiDefaultConstraint('positive')
optimiDefaultConstraint('bounded')

plotTimeseries Plot ExpressionTimeSeries data

Description

Plots ExpressionTimeSeries data.

Usage

plotTimeseries(data, nameMapping = NULL)

processData 29

Arguments

data An ExpressionTimeSeries object.

nameMapping The annotation used for mapping the names of the genes for the figures. By
default, the SYMBOL annotation for the array is used, if available.

Details

The function plots the expression levels from an ExpressionTimeSeries object and the associated
standard deviations. If the object includes multiple time series, they will be plotted in the same
figure, but slightly shifted.

Author(s)

Antti Honkela

See Also

processData.

Examples

Load a mmgmos preprocessed fragment of the Drosophila developmental
time series
data(drosophila_gpsim_fragment)

Plot the first two genes
plotTimeseries(drosophila_gpsim_fragment[1:2,])

processData Processing expression time series

Description

processData further processes time series data preprocessed by puma or lumi.

processRawData performs similar processing for other data.

Both functions return ExpressionTimeSeries objects that can be used as input for the functions
GPLearn and GPRankTargets.

Usage

processData(data, times = NULL, experiments = NULL,
do.normalisation = TRUE)

processRawData(rawData, times, experiments = NULL,
is.logged = TRUE, do.normalisation = ifelse(is.logged, TRUE, FALSE))

30 processData

Arguments

data The preprocessed data from mmgMOS in the puma package (an exprReslt object)
or from the lumi package (a LumiBatch object).

rawData Raw data matrix to be used. Each row corresponds to a gene and each column
to a data point.

times Observation times of each data point. If unspecified or NULL, processData
attempts to infer this from phenoData(data) field containing ’time’ in the name.

experiments The replicate structure of the data indicating which expression data points arise
from which experiments. This should be an array in integers from 1 to N with
length equal to the number of data points. By default all the data points are
assumed to be from same replicate.

is.logged Indicates whether the expression values are on log scale or not. Normalisation
of non-logged data is unsupported.

do.normalisation

Indicates whether to perform the normalisation.

Details

The expression data (and percentiles, if available) are normalized by equalising the mean of log-
expression in each time points. In processData, a normal distribution is then fitted into the data
with distfit.

Value

An ExpressionTimeSeries object containing all provided information.

Author(s)

Antti Honkela, Jonatan Ropponen

See Also

GPLearn, GPRankTargets.

Examples

Load a mmgmos preprocessed fragment of the Drosophila developmental
time series
data(drosophila_mmgmos_fragment)

Process the data (3 experiments containing 12 time points each)
drosophila_gpsim_fragment <- processData(drosophila_mmgmos_fragment,

experiments=rep(1:3, each=12))

SCGoptim 31

SCGoptim Optimise the given function using (scaled) conjugate gradients.

Description

Optimise the given function using (scaled) conjugate gradients.

Usage

optimiDefaultOptions()
SCGoptim(x, fn, grad, options, ...)
CGoptim(x, fn, grad, options, ...)
modelOptimise(model, options, ...)

Arguments

model the model to be optimised.

x initial parameter values.

fn objective function to minimise

grad gradient function of the objective

options options structure like one returned by optimiDefaultOptions. The fields are
interpreted as\ option[1] : number of iterations\ option[2] : interval for the line
search\ option[3] : tolerence for x to terminate the loop\ option[4] : tolerence
for fn to terminate the loop\ option$display : option of showing the details of
optimisaton

... extra arguments to pass to fn and grad

Value

options an options structure

newParams optimised parameter values

model the optimised model.

See Also

modelObjective, modelGradient

Examples

Not run to speed up package checks
model <- GPLearn(..., dontOptimise=TRUE)
options <- optimiDefaultOptions()
model <- modelOptimise(model, options)

32 scoreList-class

scoreList-class Class "scoreList"

Description

’scoreList’ is an object which contain the genes, parameters, log-likelihoods and arguments of mod-
els. With the data in a scoreList item and the original data used for creating the models, the models
can be reconstructed with the function ’generateModels’.

Objects from the Class

Objects can be created by calls of the form scoreList(params, loglikelihoods, genes, modelArgs,
knownTargets, TF, sharedModel).

Slots

params: The parameters of the models.

loglikelihoods: The log-likelihoods of the models.

baseloglikelihoods: The log-likelihoods of corresponding null models.

genes: The genes used in the models.

modelArgs: A list of arguments used to generate the models.

knownTargets: The list of known targets used in the ranking.

TF: The TF used in the ranking.

sharedModel: Shared model for known targets.

datasetName: Dataset name, used when exporting scores to a database.

experimentSet: Experiment set name, used when exporting scores to a database.

Methods

Class-specific methods:

write.scores(object, ...) Writes the log-likelihoods and null log-likelihoods. Accepts any
options write.table does.

genes(object), genes(object)<- value Access and set genes

knownTargets(object), knownTargets(object)<- value Access and set knownTargets

loglikelihoods(object), loglikelihoods(object)<- value Access and set loglikelihoods

baseloglikelihoods(object), baseloglikelihoods(object)<- value Access and set baseloglikelihoods

modelArgs(object), modelArgs(object)<- value Access and set modelArgs

params(object), params(object)<- value Access and set params

sharedModel(object), sharedModel(object)<- value Access and set sharedModel

TF(object), TF(object)<- value Access and set TF

datasetName(object), datasetName(object)<- value Access and set datasetName

scoreList-class 33

experimentSet(object), experimentSet(object)<- value Access and set experimentSet

Standard generic methods:

object[(index) Conducts subsetting of the scoreList.

c(object, ...) Concatenates scoreLists.

length(object) Returns the length of the list.

show(object) Informatively display object contents.

sort(object, decreasing=FALSE) Sort the list according to log-likelihood

Author(s)

Antti Honkela, Jonatan Ropponen

See Also

GPRankTargets, GPRankTFs, generateModels, write.table.

Examples

showClass("scoreList")

Index

∗ classes
ExpressionTimeSeries-class, 7
GPModel-class, 13
scoreList-class, 32

∗ datasets
drosophila_gpsim_fragment, 4
drosophila_mmgmos_fragment, 5

∗ export
export.scores, 5

∗ model
expTransform, 9
generateModels, 10
GPLearn, 11
GPPlot, 14
GPRankTargets, 15
gpsimCreate, 17
kernCompute, 18
kernCreate, 19
kernDiagGradX, 20
kernGradient, 21
lnDiffErfs, 22
modelDisplay, 23
modelExpandParam, 24
modelExtractParam, 25
modelGradient, 26
modelTieParam, 27
optimiDefaultConstraint, 28
plotTimeseries, 28
processData, 29
SCGoptim, 31

∗ package
tigre-package, 2

[,scoreList,ANY-method
(scoreList-class), 32

[,scoreList-method (scoreList-class), 32

baseloglikelihoods (scoreList-class), 32
baseloglikelihoods,scoreList-method

(scoreList-class), 32

baseloglikelihoods<- (scoreList-class),
32

baseloglikelihoods<-,scoreList,numeric-method
(scoreList-class), 32

boundedTransform (expTransform), 9

c,scoreList-method (scoreList-class), 32
CGoptim (SCGoptim), 31
cgpdisimExpandParam (modelExpandParam),

24
cgpdisimExtractParam

(modelExtractParam), 25
cgpdisimGradient (modelGradient), 26
cgpdisimLogLikeGradients

(modelGradient), 26
cgpdisimLogLikelihood (modelGradient),

26
cgpdisimObjective (modelGradient), 26
cgpdisimUpdateProcesses

(modelExpandParam), 24
cgpsimExpandParam (modelExpandParam), 24
cgpsimExtractParam (modelExtractParam),

25
cgpsimGradient (modelGradient), 26
cgpsimLogLikeGradients (modelGradient),

26
cgpsimLogLikelihood (modelGradient), 26
cgpsimObjective (modelGradient), 26
cgpsimOptimise (SCGoptim), 31
cgpsimUpdateProcesses

(modelExpandParam), 24
cmpndKernCompute (kernCompute), 18
cmpndKernDiagCompute (kernCompute), 18
cmpndKernDiagGradX (kernDiagGradX), 20
cmpndKernDisplay (modelDisplay), 23
cmpndKernExpandParam

(modelExpandParam), 24
cmpndKernExtractParam

(modelExtractParam), 25
cmpndKernGradient (kernGradient), 21

34

INDEX 35

cmpndKernGradX (kernDiagGradX), 20
cmpndKernParamInit (kernCreate), 19

datasetName (scoreList-class), 32
datasetName,scoreList-method

(scoreList-class), 32
datasetName<- (scoreList-class), 32
datasetName<-,scoreList,character-method

(scoreList-class), 32
disimKernCompute (kernCompute), 18
disimKernDiagCompute (kernCompute), 18
disimKernDisplay (modelDisplay), 23
disimKernExpandParam

(modelExpandParam), 24
disimKernExtractParam

(modelExtractParam), 25
disimKernGradient (kernGradient), 21
disimKernParamInit (kernCreate), 19
disimXdisimKernCompute (kernCompute), 18
disimXdisimKernGradient (kernGradient),

21
disimXrbfKernCompute (kernCompute), 18
disimXrbfKernGradient (kernGradient), 21
disimXsimKernCompute (kernCompute), 18
disimXsimKernGradient (kernGradient), 21
drosophila_gpsim_fragment, 4
drosophila_mmgmos_fragment, 5

experimentSet (scoreList-class), 32
experimentSet,scoreList-method

(scoreList-class), 32
experimentSet<- (scoreList-class), 32
experimentSet<-,scoreList,character-method

(scoreList-class), 32
export.scores, 5, 16
ExpressionSet, 7, 8
ExpressionTimeSeries, 4, 29, 30
ExpressionTimeSeries

(ExpressionTimeSeries-class), 7
ExpressionTimeSeries-class, 7
expTransform, 9, 28

gammaPriorExpandParam
(modelExpandParam), 24

gammaPriorExtractParam
(modelExtractParam), 25

gammaPriorGradient (modelGradient), 26
gammaPriorLogProb (modelGradient), 26
gammaPriorParamInit (kernCreate), 19

generateModels, 10, 13, 16, 33
genes (scoreList-class), 32
genes,scoreList-method

(scoreList-class), 32
genes<- (scoreList-class), 32
genes<-,scoreList,list-method

(scoreList-class), 32
gpdisimCreate (gpsimCreate), 17
gpdisimDisplay (modelDisplay), 23
gpdisimExpandParam (modelExpandParam),

24
gpdisimExtractParam

(modelExtractParam), 25
gpdisimGradient (modelGradient), 26
gpdisimLogLikeGradients

(modelGradient), 26
gpdisimLogLikelihood (modelGradient), 26
gpdisimObjective (modelGradient), 26
gpdisimUpdateProcesses

(modelExpandParam), 24
GPLearn, 10, 11, 13, 14, 16–18, 24, 29, 30
GPModel (GPModel-class), 13
GPModel-class, 13
GPPlot, 14
GPRankTargets, 6, 10, 12, 13, 15, 29, 30, 33
GPRankTFs, 6, 10, 12, 13, 33
GPRankTFs (GPRankTargets), 15
gpsimCreate, 17
gpsimDisplay (modelDisplay), 23
gpsimExpandParam (modelExpandParam), 24
gpsimExtractParam (modelExtractParam),

25
gpsimGradient (modelGradient), 26
gpsimLogLikeGradients (modelGradient),

26
gpsimLogLikelihood (modelGradient), 26
gpsimObjective (modelGradient), 26
gpsimUpdateProcesses

(modelExpandParam), 24

initialize,ExpressionTimeSeries-method
(ExpressionTimeSeries-class), 7

initialize,GPModel-method
(GPModel-class), 13

invgammaPriorExpandParam
(modelExpandParam), 24

invgammaPriorExtractParam
(modelExtractParam), 25

36 INDEX

invgammaPriorGradient (modelGradient),
26

invgammaPriorLogProb (modelGradient), 26
invgammaPriorParamInit (kernCreate), 19
is.GPModel (GPModel-class), 13
is.GPModel,GPModel-method

(GPModel-class), 13

kernCompute, 18, 22
kernCreate, 18, 19
kernDiagCompute (kernCompute), 18
kernDiagGradX, 20
kernDisplay, 19
kernDisplay (modelDisplay), 23
kernExpandParam (modelExpandParam), 24
kernExtractParam, 22
kernExtractParam (modelExtractParam), 25
kernGradient, 20, 21
kernGradX (kernDiagGradX), 20
kernParamInit (kernCreate), 19
kernPriorGradient (modelGradient), 26
kernPriorLogProb (modelGradient), 26
knownTargets (scoreList-class), 32
knownTargets,scoreList-method

(scoreList-class), 32
knownTargets<- (scoreList-class), 32
knownTargets<-,scoreList,character-method

(scoreList-class), 32

length,scoreList-method
(scoreList-class), 32

lnDiffErfs, 22
loglikelihoods (scoreList-class), 32
loglikelihoods,scoreList-method

(scoreList-class), 32
loglikelihoods<- (scoreList-class), 32
loglikelihoods<-,scoreList,numeric-method

(scoreList-class), 32

mlpKernCompute (kernCompute), 18
mlpKernDiagGradX (kernDiagGradX), 20
mlpKernExpandParam (modelExpandParam),

24
mlpKernExtractParam

(modelExtractParam), 25
mlpKernGradient (kernGradient), 21
mlpKernGradX (kernDiagGradX), 20
mlpKernParamInit (kernCreate), 19
modelArgs (scoreList-class), 32

modelArgs,scoreList-method
(scoreList-class), 32

modelArgs<- (scoreList-class), 32
modelArgs<-,scoreList,list-method

(scoreList-class), 32
modelDisplay, 23
modelExpandParam, 24, 25, 27
modelExtractParam, 13, 18, 23, 24, 25, 27
modelGradient, 26, 27, 31
modelLogLikelihood, 13
modelLogLikelihood (modelGradient), 26
modelObjective, 31
modelObjective (modelGradient), 26
modelOptimise, 9, 18, 26
modelOptimise (SCGoptim), 31
modelStruct (GPModel-class), 13
modelStruct,GPModel-method

(GPModel-class), 13
modelStruct<- (GPModel-class), 13
modelStruct<-,GPModel,list-method

(GPModel-class), 13
modelTieParam, 19, 27
modelType (GPModel-class), 13
modelType,GPModel-method

(GPModel-class), 13
modelUpdateProcesses

(modelExpandParam), 24
multiKernCompute (kernCompute), 18
multiKernDiagCompute (kernCompute), 18
multiKernDisplay (modelDisplay), 23
multiKernExpandParam

(modelExpandParam), 24
multiKernExtractParam

(modelExtractParam), 25
multiKernGradient (kernGradient), 21
multiKernParamInit (kernCreate), 19

optimiDefaultConstraint, 28
optimiDefaultOptions (SCGoptim), 31

params (scoreList-class), 32
params,scoreList-method

(scoreList-class), 32
params<- (scoreList-class), 32
params<-,scoreList,list-method

(scoreList-class), 32
plotTimeseries, 28
priorCreate (kernCreate), 19
priorExpandParam (modelExpandParam), 24

INDEX 37

priorExtractParam (modelExtractParam),
25

priorGradient (modelGradient), 26
priorLogProb (modelGradient), 26
priorParamInit (kernCreate), 19
processData, 4, 8, 29, 29
processRawData, 8
processRawData (processData), 29
puma, 3

rbfKernCompute (kernCompute), 18
rbfKernDiagCompute (kernCompute), 18
rbfKernDisplay (modelDisplay), 23
rbfKernExpandParam (modelExpandParam),

24
rbfKernExtractParam

(modelExtractParam), 25
rbfKernGradient (kernGradient), 21
rbfKernParamInit (kernCreate), 19

SCGoptim, 31
scoreList, 10, 16
scoreList (scoreList-class), 32
scoreList-class, 32
sharedModel (scoreList-class), 32
sharedModel,scoreList-method

(scoreList-class), 32
sharedModel<- (scoreList-class), 32
sharedModel<-,scoreList,list-method

(scoreList-class), 32
show,GPModel-method (GPModel-class), 13
show,scoreList-method

(scoreList-class), 32
sigmoidTransform, 28
sigmoidTransform (expTransform), 9
simKernCompute (kernCompute), 18
simKernDiagCompute (kernCompute), 18
simKernDisplay (modelDisplay), 23
simKernExpandParam (modelExpandParam),

24
simKernExtractParam

(modelExtractParam), 25
simKernGradient (kernGradient), 21
simKernParamInit (kernCreate), 19
simXrbfKernCompute (kernCompute), 18
simXrbfKernGradient (kernGradient), 21
simXsimKernCompute (kernCompute), 18
simXsimKernGradient (kernGradient), 21

sort,scoreList-method
(scoreList-class), 32

TF (scoreList-class), 32
TF,scoreList-method (scoreList-class),

32
TF<- (scoreList-class), 32
TF<-,scoreList,character-method

(scoreList-class), 32
tigre (tigre-package), 2
tigre-package, 2
translateKernCompute (kernCompute), 18
translateKernDiagCompute (kernCompute),

18
translateKernExpandParam

(modelExpandParam), 24
translateKernExtractParam

(modelExtractParam), 25
translateKernGradient (kernGradient), 21
translateKernParamInit (kernCreate), 19

var.exprs (ExpressionTimeSeries-class),
7

var.exprs,ExpressionTimeSeries-method
(ExpressionTimeSeries-class), 7

var.exprs<-
(ExpressionTimeSeries-class), 7

var.exprs<-,ExpressionTimeSeries-method
(ExpressionTimeSeries-class), 7

whiteKernCompute (kernCompute), 18
whiteKernDiagCompute (kernCompute), 18
whiteKernDisplay (modelDisplay), 23
whiteKernExpandParam

(modelExpandParam), 24
whiteKernExtractParam

(modelExtractParam), 25
whiteKernGradient (kernGradient), 21
whiteKernParamInit (kernCreate), 19
whiteXwhiteKernCompute (kernCompute), 18
whiteXwhiteKernGradient (kernGradient),

21
write.scores (scoreList-class), 32
write.scores,scoreList-method

(scoreList-class), 32
write.table, 33

	tigre-package
	drosophila_gpsim_fragment
	drosophila_mmgmos_fragment
	export.scores
	ExpressionTimeSeries-class
	expTransform
	generateModels
	GPLearn
	GPModel-class
	GPPlot
	GPRankTargets
	gpsimCreate
	kernCompute
	kernCreate
	kernDiagGradX
	kernGradient
	lnDiffErfs
	modelDisplay
	modelExpandParam
	modelExtractParam
	modelGradient
	modelTieParam
	optimiDefaultConstraint
	plotTimeseries
	processData
	SCGoptim
	scoreList-class
	Index

